
An Efficient Scheduling Algorithm for Combined
Input-Crosspoint-Queued (CICQ) Switches

Xiao Zhang and Laxmi N. Bhuyan
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
Email: {xzhang, bhuyan}@cs.ucr.edu

Abstract— With today’s ASIC technology, a large number of
memory can be easily implemented in a single chip. This makes
the combined input-crosspoint-queued (CICQ) crossbar switch a
more attractive solution than the traditional input-queued (IQ)
crossbar switch because of the simplicity of the CICQ switch
scheduling. In this paper, we propose a shortest crosspoint buffer
first (SCBF) scheme, and prove that it achieves 100% throughput
for any admissible traffic. To facilitate hardware implementation,
a maximal SCBF solution is also proposed. Our simulations
show that the maximal SCBF performs almost identically to
the maximum solution, and better than existing IQ and CICQ
schemes. The time complexity of the maximal SCBF is O(log N),
feasible for fast hardware implementation.

I. INTRODUCTION

Crossbar is widely employed in current high-performance
IP routers/switches [1], [2] because of its simplicity and non-
blocking characteristics. However, the crossbar suffers from
both input and output contentions: each input and output can
only transfer one packet at a time. Output queuing (OQ) can
avoid this situation. But to support OQ, the crossbar has to
operate N times faster than the line card for an N×N switch.
Therefore, input queuing is widely used in crossbar-based
switches, and such a switch is called an input-queued (IQ)
switch. To eliminate head-of-line (HOL) blocking [3], virtual
output queuing (VOQ) [4] is used, where at each input, a
logically separate FIFO queue is maintained for each output.

In an IQ switch, a switch scheduler is necessary. The
difficulty of the switch scheduling comes from two aspects.
First, the scheduling has to be performed in a very short time.
Second, co-existence of input and output contentions make the
switch scheduling more complicated than the OQ scheduling.
The switch scheduler must make sure that matchings between
inputs and outputs are conflict-free at any time. Theoretically,
the maximum weight matching (MWM) algorithm [5]1 is
proved to achieve 100% throughput for any admissible traffic.
But its complexity is O(N3 log N), too complicated to be
implemented in hardware. Furthermore, multi-casting [6] and
QoS guarantee [7] impose additional complexity on the switch
scheduling.

This research has been supported by NSF grants CCR-0105676 and CCR-
0311437.

1The MWM algorithm assigns each VOQij a weight wij , and finds a
matching M that maximizes

∑
(i,j)∈M wij . The weight can be queue length,

waiting time or others.

Many algorithms [8]–[12] have been proposed to reduce
the complexity. However, due to the time constraint, most
of those proposed algorithms are still too complicated to be
implemented in hardware. In practice, only simple algorithms,
such as an iterative round-robin scheme iSLIP [12], can be
deployed though performance is sacrificed.

Speedup is another approach to tackle the IQ switch
scheduling problem. With a speedup of 2, Dai and Prab-
hakar proved that any maximal matching algorithms can
achieve 100% throughput under any admissible traffic [13];
and Chuang et al. showed that an IQ switch can emulate an
OQ switch [14]. However, speedup shortens the schedule time.
Iterative-based algorithms may have no time to find a maximal
matching.

Yet another approach is to add limited buffers inside the
crossbar. This switch architecture has been investigated in
many literatures [15]–[19] in which it is called a combined
input-crosspoint-queued (CICQ) switch. With today’s ASIC
technology, a large amount of memory can be readily imple-
mented in a single chip. This makes the CICQ switches more
and more attractive. Stephens and Zhang applied distributed
packet fair queuing to CICQ switches [20]. Magill et al.
showed how to emulate an OQ switch by a CICQ switch with
a speedup of 2 [21]. And Yoshigoe and Christensen did a
survey on the evolution of CICQ switches [22].

