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Abstract—We consider a cluster-based multimedia Web server that dynamically generates video units to satisfy the bit rate and

bandwidth requirements of a variety of clients. The media server partitions the job into several tasks and schedules them on the

backend computing nodes for processing. For stream-based applications, the main design criteria of the scheduling are to minimize

the total processing time and maintain the order of media units for each outgoing stream. In this paper, we first design, implement, and

evaluate three scheduling algorithms, First Fit (FF), Stream-based Mapping (SM), and Adaptive Load Sharing (ALS), for multimedia

transcoding in a cluster environment. We determined that it is necessary to predict the CPU load for each multimedia task and

schedule them accordingly due to the variability of the individual jobs/tasks. We, therefore, propose an online prediction algorithm that

can dynamically predict the processing time per individual task (media unit). We then propose two new load scheduling algorithms,

namely, Prediction-based Least Load First (P-LLF) and Prediction-based Adaptive Partitioning (P-AP), which can use prediction to

improve the performance. The performance of the system is evaluated in terms of system throughput, out-of-order rate of outgoing

media streams, and load balancing overhead through real measurements using a cluster of computers. The performance of the new

load balancing algorithms is compared with all other load balancing schemes to show that P-AP greatly reduces the delay jitter and

achieves high throughput for a variety of workloads in a heterogeneous cluster. It strikes a good balance between the throughput and

output order of the processed media units.

Index Terms—Online prediction, partial predictor, global predictor, adaptive partioning, prediction-based load balancing, out-of-order

rate.
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1 INTRODUCTION

SEVERAL applications over the Internet involve processing
of secure, computation-intensive, multimedia, and high-

bandwidth information. Many of these applications require
large-scale scientific computing and high-bandwidth trans-
mission at the server nodes. The current generation of
Internet servers is mostly based on either a general-purpose
symmetric multiprocessor or a cluster-based homogeneous
architecture. As we attempt to scale such servers to high levels
of performance, availability, and flexibility, the need for more
sophisticated software architectures becomes obvious. Ad-
ditionally, contemporary distributed architectures have
limited abilities to handle overloads, load imbalances, and
compute-intensive transactions like cryptographic applica-
tions and multimedia processing. In this paper, we consider a
scalable distributed system architecture, shown in Fig. 1,
where the major functionalities required in the Internet
servers (SSL, HTTP, script and cryptographic processing,
database management, multimedia processing, etc.) are
partitioned into parallel tasks and backend computing
servers are allocated based on their needs.

In this paper, we consider multimedia processing as the

example. Since Internet clients may vary greatly in their

hardware resources, software sophistication, and quality of

connectivity, different clients require different media stream-

ing service. A promising solution to the problem is to use
transcoding to customize the size of objects and distribute the
available network bandwidth among various clients [1]. This
method is called on-demand transcoding, which is used to
convert a multimedia object from one form to another. On-
demand transcoding (distillation) has been proposed to
transform media streams in the active routers [2], [3], [4] or
proxy servers [5], [6], [7] to adapt media streams to fluctuating
network conditions. Any client intending to request a media
stream first contacts the media server, as shown in Fig. 1. If the
media data in storage satisfies the requirements, the media
server supplies the data. If on-demand transcoding is needed,
the media server retrieves data, divides them into several
tasks, and distributes the tasks among computing servers for
transcoding. The transcoded data is transferred back to the
media server and then delivered to the clients. Due to the
variety of clients, different streams may require different
transcoding operations and, therefore, produce a variety of
individual transcoding jobs to be scheduled among the
computing servers. In order to provide real-time transcoding
service, a good scheduling algorithm needs to be employed
that can predict the CPU load for each job and then schedule
accordingly.

Load balancing is a critical issue in parallel and
distributed systems to ensure fast processing and good
utilization. A detailed survey of general load balancing
algorithms is provided in [8]. Although a plethora of load-
balancing schemes have been proposed, simple static
policies, such as random distribution policy [9] or mod-
ulus-based round-robin policy [10], are adopted in practice
because they are easy to implement. However, these
schemes do not work well for heterogeneous processors
or variation in the task processing times. On the other hand,
adaptive load balancing policies are usually complicated
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and require prediction of computation time for any
incoming requests [11]. They are difficult to implement,
and produce increased communication overhead due to
feedback requirements from the processors. Moreover, the
load balancing techniques proposed for general parallel
systems cannot be directly applied to our media cluster
because there are additional requirements like reducing
jitter. Jitter is defined as the standard deviation of the
interdeparture time among media units. High jitter is
detrimental to the playback quality, which is the main
concern of media clients. The interdeparture time among
units of a multimedia stream is reduced through parallel
transcoding on the computing servers in the cluster. That
gives rise to an increase in the out-of-order departure of the
packets, thus producing high jitter. Hence, proper schedul-
ing with a good load balancing algorithm must be designed
to deliver a suitable balance between high throughput and
low jitter. A few researchers have developed load schedul-
ing algorithms for cluster-based Web servers. Zhu et al.
proposed an elegant scheduling algorithm to provide
differentiated service to multiple service classes of generic
Web requests [12]. Li et al. [13] implemented a generalized
Web request distribution system called Gage. A Least Load
First (LLF) policy is employed, where the server with the
least load is chosen to process a request. However, their
work focuses on generic Web requests instead of the
multimedia jobs considered in this paper.

