
No More Backstabbing... A Faithful Scheduling Policy for Multithreaded Programs

Kishore Kumar Pusukuri, Rajiv Gupta, Laxmi N. Bhuyan

Department of Computer Science and Engineering

University of California, Riverside

Riverside, USA 92521

kishore@cs.ucr.edu, gupta@cs.ucr.edu, bhuyan@cs.ucr.edu

Abstract—Efficient contention management is the key to
achieving scalable performance for multithreaded applications
running on multicore systems. However, contention manage-
ment policies provided by modern operating systems increase
context-switches and lead to performance degradation for
multithreaded applications under high loads. Moreover, this
problem is exacerbated by the interaction between contention
management policies and OS scheduling polices. Time Share
(TS) is the default scheduling policy in a modern OS such as
OpenSolaris and with TS policy, priorities of threads change
very frequently for balancing load and providing fairness in
scheduling. Due to the frequent ping-ponging of priorities,
threads of an application are often preempted by the threads
of the same application. This increases the frequency of
involuntary context-switches as wells as lock-holder thread
preemptions and leads to poor performance. This problem
becomes very serious under high loads.

To alleviate this problem, in this paper, we present a
scheduling policy called Faithful Scheduling (FF), which dra-
matically reduces context-switches as well as lock-holder thread
preemptions. We implemented FF on a 24-core Dell PowerEdge
R905 server running OpenSolaris.2009.06 and evaluated it
using 22 programs including the TATP database application,
SPECjbb2005, programs from PARSEC, SPEC OMP, and
some microbenchmarks. The experimental results show that FF
policy achieves high performance for both lightly and heavily
loaded systems. Moreover it does not require any changes to
the application source code or the OS kernel.

Keywords-Scheduling; priorities; contention; context-
switches

I. INTRODUCTION

The advent of multicore architectures provides an attractive

opportunity for achieving high performance for a wide

variety of multithreaded applications. However, exploiting

the system density, and the parallelism they offer, to improve

performance of multithreaded applications is a challenging

task. This is because multithreaded application performance is

sensitive to the implementations of synchronization primitives

and contention management policies. Therefore the key

to achieving high performance for multithreaded applica-

tions running on multicore systems is to use appropriate

synchronization primitives along with efficient contention

management policies. Contention management policies are

either based on spinning, or blocking, or a combination

of both. Spinning resolves contention by busy waiting,

therefore waiting threads respond to lock handoffs very

quickly. However, spinning threads can wastes CPU resources

and prevent the lock-holder thread from running and releasing

the lock [1], [3], [6]. This dramatically degrades performance

and becomes a prominent problem in systems under high

load conditions. In contrast, the blocking scheme reschedules

waiting threads and allows other threads to use the system

resources. However, blocking scheme increases context-

switches, overloads OS scheduler, and thus leads to poor

performance [1], [3], [6].

To alleviate the above problems with spinning and blocking,

several hybrid schemes have been introduced. The adaptive

mutex provided by OpenSolaris [3], Linux futex [17], and

pthread mutex provided by pthread library are examples

of such hybrid schemes. Both Solaris adaptive mutex and

Linux futex use the state-of-the-art spin-then-block contention

management policy. According to this policy, threads spin if

the lock-holder thread is running on another CPU and block

otherwise. This policy is based on the assumption that mutex

hold times are typically short enough that the time spent

spinning is less than the time it takes to block [3]. However,

this policy faces challenges in providing optimal balance

between spinning and blocking because this balance must

change with increasing core and thread counts [1], [2].

Next we illustrate the above problem using the SPEC

OMP program applu. Fig. 1 shows the speedup and the

3
4

5
6

7

Threads

S
p

e
e

d
u

p

lSpeedup CX−Rate

l

l

l

l

l

l

6 12 18 24 36 48

2
3
0
0
0

5
0
0
0
0

7
4
0
0
0

9
8
0
0
0

1
2
2
0
0
0

C
X

−
R

a
te

OPT

Figure 1: Speedup of applu degrades while CX-Rate increases as
thread count grows on a 24-core machine. 24 threads represents
100% load.

context-switch (CX) rate observed by running applu on 24-

core machine for varying number of threads. The speedup is

computed relative to the serial execution-time. Applu achieves

the best performance with 18 threads on our 24-core machine.

As we can see, speedup of ‘applu’ drops while CX-Rate

increases as thread count grows. The implementation of

applu is based upon pthreads and pthread mutex uses the

state-of-the-art spin-then-bock contention management. As

we discussed above, as load (thread count) increases, the

spin-then-block policy increases the CX-Rate, overwhelms

the OS scheduler, causing poor performance even with 75%

load (.e., 18 threads). Applu is a contention-bound program

that experiences high CX-Rate and spends around 47% of its

elapsed time in lock-contention even with #threads < #cores,

i.e., less than 100% load.

The CX-Rate increases further because of the unwanted

interactions between the spin-then-block policy and the Time

Share (TS) scheduling policy which is the default scheduling

policy in a modern OS. With TS scheduling policy, priorities

of threads change very frequently for balancing load and

providing fairness in scheduling. Priority adjustments are

made based on the time a thread spends waiting for processor

resources, consuming processor resources, etc. [3]. Therefore,

at any execution point of a multithreaded application, some

of the threads belonging to the application get higher priority

while the others get lower priority. This leads to preemption

of low-priority threads by the high-priority threads of the

same application which often includes lock-holder thread

preemptions. This is what we call “Backstabbing” (BS)

which leads to increased frequency of involuntary context-

switches (ICXs), i.e. context-switches that cause threads to

be involuntarily taken off a core. Whenever a lock-holder

thread is preempted, the threads that are spinning for that lock

will be blocked, which in turn increases voluntary context-

switches (VCXs), i.e. context-switches that happen when a

threads fail to acquire a lock or are blocked due to IO. The

changes in context-switch rates lead to further changes in

thread priorities. Thus, the interaction between the state-of-

the-art spin-then-block policy and the TS scheduling policy

creates a vicious cycle between priority changes and context-

switches, which causes a drastic increase in CX-Rate (ICX-

Rate + VCX-Rate) with increasing load; thus leading to poor

performance.