One of the advantages of CICQ switches over IQ switches
is the simplicity of the switch scheduling. Buffers inside
the crossbar separate the input contentions from the output
contentions, so that each input and output arbiter can make
decisions independently. Algorithms such as OCF-OCF [15],
RR-RR [16] have been proposed. LQF-RR [19] was also
proved to achieve 100% throughput when the arrival rate
of each input/output pair λij ≤ 1/N for an N×N switch.
However, to our best knowledge, no low cost algorithm has
been proposed to provide 100% throughput for any admissible
traffic without speedup.

We observe that output arbiters depend on the status of
crosspoint buffers which in turn are determined by input ar-
biters. Therefore, input arbiters are more important than output
arbiters in terms of throughput. In this paper, we propose
a shortest crosspoint buffer first (SCBF) algorithm for input
arbiters, and prove that SCBF with any work-conserving output
arbiters can achieve 100% throughput for any admissible
traffic.

The rest of the paper is organized as follows. In section II,
we briefly describe the input queued and combined input-
crosspoint-queued switch architectures. In section III, we
propose the shortest crosspoint buffer first (SCBF) scheme,
and provide the stability proof. In Section IV, we present
simulation results to verify our analysis and compare with
existing schemes. Finally section V presents our conclusions.

II. IQ SWITCHES VERSUS CICQ SWITCHES

A traditional N×N IQ crossbar switch, as shown in Fig. 1,
operates on fixed-length units, called cells. A slot is the time to
transfer a cell across the crossbar. Variable-length packets are
segmented into cells on the input line card and re-assembled
on the output line card. The limitation of an IQ crossbar switch
is due to the co-existence of input and output contentions. In
each slot, the crossbar scheduler has to configure the crossbar
in such a way that one input is connected to at most one output
and vice versa.

1
A

ssem
bly

B
uffer

2

A
ssem

bly
B

uffer

N

A
ssem

bly
B

uffer

Segment

Segment

Segment
N

2

1

Scheduler
Crossbar

Output line card

Input line card

VOQ

Fig. 1. An N×N IQ crossbar switch

An N×N CICQ switch, as shown in Fig.2, differs from an
IQ switch by putting at each crosspoint a small buffer, called
crosspoint buffer (CB). After a trivial re-arrangement of these
buffers and connections, we have an equivalent graph shown
in Fig. 3. Now, it is easy to see that an N×N CICQ switch in
fact contains N 1×N crossbars (or de-multiplexers) between
VOQs and CBs, and N N×1 crossbars (or multiplexers)
between CBs and assembly buffers (ABs).

The key role of CBs is to separate the input contentions from
the output contentions. This results in a two-stage scheduling
scheme. In the first stage, each input arbiter determines which
cell is transferred from a VOQ to the corresponding CB. When
a CB is full, no more cells can be transferred to it. Note that
if the CB size is unlimited (or large enough), this architecture
is equivalent to output queuing and input arbiters are not
necessary, because packets can directly go to CBs without
buffering at VOQs. For a practical single-chip implementation,
however, the CBs should be as small as possible.

In the second stage, each output arbiter selects cells from
CBs to assembly buffers. It is exactly the same as the output-
link scheduling. Any work-conserving scheduling algorithms

Input Arbiter

Input line card
Output Arbiter

Output line card

Crosspoint buffer

N21

A
ssem

bly

A
ssem

bly

A
ssem

bly

B
uffer

B
uffer

B
uffer

Segment

Segment

Segment
N

2

1

VOQ

Fig. 2. An N×N CICQ crossbar switch

Segment

Segment

Segment

Assembly
Buffer

Assembly
Buffer

Assembly
Buffer

1

2

N

2

N

Output line cardInput line card
Output ArbiterInput Arbiter

1

Crosspoint Buffer
VOQ

Fig. 3. An equivalent illustration of an N×N CICQ crossbar switch

suffice to give 100% throughput. Different algorithms differ
only in packet delay.

However, because the output arbiters depend on the status of
CBs which in turn are determined by the input arbiters. 100%
thoughput may not be achieved if the input arbiters cannot
delivery cells to CBs in time. The simple credit flow control
mechanism used in existing schemes thus may fail to sustain
full switch bandwidth.

In the next section, we describe an input arbitration scheme,
called shortest crosspoint buffer first (SCBF) and prove that it
can achieve 100% throughput for any admissible traffic with
any work-conserving output arbitration schemes.