We have designed and proposed a set of scheduling
algorithms for parallel multimedia applications. In order to
develop and evaluate the proposed load balancing schemes,
we implement a Linux-based media cluster over Gigabit
Ethernet and develop a multithreaded software architecture
to schedule multimedia jobs for transcoding in the cluster. A
multithreaded software architecture can overlap commu-
nication with computation and can achieve maximum
efficiency. We make the following contributions in this paper:

1. We implement a media cluster and do experiments
to compare the performance of three load balancing
algorithms, namely, First Fit (FF), Stream-based
Mapping (SM), and Adaptive Load Sharing (ALS).
The SM and ALS schemes were designed by us [14],
and are described in detail in Section 2. We also
present more results in this paper for a number of
movies with different transcoding requirements.

2. The above algorithms are based on the average
computational requirement of a multimedia unit.
Since the computation may vary from time to time,
we design a prediction algorithm in Section 3 to
dynamically predict the transcoding time for each
media unit. The predicted time is used to distribute
the incoming workload to computing servers ac-
cordingly.

3. Incorporating the prediction scheme, we propose
three new load balancing algorithms in Section 4,
namely, Prediction-based Least Load First (P-LLF),
Adaptive Partitioning (AP), and Prediction-based
Adaptive Partitioning (P-AP). P-LLF extends the
LLF algorithm using prediction. Adaptive Partition-
ing (AP) is a new algorithm that reduces jitter by
dynamically mapping each stream to a subset of
servers. P-AP extends AP by employing prediction
to compute the requirement.

4. We do experiments to compare the performance of
an above seven load balancing algorithm, namely,
FF, SM, ALS, LLF, P-LLF, AP, and P-AP. Experi-
mental results are presented in Section 5 to show
that the prediction-based algorithms produce better
throughput and less out-of-order departure for a
number of media streams with different require-
ments.

2 NONPREDICTION-BASED LOAD BALANCING

TECHNIQUES

In this section, we present three nonprediction-based load
balancing algorithms that we have developed for a media
cluster. Preliminary results applying only one transcoding
operation were presented earlier by us in [14]. We extend
the algorithms to different transcoding operations.

2.1 First Fit (FF)

With First Fit, the media server searches for an available
computing server in a round-robin way when scheduling
media units. It always chooses the first available one to
dispatch a media unit. To avoid collecting feedback from
servers, we build a dispatch queue on the media server for
each computing server and let these dispatch queues be
indicators of their load status.

To schedule a media unit, the dispatch queues are polled in
a round-robin way. The unit is scheduled to the first computing
server whose corresponding queue has a vacancy. If all
queues are full, overload is indicated on all servers and the
unit will not be scheduled until one of the queues is drained.
The load on a server is either affected by the complexity of the
transcoding operations or the sizes of the units. The server
with the higher load usually drains its dispatch queue slower
and leaves fewer vacancies in the queue. Consequently,
heavily loaded servers are more likely to get fewer media
units for processing than the lightly loaded servers. There-
fore, the loads among servers are naturally balanced to some
extent. It is a nice way to take into account heterogeneous
servers without the help of an extra load analyzer. But, the
media units of the same stream are most likely distributed to
different servers, resulting in high delay jitters for each
stream at its destination. However, as shown in [14], FF
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generates higher throughput than the simple round-robin
scheme presented in [3].

2.2 Stream-Based Mapping (SM)

The problem with FF is that media units are distributed to
many servers which causes large out-of-order delivery of
the units. To preserve the computation order among media
units, as well as to keep the simplicity of FF, a stream-based
mapping algorithm can be employed. The unit is mapped to
a server according to the function fðcÞ ¼ cmod N , where c
is the stream number to which the unit belongs and N is the
total number of servers in the cluster. Therefore, all the
units belonging to one stream will be sent to the same
server. We have shown in [14] that this scheme works most
efficiently in a cluster with homogeneous servers and for
some specific input patterns. Assuming there are M streams
and N servers, input workload must satisfy the condition
M � N and M is multiple of N.

2.3 Adaptive Load Sharing (ALS) Policy

A number of adaptive load sharing policies are proposed in
the literature [8]. However, we are unaware of any real
implementation because of the complexity and overhead of
the ALS algorithms. Our analysis indicated that the
extended HRW technique [15], proposed for network
applications, offers a reasonable balance between the
throughput and out-of-order departures. While aiming at
delivering high throughput per flow, the ALS policy also
minimizes the probability of units belonging to the same
flow being treated by different processors and so minimizes
the out-of-order rate. Hence, we implemented it to schedule
multiple media streams in our system, as described below.

According to the ALS policy, a media unit can be
mapped to a particular server according to the function
fð~vÞ ¼ j, which is defined as

xj gð~v; jÞ ¼ maxk2f1;...;Ngxk gð~v; kÞ; ð1Þ

where v is the identifier vector of the unit which helps identify
a particular flow the unit belongs to, j is the server node to
which the unit will be mapped for processing, gð~v; jÞ is a
pseudorandom function which produces random variables
in (0,1) with uniform distribution, and ðx1; x2; . . .xNÞ is a
weight vector that describes the processor utilization for each
server. The weight vector, ðx1; x2; . . .xNÞ, is dynamically
adapted according to the system behavior through periodic
feedback. Here is how the adaptation works. The media
server periodically gathers information from each server
about its utilization and calculates to see if the adaptation
threshold is exceeded. If the threshold is exceeded, the media
server adjusts the weights. In the feedback report, a
smoothed, low-pass filtered processor utilization measure
of the following form is used to calculate the utilization of
each server ��jðtÞ by gathering the load statistics information
�jðtÞ periodically:

��jðtÞ ¼
1

r
�jðtÞ þ

r� 1

r
��jðt��tÞ: ð2Þ

Similarly, the total system utilization is measured as
��ðtÞ ¼ 1

r �ðtÞ þ r�1
r ��ðt��tÞ. The adaptation algorithm con-

sists of triggering policy and adaptation policy. Once the

triggering condition is reached, adaptation will be taken to
the weights of involved servers.