III. THE SCBF SCHEDULING ALGORITHM

A. Description of SCBF and its time complexity

In an N×N CICQ switch with each CB of K cells, let

• VOQij be the virtual output queue for cells from inputi
to outputj .

• Vij(n) be the number of cells queued at VOQij at the
beginning of slot n.

• CBij be the crosspoint buffer for cells from inputi to
outputj .

• Cij(n) be the number of cells queued at CBij at the
beginning of slot n, and

• Bj(n) =
∑

i Cij(n): the number of cells queued at all
CBs destined to outputj at the beginning of slot n.

In each slot n, there is an edge between inputi and outputj
iff Vij(n) > 0 and Cij(n) < K, and the edge is assigned a
weight of Bj(n). The SCBF algorithm is to find a matching
between inputs and outputs such that

1) each input with an edge is matched to an output with the
smallest weight, so that the total weight of a matching
is minimum.

2) In the case of multiple matchings having the same
weight, choose the one with the maximum number of
matched outputs.

The SCBF algorithm essentially favors the output with the
least occupancy, so that each output is as work-conserving as
possible. Since one-to-one matching is not required, the SCBF
is much simpler than MWM. Fig. 4 shows the pseudo-code
of the SCBF algorithm. The two sorts in line 1 and 2 take
O(N log N). Finding an output (line 4) takes O(N), and can
be reduced to O(log N) using hardware parallel search circuit.
Re-sorting outputs (line 6) also takes O(log N) because we
just need to insert j into a sorted list. So the total time
complexity of SCBF is O(N log N).

Initialization:
Bj(0)← 0 (j = 1, · · · , N)

In each slot n, SCBF works as follows:
1) sort inputs in the increasing order of edge degree.
2) sort outputs in the increasing order of B.
3) for each sorted inputi with an edge do
4) find the first j in the sorted output list such that

there is an edge between inputi and outputj .
5) increase Bj(n) by 1.
6) re-sort outputs.

For each output arbiterj working with SCBF, decrease
Bj(n) by 1 if Bj(n) > 0.

Fig. 4. The SCBF Algorithm

B. Throughput analysis of SCBF

For the convenience of analysis, we assume that in each
slot, a CICQ switch performs the following steps in sequence:
1) apply SCBF, 2) transfer cells from VOQs to CBs, 3) apply
output arbitration, and 4) transfer cells from CBs to ABs.

We prove the stability of the SCBF algorithm using the fluid
model technique [13]. Let Aij(n) be the number of packets
that have arrived at VOQij up to time slot n, and Aij(0) =
0. The arrival processes {Aij(·), i, j = 1, . . . , N} satisfy a
strong law of large numbers (SLLN): with probability one,

lim
n→∞

Aij(n)
n

= λij i, j = 1, . . . , N (1)

where, λij is the arrival rate at VOQij . Let Dij(n) be the
number of departures from CBij(n) up to time slot n, and
Dij(0) = 0. A switch operating under a matching algorithm

is said to be rate stable (equivalent to achieving up to 100%
throughput), if, with probability one,

lim
n→∞

Dij(n)
n

= λij i, j = 1, . . . , N (2)

for any arrival processes satisfying (1). We also call a traffic
admissible iff (1) holds and no inputs or outputs are oversub-
scribed, i.e.,

∑

i

λij ≤ 1 and
∑

j

λij ≤ 1 (3)

Theorem 1: A CICQ switch operating under the SCBF
algorithm with any work conserving output arbiters is rate
stable under any admissible traffic that satisfies SLLN.

Proof : To prove that a switch is rate stable, it suffices to
show that the corresponding fluid model is weakly stable,
i.e., for every fluid model solution (D,T,Z) with Z(0) = 0,
Z(t) = 0 for t ≥ 0 (See Theorem 3 in [13] for proof).