To implement the ALS algorithm, there are two issues left
open to implementers. One is the pseudorandom function
gð~v; jÞ. Kencl an Boudec [15] suggest to implement function
gð~v; jÞ using the hash function h��1ðyÞ ¼ ð��1yÞmod 1, which
is based on the Fibonacci golden ratio multiplier ��1 ¼
ð
ffiffiffi
5
p
� 1Þ=2, such that

gð~v; jÞ ¼ h��1 ~v XOR h��1ðjÞ
� �

: ð3Þ

The other open issue is how to measure the load of each
processor.

In our experiments, we adopt the above function gð~v; jÞ,
and define the load indicator �jðtÞ as

�jðtÞ ¼ ttaskj=�t; ð4Þ

where ttaskj is the CPU time spent by the transcoding
services during the polling interval �t. �ðtÞ is defined as

�ðtÞ ¼
XN
j¼1

ttaskj

 !
=N�t ¼ 1

N

XN
j¼1

�jðtÞ: ð5Þ

The identifier v is chosen to be the stream number of the
media unit. Therefore, during each monitoring epoch, the
mapping function (1) is calculated and a static mapping
between the streams and the servers is determined. When a
change in load distribution is reported by the computing
servers at the end of an epoch, the weight vector is changed
and the mapping is adjusted to rebalance the loads among
servers. The new mapping takes effect in the next epoch.

We have shown in [14] that ALS reduces departure jitter
for multiple streams. In spite of high overheads to collect
feedback information, the ALS scheme produces a good
throughput. More results and comparisons are given in
Section 5 of this paper.

3 PREDICTING PROCESSING TIME

In the load balancing algorithms presented so far, the
variability of individual jobs has not been explicitly
considered. As to the fact that the transcoding time of
media units in a stream or among streams varies a lot due to
the wide variation in scenes and motion relations, the
ability to predict how much CPU load a job may consume is
essential for building a good scheduling scheme. In the
cluster-based Web server system Gage [13], the CPU time
consumed by client requests is predicted as the weighted
average time of the processed requests. The prediction is
used to predict the load on each server and to distribute the
incoming workload among servers according to the Least
Load First (LLF) policy. However, such a simple prediction
scheme is not suitable for multimedia transcoding because
the transcoding time differs among transcoding operations
even for the same stream.

During the past decade, a number of video-coding
standards have been developed for communicating video
data. These standards include MPEG-1 for playback from
CD-ROM, MPEG-2 for DVD and satellite broadcast, and
H.261/263 for videophone and video conferencing. Newer
video coding standards, such as MPEG-4, also emerged. For
all these video-coding standards, four video resolution
criteria are usually used in commercial products, as
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illustrated in Table 1. Given these video resolution criteria,
the common transcoding operations fall into three types:
changing the bitrate, resizing frames, and changing the
frame rate among the four resolution criteria.

Most data streaming formats contain periodic zero-state
resynchronization points for increased error resilience,
effectively segmenting the stream into independent blocks,
which we call media units [4]. For instance, in an MPEG-1/2
stream, a media unit can be a group of pictures (GOP) that
is decoded independently. Since most transformations
maintain the independence of media units, the transforma-
tion of a single media unit can be considered an
independent processing job which can be scheduled onto
any computing server in the cluster. The only interjob
dependence is the processing order of consecutive media
units in the same media stream.

Bavier et al. [16] built a model to predict the MPEG
decoding time at the frame level. They found that it is possible
to construct a linear model for MPEG decoding withR2 values
of 0.97 considering both frame type and size. In statistics, the
correlation coefficient R indicates the extent to which the pairs
of numbers for two variables lie on a straight line. The strength
of the relationship between X and Y is theoretically expressed
by squaring the correlation coefficient R and multiplying by
100, which is known as variance explainedR2. For example, a
correlation R of 0.9 means R2 ¼ 0:81� 100 ¼ 81%. Hence,
81 percent of the variance in Y is “explained” or predicted by
the X variable. Experimental results [16] show that the model
can be used to predict the execution time to within 25 percent
of the time actually taken to decode frames. In this section, we
first model the relationship between the transcode time and
the unit size by statistically analyzing a set of experimental
results for a specific movie and a specific transcoding
operation. Based on the model, we develop a prediction
algorithm to dynamically predict the transcode time of a
media unit.

3.1 Modeling the Relationship between the
Transcode Time and the GOP Size

Transcoding of an MPEG GOP does not consume a constant
amount of processing, due in part to the fact that a GOP is
composed of different frame types and in part to the wide
variation between scenes and different motion relations
among frames. Each GOP has three kinds of frames:
I frames (intraframe), P frames (predictive frame), and
B frames (bidirectional predictive frame). I frames are self-
contained, complete images. P and B frames are encoded as
differences from other reference frames. Due to different
motion relations existing among frames, a GOP may contain
different number of I, P, and B frames. This makes
prediction of the time to transcode the next GOP based on
past behavior difficult.

We do a set of experiments to observe the transcoding
time of two different movies as illustrated in Table 2. For
each movie, three operations are performed: changing the
bit rate, reducing the frame rate, and resizing the frame.

Fig. 2a plots the transcode time as a function of GOP size
when the bit rate of “Lord of the Rings” is reduced to
50kbps. The straight line in the figure is the linear
regression line, obtained by statistically analyzing the data
set. Fig. 3a demonstrates the scatterplot of the transcode
time as a function of GOP size for the movie “The Matrix.”
For each movie, we also plotted the transcode time for the
other two transcoding operations: changing the frame rate
and resizing frames. However, due to the paper length
limit, we do not give the scatterplots here. For both movies
and the three transcoding operations, the regression
equations for the tentative linear regression analysis are
given in Table 3. In the table, the GOP size is measured in
terms of KBs and the transcode time is measured in terms of
milliseconds. From the R2 values, we notice that a linear
model cannot adequately describe the relationship between
the transcode time and the GOP size. However, as the
scatterplot in Fig. 2a suggests, the transcode time does
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Four Resolution Criteria in MPEG Specification

TABLE 2
MPEG Movies for Transcoding

Fig. 2. Transcode time versus GOP size (movie: Lord of the Rings; operation: reducing bit rate to 50 kbps). (a) Tentative linear regression modeling.

(b) Linear regression modeling using means.



increase as the GOP size increases. The difficulty in fitting it
into a linear model is caused by the wide variation of the
transcode time for a given GOP size. Thus, for ease of
analysis, we divide the GOP size into regions, as shown in
Table 4. For each region, the average of the GOP
transcoding time is calculated, as shown in Fig. 2b, where
each point in the figure has the regional mean value of the
GOP size as its x value and the regional mean value of the
transcode time as its y value. For the scatterplot drawn in
Fig. 2b, a linear regression line with R2 value as high as
99 percent is obtained. The corresponding linear equation is
given in Table 5. In Table 5, the GOP size is in terms of KBs
and the transcode time is in terms of milliseconds. There-
fore, we have obtained a good linear model to describe the
relationship between the transcode time and the GOP size
considering a specific movie and a specific transcoding
operation.

3.2 Predicting Execution Time on a Single PC

Based on the linear model built in the previous section, we
can estimate the transcode time of the GOPs processed so

far and incrementally build a predictor to predict the
execution time for the next GOP. As presented by Bavier et
al. [16], building a linear predictor based on the canonical
least squares algorithm would be computationally too
expensive for the scheduling purpose. They designed a
predictor that approximates the linear model. Through
experimental results, they also verified that the predictor
works even better than the linear model. In this paper, we
adopt the same method as theirs to build a predictor that
approximates the linear model presented in Section 3.1.
However, because our model differs from theirs in that the
regional means are used, our predictor is built differently
from their predictor.

Table 6 defines all the parameters used to predict the
transcode time. The prediction is carried out in two separate
steps. One is to incrementally build the predictor based on
the behavior of the GOPs processed so far. The other is to
predict the transcode time for a given GOP.

The Predictor is initialized as ð0; Default; 0; 0; 0Þ. Once a
GOP is processed, the GOP size and its transcode time,
ðsize; timeÞ, are recorded and the Predictor is updated
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Linear regression modeling using means.

TABLE 5
Linear Regression Modeling Using Regional Means

TABLE 4
Regions of GOP Size in Terms of Bytes

TABLE 3
Tentative Linear Regression Modeling



accordingly. The basic idea is that the linear slope,

ðxdiff; ydiffÞ, is incrementally approximated according to

the difference between the accumulated regional means,

ðmRegTime½i�;mRegSize½i�Þ, and the accumulated global

means, ðmtime;msizeÞ, after enough units have been

processed. The procedure can be described step by step as

follows: First, the region to which the GOP belongs to is found

out to be i, and ðmRegTime½i�;mRegSize½i�Þ is updated. Then,

ðxdiff; ydiffÞ is updated only when two conditions are both

met. One is that enough samples have been accumulated, i.e.,

DistinctRegs � EnoughRegs. The other is that ðmRegTime½i�
�mtimeÞ shows the same increasing or decreasing tendency

as that of ðmRegSize½i� �msizeÞ. Finally, msize, mtime,

samples, and DistinctRegs are updated to count the newly

processed unit into the accumulated value. Fig. 13 illustrates

this procedure.
The transcode time of a GOP of size size is predicted

according to the Predictor as

prediction ¼
Default samples ¼ 0

mtime samples > 0

mtimeþ ðsize�msizeÞ
�ydiff=xdiff samples > 0; xdiff > 0:

8>>><
>>>:

Fig. 14 illustrates the prediction algorithm.

3.3 Predicting Execution Time on a Set of
Heterogeneous PCs

To process a stream in parallel on a set of heterogeneous
machines, prediction becomes complicated. There emerges
two new questions. First, how do we build a predictor when
each server only processes part of the units that are
distributed to it? Second, given a predictor of the stream,
how do we predict the execution time of a given GOP on each
specific server when the servers possess different power?

We propose building the predictor as follows: Each server
incrementally builds its own predictor, which we call partial
predictor, based on the information of the GOPs it has
processed so far. The scheduler periodically collects the
partial predictors from all computing servers and combines
them to be a global predictor. The partial predictors are
constructed independently on each computing server accord-
ing to the algorithm illustrated in Fig. 13. Table 7 defines the
symbols used throughout the rest of the paper. Let there be
N computing servers. When the scheduler collects the partial
predictors, it generates the global predictor, as demonstrated in
Fig. 4. First, ðmtime1;mtime2; . . . ;mtimeNÞ and ðydiff1;
ydiff2; . . . ; ydiffNÞ are normalized according to the weight
vector ðw1; w2; w3; . . . ; wNÞ. Then, according to the sample
size returned by each computing server, ðmsizeg;mtimeg;
xdiffg; ydiffgÞ is calculated as the arithmetic average of their
corresponding values presented in ðPredictor1; Predictor2;
. . . ; PredictorNÞ.