Consider the fluid model of a CICQ switch operating under
the SCBF algorithm. Let (D,T,Z) be a fluid model solution
with Z(0) = 0, and Zij(t) be the total amount of fluid queued
at VOQij and CBij at time t. From Lemma 1 in [13], to show
that the fluid model is weakly stable, it suffices to show that
Ż(t) ≤ 0 for any Z(t) > 0, where, for a function f , ḟ(t)
denotes the derivative of f at time t. Intuitively, we need to
show that the rate of change of queue length is negative when
there are backlogs in queues.

In each slot n, for any Zij(n) > 0, we have 4 cases:

1) Bj(n) > 0 and outputj is matched by SCBF.
2) Bj(n) > 0 and outputj is not matched.
3) Bj(n) = 0 and outputj is matched by SCBF.
4) Bj(n) = 0 and outputj is not matched.

• In case 1), 2) and 3), let Mj(t) =
∑

i′ Zi′j(t) be the
total amount of fluid destined for outputj and queued at
some VOQs and CBs at time t. Mj(n + 1) − Mj(n)
is the difference in the number of arrivals at all inputs
destined to outputj at n+1 and the number of departures
for outputj at time n. The number of arrivals equals to∑

i′(Ai′j(n + 1)−Ai′j(n)). Because the output arbiters
are work-conserving and either Bj(n) > 0 or outputj
is matched by SCBF, one cell must leave the switch for
outputj at the end of slot n. So we have

Mj(n+1)−Mj(n) ≤
∑

i′
(Ai′j(n+1)−Ai′j(n))−1 (4)

Applying the fluid limit procedure and (3), we have

Ṁj(t) =
∑

i′
Żi′j(t) ≤

∑

i′
λi′j − 1 ≤ 0 (5)

• In case 4), let Li(t) =
∑

j′ Zij′(t) be the total amount
of fluid queued at inputi at time t. Li(n + 1) − Li(n)
is the difference in the number of arrivals to inputi at
n + 1 and the number of departures from inputi at time
n. The number of arrivals equals to

∑
j′(Aij′(n + 1) −

Aij′(n)). Because Zij(n) > 0, Bj(n) = 0 and outputj is
not matched, inputi must be matched to outputj′ such that
Zij′(n) > 0, j′ �= j and Bj′(n) = 0. We claim that j′ is
only matched to i, because if not, we can simply re-match
i to j to increase the total number of matched outputs
without increasing the total weight, and thus contradict
to the fact that the SCBF algorithm gives the maximum
number of matched outputs. Hence one cell must leave
the switch from inputi at the end of slot n. So we have

Li(n+1)−Li(n) ≤
∑

j′
(Aij′(n+1)−Aij′(n))−1 (6)

Applying the fluid limit procedure and (3), we have

L̇i(t) =
∑

j′
Żij′(t) ≤

∑

j′
λij′ − 1 ≤ 0 (7)

Combine all cases, we have Ż(t) =
∑

ij Żij(t) ≤ 0 any
for any Z(t) > 0. Therefore, the fluid model is weakly stable,
and hence the CICQ switch using SCBF is rate stable.

C. A maximal approximation to SCBF

The above SCBF algorithm is a maximum solution, i.e.,
the matching decision is made globally. Each input needs to
know the decisions of other inputs. For better scalability and
faster hardware implementation, it is preferred that each arbiter
makes decisions independently. This can be achieved by only
requiring that each input with an edge is matched to an output
with the smallest weight. The time complexity is therefore re-
duced to O(log N) with hardware parallel comparison circuit,
which is clearly feasible for fast hardware implementation.

A matching obtained this way is maximal since the number
of matched outputs may not be maximum, and equation (6)
no longer holds. Fig. 5 illustrates the difference between the
maximum and the maximal solution. When the maximum
SCBF is used, all outputs are busy while in the case of the
maximal SCBF, only output 0 is busy.

P

P

P

P

P

P

P

P

VOQs (at inputs) CBs (at outputs) CBs (at outputs)VOQs (at inputs)

0B = 0

1B = 0 B = 0

0

1

B = 000

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Maximum solution Maximal solution

Fig. 5. Maximum SCBF vs. maximal SCBF (bold line is a matching)

However, in the worst case, if all inputs serve each output
at the same time, the idle time of the last served output is
at most N slots; and thereafter, all outputs will be busy. So
we conjecture that the maximal SCBF can still achieve 100%
throughput. Our extensive simulations show that in most cases,
the difference between the maximal and the maximum SCBF
is indistinguishable.

IV. SIMULATION RESULTS

To evaluate the SCBF scheduling algorithm, we wrote a
simulator to implement SCBF-RR and SCBF-OCF. We also
implement iSLIP (with 3 iterations), MWM (using waiting
time as weight), RR-RR, OCF-OCF, LQF-RR and output
queuing for comparison. The switch size is 16×16. VOQs
and output queues are statically partitioned with 64K bytes per
input-output pair. Cell size is set to 64 bytes. Packet arrival
is modeled as a 2-state ON-OFF process. The number of ON
state slots is defined as the packet length which is obtained
from a profile of NLANR trace at AIX site [23]. We collected
119,298,399 packets from May 12 02:45:06 2002 to May 18
23:11:34 2002. The packet length ranges from 20 to 1500
bytes with mean Eon = 566 bytes and standard deviation of
615 bytes. The number of OFF state slots is exponentially
distributed with average Eoff = 1−ρ

ρ Eon, where ρ is defined as
the offered workload (0 < ρ < 1). We evaluate our algorithms
under various traffic patterns. Due to page limit, we only report
some of the results.

We measure the delay of a packet from the first bit of the
packet enters the VOQ to the last bit leaves the assembly
buffer. Packets leave the assembly buffer in the FIFO order.
Note that a packet is eligible to leave the assembly buffer
when the last bit of the packet arrives at the assembly
buffer. Measurement starts after a warm-up of 100,000 slots.
Simulations run long enough to ensure the 95% confidence
interval of the average delay with ±5% wdith.

A. Crosspoint buffer size

When arbitrations and cell transfers are performed sequen-
tially in one slot, the CB size of 1 cell is enough to achieve
maximum throughput. In practice (also in our simulation)
pipeline is implemented such that each slot performs only
one step, as illustrated in Fig 6. Since the input arbitration
is independent from the output arbitration, in order to perform
the input arbitration in slot 3, the minimum CB size of 3 cells
is necessary to sustain the maximum throughput.

Input
Arbitration

Transfer
VOQ−>CB

Output
Arbitration

Transfer
CB−>AB

Input
Arbitration

Transfer
VOQ−>CB

Output
Arbitration

Transfer
CB−>AB

Input
Arbitration

Transfer
VOQ−>CB

Output
Arbitration

Transfer
CB−>AB

Input
Arbitration

Transfer
VOQ−>CB

Output
Arbitration

Transfer
CB−>AB

slot 7slot 6slot 5slot 4slot 3slot 2slot 1

0 1 2 2 2

CB
queue
size

Fig. 6. Pipeline implementation of a CICQ switch. The minimum CB size of
3 cells is required to sustain the full switch bandwidth. Note that the pipeline
can be shortened by combining step 2 and step 3, and the minimum CB size
can be reduced to 2 cells.

B. Uniform Traffic

Fig. 7 shows the delay performance of various IQ/CICQ
schemes under uniform traffic (λij = ρ/N ∀i, j). As expected,
all schemes perform well. At low workload, a CICQ switch
has a slightly higher delay than an IQ switch due to the longer

pipeline. When the workload is above 50%, SCBF-RR/OCF
performs better than other schemes except output queuing.

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-RR
SCBF-OCF

iSLIP
MWM

RR-RR
LQF-RR

OCF-OCF
Output Queuing

Fig. 7. Delay Performance of SCBF-RR/OCF under uniform traffic compared
with other schemes. The crosspoint buffer size of CICQ switches is 8 cells.

Fig. 8 and Fig. 9 show the difference between the maximum
and the maximal SCBF and the impact of different CB sizes
on the delay performance. First, the maximum and maximal
SCBF perform almost identically. Second, the CB size of 8
cells is enough to achieve good delay performance. This result
in a total crosspoint buffer size of 128K bytes for a 16×16
switch or 512K bytes for a 32×32 switch, which is clearly
implementable in today’s ASIC technology.