When the scheduler schedules media units among
computing servers, the time to process a given GOP on
server i is predicted based on the global predictor according
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to the algorithm in Fig. 14. Due to the heterogeneity of the

servers, we should also take into consideration the proces-

sing power of each server. Therefore, the prediction is

performed as follows:

predictioni ¼ getpredictionðsize; PredictorgÞ=wi
i ¼ 1; 2; . . . ; N:

ð6Þ

If multiple streams are processed in the computing cluster,

it is desirable to build the partial predictors and global

predictor for each stream and perform the prediction stream-

wise. The reason is that, for each stream, the transcode time

and unit size conforms to a specific linear relation. In the

rest of the paper, a stream refers to a specific movie which

requires a specific transcoding operation.

4 PREDICTION-BASED LOAD BALANCING

TECHNIQUES

With the prediction algorithm in place, we design predic-

tion-based load balancing algorithms in this section. The

heterogeneity of computing servers is described by the

weight vector ðw1; w2; . . . ; wNÞ defined in Table 7.

4.1 Least Load First (LLF) and Prediction-Based
Least Load First (P-LLF)

In the cluster-based Web server system Gage [13], a Least
Load First (LLF) scheduling algorithm is employed to
distribute client requests among servers. According to their
policy, the LLF algorithm runs as follows: For each media
stream, the execution time consumed by a media unit is
predicted as the weighted average time of the processed
units. This prediction is updated periodically by collecting
information from computing servers. The prediction is used
to predict the outstanding load on each computing server
and to schedule media units such that a least loaded server
is chosen to process a unit.

We extend LLF with our prediction policy, proposed in
Section 3.3, and propose Prediction-based Least Load First (P-
LLF) algorithm. P-LLF, as described in Fig. 5, contains two
parts. Let there be N computing servers and M streams. The
scheduler maintains a load indicator Li for each server iði ¼
1; 2; . . . ; NÞ and a predictor Predictorjg for each stream
jðj ¼ 1; 2; . . . ;MÞ. The first part is the periodic adjustment
of the load indicators and stream predictors. For each
computing server, the load status is observed and the load
indicator is updated. For each stream, the partial predictors
are collected from computing servers and combined to
generate the global predictor. The second part is scheduling
units according to the load status and predictions. The
predicted process time of the media unit is calculated
according the global predictor. A server is chosen such that
its load is the least after the unit is scheduled. Once a unit is
scheduled to the chosen server, its predicted time is stamped
and it is dispatched to the server. Each computing server
records its current outstanding load, i.e., the total process
time predicted for the units that are dispatched to it and
waiting to be processed.

Both LLF and P-LLF aim to distribute the workload
among servers proportionally to their capacity and produce
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high throughput, although the degree of load balancing
may be different due to the accuracy of their prediction
policies. In both schemes, the media units of the same
stream are possibly distributed to different servers and,
thus, may cause high jitters at the destination.

4.2 Adaptive Partition (AP) and Prediction-Based
Adaptive Partition (P-AP)

There are two goals when designing a load balancing
scheme in the media cluster: 1) to balance the workload
among servers to achieve the maximum throughput, and
2) to maintain the flow order for each outgoing stream
while processing its media units on multiple servers.

We have found that the first fit scheme [14] gives
maximum throughput, but produces maximum jitter (or
out-of-order departure) because the media units are
distributed to all the servers. The adaptive load sharing
(ALS) policy essentially reduces the jitter by doing an
allocation of streams at every epoch. During an epoch, a
stream is allocated to only one processor, but can be
allocated to any processor at different epochs. However,
this approach may cause occasional waste of resource and
reduce the system throughput. To strike a balance between
the throughput and the delay jitter, it may be better to send
media units of the same stream to a limited set of servers in
an epoch. Hence, we propose an Adaptive Partitioning (AP)
algorithm that dynamically partitions the servers into
several subsets and establishes mapping between the
streams and the subsets. The partitioning and mapping is
established according to both the observed computation
requirements of different streams and the processing power
of different servers. In other words, both the stream
heterogeneity and server heterogeneity are taken into
account. The LLF algorithm is adopted to schedule a stream
among the mapped subset of servers.

Different streams require different computational power
for their specific transcoding operations. The media server
records the computation complexity of each stream at time t

by the vector ðcomp1ðtÞ; comp2ðtÞ; . . . ; compMðtÞÞ, where
compjðtÞ is the weighted average time accumulated for the
stream. We normalize the computation complexity of each
stream as rjðtÞ and let

rjðtÞ ¼ compjðtÞ=
XM
j¼1

compjðtÞ: ð7Þ

The weights of servers can be viewed as the capacity
tokens that represent the workload completed in a unit time
on a server. Hence, we define a token vector ðT1; T2; T3;
. . . ; TNÞ, where Ti ¼ wi, and the total token of the computing
cluster as Total ¼

PN
i¼1 Ti. The total token is then partitioned

intoM subsets according to the computation requirements of
streams, with each subset mapped to one stream. The total
token held by subset i, i.e., by stream i, is defined asStokeniðtÞ

StokeniðtÞ ¼ riðtÞ � Total i ¼ 1; 2; . . . ;M: ð8Þ

Obviously, ðStoken1ðtÞ; Stoken2ðtÞ; . . . ; StokenMðtÞÞ re-
present M fractions of the total token held by all the servers.
Each fraction corresponds to a subset which contains at least
one server. In this way, the tokens ofN servers are distributed
among M streams. One server may be assigned to several
subsets, which means it is shared among several streams.
Also, one subset may contain several servers, i.e., one stream
can be processed on several servers simultaneously.

If a stream is mapped to multiple servers, say kðk � 1Þ
servers. The media server schedules the stream among the
k servers according to the LLF algorithm described in
Section 4.1. If a stream is mapped to only one server, all the
media units of the stream are scheduled to be processed on
this server.

Fig. 6 describes the partitioning algorithm, which
partitions the N servers into M subsets according the
servers’ processing power and the streams’ computation
requirements. The partitioning is expressed as ðsubset1;
subset2; . . . ; subsetMÞ. subsetj is a set of servers. Repartition-
ing is performed only when any rjðtÞ varies by more than a
tolerable percentage, say �. In summary, the AP algorithm
works as follows: The new computation requirements of
streams determines if repartitioning is needed. If it is
needed, mapping between streams and subsets of servers is
reestablished.

Fig. 7 shows a partitioning example of three servers and
four streams. The servers have different capacities. The Tis
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Fig. 6. Partitioning algorithm.

Fig. 7. A partitioning example.



held by servers and the StokeniðtÞs held by streams are
shown in the figure, the total token held by the servers is 6.
The mapping established between streams and subsets is
demonstrated in Table 8. According to Fig. 7 and Table 8,
stream 1 is mapped to two servers, server1 and server2. Its
media units are scheduled among these two servers
according to P-LLF algorithm. Streams 3 and 4 share
server 3, and streams 1 and 2 share server 2.

We also extend AP to be P-AP by employing the
prediction policy proposed in Section 3. With P-AP, the
computation complexity of each stream, compjðtÞ, equals
mtimejgðtÞ proposed in Section 3. When a stream is mapped
to several computing servers, P-LLF is used to choose a
server among several.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Settings

Table 9 describes the hardware and software configurations
of the Media Server and Computing Servers, implemented
in our laboratory. For the streaming service, four movies are
currently used, namely, “Lord of the Rings,” “The Matrix,”
“Peterpan,” and “Resident Evil.” To satisfy the clients’
requirements, three kinds of transcoding operations are
performed, namely, changing the bit rate, resizing the

frames, and changing the frame rate. To process a stream in
the media cluster, one of the three transcoding operations is
performed on one of the movies. The transcoding service
provided by each server is derived from a powerful
multimedia processing tool called FFMPEG [17].

Fig. 8 demonstrates the software framework of our
media cluster. We implement a multithreaded architecture
in order to overlap computation and communication.

On the media server, four kinds of threads, namely,
retriever, scheduler, dispatcher, and manager, are running
concurrently. Retriever continuously retrieves media units
from the disk and stores them in the unit buffer, which
adopts FIFO policy. A dispatch queue is maintained for
each server which holds all the media units that have been
scheduled to the server. The scheduler fetches units from the
unit buffer and puts them into a dispatch queue according
to the load balancing policy discussed in Section 4. Upon
the request of a server, the dispatcher gets a media unit from
the corresponding dispatch queue and transmits it to the
server. The manager periodically collects information from
the servers and feeds the information to the scheduler.

On the server node, four threads, receiver, transcoder, sender,
and monitor, are running concurrently. The receiver receives
packets from the Manager and assembles them into complete
media units. Once a complete media unit is ready, the
transcoder transcodes the media unit. After transcoding, the
sender delivers the media unit to the client. Once the receiver
gives the media unit to the transcoder for processing, it
requests another media unit from the media server by
sending a “Ready” message. The monitor collects information
on the server and reports it to the Manager periodically.

5.2 Performance Metrics

Sensitivity to the above design parameters and efficiency of
our media cluster are measured with respect to the
following performance metrics.
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TABLE 8
Mapping Streams to Subsets

TABLE 9
Hardware and Software Configuration of Media Server Cluster

Fig. 8. Software framework of the media cluster.



5.2.1 System Scalability

A parallel system is desired to be scalable. As the cluster
size increases, more and more media units should be
processed by the system in a unit of time. Hence, we
measure the scalability of our cluster in terms of system
throughput, which is defined as GOPs/sec when comparing
different load balancing schemes.

5.2.2 Load Sharing Overhead

When using prediction-based schemes or the feedback-
based scheme ALS, the system throughput may degrade
due to the overhead caused by collecting information from
computing servers and adapting to load imbalance. We
define the Load Sharing Overhead as the average time
consumed by the media server to poll through all servers
to collect information.

5.2.3 Video Quality

As a special requirement imposed by multimedia streaming
on our parallel servers, the video quality observed at the
receiver side is a very important metric. To observe how the
transcoded units are delivered from computing servers to
the media server and then go to the client, we write a
program called Departure-Recorder and run it on the media
server. Departure-Recorder receives the transcoded units
from the computing servers and records the time to receive
each unit without extra reordering. Based on this informa-
tion, we can evaluate the traffic pattern of the departing
streams so as to predict the video quality at the client side.
To describe the traffic pattern of outgoing streams, we
define three metrics as follows:

Metric a: Departure Jitter per Stream is the standard
deviation of the interdeparture time among GOPs when
the stream departs the media server. It depicts and predicts
how smooth a stream may be played out at the client side in
real time.

Metric b: Average Interdeparture Time among GOPs per
Stream is the mean of the interdeparture times among GOPs
when the stream departs from the media server.

Metric c: Out-of-Order Rate per Stream describes how
many GOPs among all the GOPs in a stream depart out of
order.

5.3 Evaluation of Results

5.3.1 System Throughput

Scalability of the system throughput is one of the most
important metrics that we need to examine when compar-
ing different load balancing schemes. Since the throughput
is highly affected by the input workload, we generate a
large enough number of streams such that the Media Unit
Buffer never becomes empty. Thus, we can measure the
performance of different load balancing schemes in a fully
loaded system. Table 10 illustrates the detailed experimen-

tal settings. The load test epoch for feedback-based schemes
is 2 seconds.