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-RR-4
SCBF-RR-8

SCBF-RR-16
SCBF-RR-24
SCBF-RR-32

mSCBF-RR-4
mSCBF-RR-8

mSCBF-RR-16
mSCBF-RR-24
mSCBF-RR-32

Fig. 8. Delay Performance of the maximum SCBF-RR and the maximal
SCBF-RR (mSCBF-RR in the graph) with different CB sizes under uniform
traffic.

C. Non-uniform Traffic

Next we report simulation results under the diagonal non-
uniform traffic (used in [11]): λii = 2ρ/3, λi|i+1| = ρ/3 and
λij = 0 for j �= i or |i+1|. This is a very skewed traffic
pattern. Fig. 10 shows the average packet delay of traffic from
inputi to outputi as a function of the workload per input. In
this situation, iSLIP, RR-RR and OCF-OCF fail to achieve
100% throughput. Other schemes still perform well.

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-OCF-4
SCBF-OCF-8

SCBF-OCF-16
SCBF-OCF-24
SCBF-OCF-32

mSCBF-OCF-4
mSCBF-OCF-8

mSCBF-OCF-16
mSCBF-OCF-24
mSCBF-OCF-32

Fig. 9. Delay Performance of the maximum SCBF-OCF and the maximal
SCBF-OCF with different CB sizes under uniform traffic.

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-RR
SCBF-OCF

iSLIP
MWM

RR-RR
LQF-RR

OCF-OCF
Output Queuing

Fig. 10. Delay performance of SCBF-RR/OCF under diagonal traffic
compared with other schemes. The CB size of CICQ switches is 8 cells.

We observe that all schemes except output-queuing expe-
rience packet loss under high workload. However, this does
not invalidate the previous 100% throughput analysis because
under very high workload, bursts of packets overload the
outputs too often, and eventually overflow the VOQs. Fig. 11
shows the packet loss rate of different schemes. At a workload
of 94-97%, SCBF-RR incurs slightly higher loss rate (hence
higher packet delay) than MWM. When the workload reaches
98%, SCBF-RR has lower loss rate. SCBF-OCF, on the other
hand, always has the lowest loss rate, thus the lowest packet
delay.

Fig. 12 and Fig. 13 compare the maximum and the maximal
SCBF with different CB sizes. When the CB size is 4 cells,
the maximal SCBF performs worse than the maximum one.
When the CB size reaches 8 cells, the difference becomes
indistinguishable.

V. CONCLUSION

In this paper, we proposed a novel shortest crosspoint buffer
first (SCBF) algorithm for input arbiters of a CICQ switch, and
proved that a CICQ switch operating under SCBF with any

 0

 0.05

 0.1

 0.15

 0.2

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pa
ck

et
 lo

ss
 r

at
e

(%
)

Offered load per input (cell/slot)

SCBF-RR
SCBF-OCF

iSLIP
MWM

RR-RR
LQF-RR

OCF-OCF
Output Queuing

Fig. 11. Packet loss rate of different schemes under diagonal traffic. The
CB size of CICQ switches is 8 cells.

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-RR-4
SCBF-RR-8

SCBF-RR-16
SCBF-RR-24
SCBF-RR-32

mSCBF-RR-4
mSCBF-RR-8

mSCBF-RR-16
mSCBF-RR-24
mSCBF-RR-32

Fig. 12. Delay Performance of the maximum SCBF-RR and the maximal
SCBF-RR with different CB sizes under diagonal traffic.

work-conserving output arbiters can achieve 100% throughput
for any admissible traffic. Our simulations under uniform
and non-uniform traffic showed that SCBF achieves lower
delay and packet loss rate than existing IQ/CICQ schemes.
In addition, the maximal SCBF performs almost identically to
the maximum solution. Its O(log N) time complexity indicates
that it is feasible for high performance switches.

REFERENCES

[1] Cisco Systems, Inc, “Cisco 12000 series internet routers.” [Online].
Available: http://www.cisco.com

[2] C. Partridge, et al., “A 50-Gb/s IP router,” IEEE/ACM Trans. Network-
ing, vol. 6, no. 3, pp. 237–248, June 1998.

[3] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output
queuing on a space-division packet switch,” IEEE Trans. Commun., vol.
COM-35, no. 12, pp. 1347–1356, Dec. 1987.

[4] Y. Tamir and G. Frazier, “High performance multi-queue buffers for
VLSI communication switches,” in Proc. 15th Ann. Symp. Computer
Architecture, June 1988, pp. 343–354.

[5] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE INFOCOM’96,
vol. 1, Mar. 1996, pp. 296–302.

[6] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for
input-queued switches,” IEEE J. Select. Areas Commun., vol. 15, no. 5,
pp. 855–866, 1997.

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
sl

ot
s)

Offered load per input (cell/slot)

SCBF-OCF-4
SCBF-OCF-8

SCBF-OCF-16
SCBF-OCF-24
SCBF-OCF-32

mSCBF-OCF-4
mSCBF-OCF-8

mSCBF-OCF-16
mSCBF-OCF-24
mSCBF-OCF-32

Fig. 13. Delay Performance of the maximum SCBF-OCF and the maximal
SCBF-OCF with different CB sizes under diagonal traffic.

[7] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for
input buffered crossbar switches: a capacity decomposition approach by
birkhoff and von neumann,” in IEEE IWQoS’99, London, U.K., 1999,
pp. 79–86.

[8] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4, pp.
13–27, Jan. 1993.

[9] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High
speed switch scheduling for local area networks,” ACM Transactions on
Computer Systems, vol. 11, no. 4, pp. 319–352, Nov. 1993.

[10] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm
to achieve 100% throughput in input-queued switches,” in Proc. IEEE
INFOCOM’98, vol. 2, Apr. 1998, pp. 792–799.

[11] P. Giaccone, D. Shah, and B. Prabhakar, “An implementable parallel
scheduler for input-queued switches,” IEEE Micro, Jan./Feb. 1999.

[12] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188–201,
Apr. 1999.

[13] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. IEEE INFOCOM’00, vol. 3, Mar. 2000, pp.
556–564.

[14] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,” IEEE J.
Select. Areas Commun., vol. 17, no. 6, pp. 1030–1039, June 1999.

[15] M. Nabeshima, “Performance evaluation of a combined input- and
crosspoint-queued switch,” IEICE Trans. Commun., vol. E83-B, no. 3,
pp. 737–741, Mar. 2000.

[16] R. Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1: combined
input-one-cell-crosspoint buffered switch,” in Proc. IEEE HPSR’01, May
2001, pp. 324–329.

[17] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: combined input-
crosspoint-output buffered packet switch,” in Proc. IEEE GLOBE-
COM’01, Dec. 2001, pp. 2654–2660.

[18] K. Yoshigoe and K. J. Christensen, “A parallel-polled virtual output
queued switch with a buffered crossbar,” in Proc. IEEE HPSR’01, May
2001, pp. 271–275.

[19] T. Javidi, R. Magill, and T. Hrabik, “A high-throughput scheduling
algorithm for a buffered crossbar switch fabric,” in Proc. IEEE ICC’01,
June 2001, pp. 1581–1587.

[20] D. C. Stephens and H. Zhang, “Implementing distributed packet fair
queuing in a scalable switch architecture,” in Proc. IEEE INFOCOM’98,
vol. 1, Mar. 1998, pp. 282–290.

[21] R. B. Magill, C. E. Rohrs, and R. L. Stevenson, “Output-queued switch
emulation by fabrics with limited memory,” IEEE J. Select. Areas
Commun., vol. 21, no. 4, May 2003.

[22] K. Yoshigoe and K. J. Christensen, “An evolution to crossbar switches
with virtual output queuing and buffered cross points,” IEEE Network,
vol. 17, no. 5, Sept./Oct. 2003.

[23] National Laboratory for Applied Network Research, “NLANR
network traffic packet header traces.” [Online]. Available: http:
//pma.nlanr.net/Traces/Traces