Fig. 9 demonstrates the scalability of system throughput
with increasing cluster size. FF achieves the best scalability
because it does not collect feedback from servers. Surpris-
ingly, although P-LLF has high load sharing overhead
compared to FF, its throughput is only slightly affected and
closely approaches FF. The reason is that the throughput of FF
is implicitly affected by the inaccuracy of observing load
status through dispatch queues and blindness to stream
heterogeneity when scheduling units. Instead, P-LLF expli-
citly tests the load status and considers the stream hetero-
geneity for scheduling. Therefore, with P-LLF, the load
sharing overhead is counteracted by the better load balancing
achieved among servers. Compared to P-LLF, P-AP performs
the extra operation of repartitioning servers and remapping
streams to servers. But, at the same time, P-AP performs less
computation than P-LLF when scheduling units because the
least loaded server is chosen within a small subset instead
within the whole cluster. Hence, the throughput of P-AP still
approaches that of P-LLF. LLF and AP both perform worse
than their counterparts P-LLF and P-AP due to the ineffi-
ciency of their simplistic prediction method. On the other
hand, SM and ALS have much lower throughput than other
schemes for to two reasons. First, it is due to the potential load
imbalance incurred by maintaining the flow consistency.
Second, they schedule streams without considering the
heterogeneity among streams. SM avoids dispersing media
units of the same stream among different servers even if a
server is free. This causes waste of resources, occasional
imbalance in load distribution, and reduces the throughput.
ALS involves high load sharing overhead and does not take
into account the stream heterogeneity. Besides, the HRW
function works better for a very large number of homo-
geneous streams. Therefore, ALS presents less scalability
than others in the experiments.

5.3.2 Load Sharing Overhead

Table 11 illustrates the load sharing overhead in terms of
milliseconds for the five schemes, P-LLF, P-AP, LLF, AP,
and ALS. Because P-LLF and P-AP share the same
prediction scheme and both collect stream predictors at
the end of each epoch, they have the same load sharing
overhead. Similarly, LLF and AP share the same prediction
scheme where the accumulated average transcoding times
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TABLE 10
Experimental Setting

Fig. 9. Scalability of the system throughput.



per stream are collected in each epoch. The load test
overhead of the ALS scheme is different from the predic-
tion-based schemes because only the CPU utilization
information needs to be collected from servers. As shown
in the table, the load test overhead increases almost linearly
with the cluster size for all the five schemes because the
communication expense increases linearly with the number
of servers in the cluster. In addition, ALS incurs less
overhead than the prediction-based schemes because its
overhead is independent of the number of streams. As the
cluster size increases, the prediction-based schemes incur
higher overhead than ALS due to the increased number of
streams. Even then we observe through the experimental
results that prediction does lead to higher system through-
put. AP/LLF has less overhead than P-AP/P-LLF because
the message size transmitted per stream is smaller than that
of P-AP/P-LLF.

5.3.3 Video Quality

The traffic pattern of outgoing streams observed on the
media server reflects the user-perceived video quality at the
receiver side. We measure the video quality in terms of
interdeparture time among GOPs, departure jitter, and Out-oF-

Order (OFO) departure rate. The experimental settings are the
same as that for testing the system throughput.

As shown in Fig. 10, FF, LLF, and P-LLF incur the largest
OFO departure rate since they schedule the media units freely
without maintaining flow order. LLF and P-LLF perform
similarly, with P-LLF doing marginally better because of a
better prediction algorithm. FF does a little worse than LLF/
P-LLF because of the delay in observing overload on servers
through the dispatch queues. With the flow concept in mind,
SM and ALS incur small OFO departure. It is interesting to
note that AP/P-AP greatly reduces OFO departure compared
to P-LLF and FF and incurs only marginally higher OFO
departure than SM and ALS. Given that P-AP also produces

very good throughput, as shown in Fig. 9, it is a very
promising scheduling scheme to achieve both high through-
put and low OFO departure rate.

Fig. 11 illustrates the departure jitter per stream for all load
sharing schemes. It shows the same tendency in variation of
OFO departure rate. The best departure jitter is achieved by
SM because it processes all units of the same stream on the
same server, thus guaranteeing in-order departure and
produces the smallest jitter. ALS maintains the flow order at
higher computation and communication overheads, thus
incurring slightly larger jitter than SM. AP and P-AP map
each stream to a limited set of servers, hence they reduce out-
of-order processing of consecutive units belonging to the
same stream and, so, reducing jitter as well as ALS.

Fig. 12 demonstrates the average interdeparture time
among GOPs per stream. Since we have multiple streams in
the system, as shown in Table 10, the interdeparture time
per stream is not simply the inverse of system throughput.
But, it still shows a similar scalability as that of the system
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TABLE 11
Load Sharing Overheads

Fig. 10. Out-of-order departure rate. Fig. 12. Interdeparture time.

Fig. 11. Departure jitter.



throughput. FF achieves the best performance because it has
no overhead. As we can see, P-LLF closely approaches FF.
P-AP achieves a similar effect as that of P-LLF, both better
than LLF and AP because of better load balancing led by
better prediction. SM and ALS fail to give good perfor-
mance because of their blindness to the stream hetero-
geneity and the overhead to maintain flow order.

6 RELATED WORK

The transmission of multimedia information through net-
works has long been a research topic, and it is claimed that
multimedia application is becoming one of the killer
applications in this century. Due to the receiver heterogeneity
and dynamically varying network conditions, a multimedia
stream should be transformed to meet different clients’
requirements. A traditional way to solve the above problem is
to store multiple copies of the source stream on the media
server and select a copy according to some initial negotiation
with the client. Although the disks have gotten larger and
cheaper, online transcoding service has become a widely
adopted solution to provide various clients with the media
source according to their requirements. Transcoding is a
process that transforms a compressed video bit stream into
different bit streams either by employing the same compres-
sion format with alternate parameters or by employing
another format altogether. Many researchers [1], [2], [18], [19]
have addressed how to customize the multimedia contents to
match user preferences or the diversity of network conditions
and display devices. Chandra et al. [1] used JPEG transcoding
techniques to customize the size of objects constituting a Web
page, thus allowing a Web server to dynamically allocate
available bandwidth among different classes. Fox et al.
proposed to dynamically distill the Web page content on
active proxies when they are transmitted through the
network [6], [5]. They also implement a cluster-based Web

distillation proxy called TranSend [20]. However, the most
computationally expensive task performed by TranSend is
the distillation of images. Their scheduling schemes empha-
sized fault tolerance more than load balancing, and parallel
processing of a single stream was not considered. Welling et
al. proposed the concept of CLuster-based Active Router
Architecture (CLARA) [3], where a computing cluster is
attached to a dedicated router. Using CLARA, the multi-
media transcoding tasks are paralleling processed in the
computing cluster instead of on the router itself [3], [4]. This
solution brings up the new problem of how to efficiently
utilize the resources provided by the computing cluster to
meet media streaming requirement.

In the network domain, the goal of load balancing is
complicated by the additional requirement of preserving the
flow order. The random distribution cannot preserve packet
order within a flow if per-flow information is not maintained.
Modulus-based round-robin policy also has the drawback
that all flows are remapped if the number of computing nodes
is changed. There has been almost no research in developing
load balancing algorithms with the concept of flows in mind.
One related paper was published by Kencl and Boudec [15]
who extended the HRW algorithm [21] with a feedback
mechanism to do adaptive load balancing in network
processors. This allows adjustment to the load distribution
with minimum flow remapping [15] and copes with request
identifier space locality. We find the paper interesting, but
they only reported some theoretical and simulation results
without any real implementation.

Taking MPEG transcoding as the first application in their
cluster-based active router architecture, Welling et al.
adopted round-robin algorithm to dispatch media units
for transcoding among the nodes [3]. However, no experi-
mental results were provided for this. By designing and
implementing an active router cluster supporting transcod-
ing service, we were able to evaluate three load sharing
schemes, namely, round robin, stream-based round-robin,
and adaptive load sharing [14]. It was shown that round-
robin is simple and fast, but provides no guarantee to the
playback quality of output streams because it causes out-of-
order departure of processed media units. Adaptive load
sharing scheme, proposed by Kencl and Boudec [15],
achieves better unit order in output streams, but involves
higher overhead to map the media unit to an appropriate
node. As a result, the throughput is reduced. Stream-based
round robin achieves good performance in terms of both
throughput and output order, but its advantage is confined
to a homogeneous and highly loaded system.
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Fig. 13. Algorithm to dynamically build the GOP predictor based on

processed GOPs.

Fig. 14. Algorithm to predict the transcode time for a given GOP.



For MPEG-4 encoding, He et al. proposed several
scheduling algorithms that allocate MPEG-4 objects among
multiple workstations in a cluster to achieve real-time
interactive encoding rate [22]. When an object is partitioned
and processed on multiple workstations, the data depen-
dence is resolved by storing related reference data in each
processor’s local memory for motion estimation. The
scheduling algorithms are derived on the basis of a video
model called MPEG-4 Object Composition Petri Net
(MOCPN), which captures the spatio-temporal relationship
between various objects and user interaction. However, in
their schemes, the appearance and disappearance of objects
in a video session is simply modeled by user interactions,
which is not true for an automatic MPEG-4 playout session.
In addition, their scheduling algorithms lack generality for
the conventional frame-based coding schemes like MPEG-
1/2 and H.263.

7 CONCLUSION

The aim of the paper was to develop scheduling and load
balancing algorithms to ensure high throughput and low
jitter for multimedia processing on a cluster-based Web
server where a few computing nodes are separately
reserved for high-performance multimedia applications.
We consider the multimedia streaming service which
requires on-demand transcoding operations as an example.

In this paper, we designed and implemented a media
cluster and evaluated the efficiency of seven load schedul-
ing schemes for a real MPEG stream transcoding service.
Due to the variability of the individual transcoding jobs, it
was necessary to predict the execution time for each job and
schedule accordingly. We proposed a dynamic prediction
algorithm that predicts the transcoding time for each media
unit. Based on the algorithm, we proposed two new load
sharing policies, Prediction-based Least Load First (P-LLF)
and Prediction-based Adaptive Partitioning (P-AP). For
comparison, we implemented Least Load First (LLF) and
Adaptive Partitioning (AP) policies where the prediction is
based on average execution time. Besides, we also im-
plemented three nonprediction-based schemes, namely,
First Fit (FF), Stream-based Mapping (SM), and Adaptive
Load Sharing (ALS). Among the seven load sharing
schemes, FF, P-LLF, and LLF achieve high throughput but
also incur high jitter, whereas P-AP, AP, SM, and ALS try to
maintain the unit order of outgoing streams to reduce jitter.
Experimental results show that a good balance between
throughput and departure jitter is achieved by P-AP. P-AP
outperforms FF, LLF, and P-LLF because it establishes
mapping among streams and subsets of servers. P-AP
outperforms SM and ALS because it takes into considera-
tion the stream heterogeneity. P-AP and P-LLF outperform
their counterparts, AP and LLF, because of the better
prediction method.
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