To alleviate the problems with the state-of-the-art con-

tention management policies, Johnson et al., [1] proposed a

“load control” mechanism that decouples load management

from contention management. This approach uses blocking

to control the number of runnable threads and then spinning

in response to contention. Although this approach works well,

it needs to modify the applications for making spin locks

visible, it is sensitive to spikes in the load, and it does not

function well when priority inversions occur due to nested

critical sections [1]. Moreover, the implementation of the load

controller uses 7 ms as an update interval, with which, it is

difficult to obtain accurate processor-usage statistics, and the

overhead increases linearly with the number of threads [1].

However, unlike the above approach, in this paper we

present a new scheduling policy called faithful scheduling

(FF), where all threads of an application have same priority

for the entire execution. FF allocates the same time-quantum

to all the threads belonging to one application; however,

its value varies according to application’s usage of system

resources. By providing same priority to all the threads

of an application, this policy completely eliminates BS,

breaks the vicious cycle between thread priority changes

and context-switches, dramatically reduces CX-Rate, and

thus leads to high performance. By completely eliminating

BS, FF policy makes all the threads of an application fair to

each other. FF policy is agnostic to dynamic load changes

and improves performance predictability. The overhead of

the FF policy is negligible and it is an attractive approach

as it requires no changes to the application source code or

the OS kernel. Moreover, since it completely avoids priority

inversion problems and thus handles nested critical sections

well.

We implemented FF on a 24-core Dell PowerEdge

R905 server running OpenSolaris and evaluated it using

22 programs including the TATP database application [24],

SPECjbb2005 [27], programs from PARSEC [26], SPEC

OMP [27], and a microbenchmark [1]. The experimental

results show that at 100% load, FF policy achieves more

than 10% performance improvement for five programs with

a maximum of 35% improvement, 4%-10% for six programs,

less than 4% for nine programs, and there is no improvement

for one program over TS policy. At 200% load, FF policy

achieves more than 10% performance improvement for eight

programs with a maximum of 107% improvement, 4%-10%

for six programs, less than 4% for seven programs over TS

policy. Furthermore, FF policy also achieves performance

improvements under light loads, i.e., less than 100% load.

The key contributions of this work are as follows:

• We identify the reasons behind the problems caused by

the interactions between the spin-then-block policy and

TS scheduling policy through an in-depth performance

analysis of several multithreaded programs on a 24-core

multicore system.

• We present a scheduling policy FF, which eliminates

lock-holder thread preemptions, dramatically reduces

context-switches over TS policy, and achieves high

performance for a wide variety of benchmarks for both

lightly and heavily loaded systems.

• Finally, we develop FF policy using simple utilities

available on a modern OS and it requires no changes

to the application source code or the OS kernel. It is

very effective against phase changes of the application,

it completely avoids spikes in the load, and improves

performance predictability. Moreover, it introduces neg-

ligible runtime overhead.

2

The remainder of this paper is organized as follows. Section II

explains the problems caused by the interactions between OS

scheduling and contention management policies. Section III

presents the implementation of FF policy in detail and

Section IV presents the experimental setup. Section V

describes the evaluation of FF policy against a wide variety

of benchmark programs. Related work and conclusions are

given in Sections VI and VII.

II. INTERACTION BETWEEN OS SCHEDULING AND

CONTENTION MANAGEMENT

This section explains how the interaction between con-

tention management policies and OS scheduling policies

hurts the performance of multithreaded programs running on

multicore systems.

Time Share (TS) is the default scheduling policy in a

modern OS such as OpenSolaris. With TS scheduling policy,

priorities of threads change very frequently for balancing load

and providing fairness in scheduling. Priority adjustments

are made based on the times a thread spends waiting for

processor resources, consuming processor resources, etc [3].

Therefore, at a given point in time, some of the threads

belonging to an application get higher priority while the

others get lower priority. This leads to preemptions of the

low-priority threads of an application by the high-priority

threads of the same application, i.e. ‘Backstabbing’ (BS).

BS often includes lock-holder thread preemptions which

increases the ICX rate. We can further divide ICX into two

types: time-quantum context-switches (TQE ICX) happen

because of time-quantum expiration; and preemption context-

switches happen when a higher priority thread preempts a

lower priority thread (HPP ICX).

As we can see in Fig. 2(a), applu program experiences a

high degree of HPP ICX (56% of total ICX) when it is run

with 24 threads on 24 cores (100% load). Using DTrace [5]

scripts, we observed that almost all of these HPP ICX are

caused by applu threads i.e., applu experiences around 55%

BS at 100% load. Here BS is specifically defined as % of HPP

ICX caused by the same application threads. This is because

HPP ICX is also caused by high priority system processes

���������
�	
��

���

���

��
�����������
�������

���

���

����
���������

�����	� !��
���������

Figure 4: The interactions between the TS policy and the spin-
then-block policy create vicious cycles between priority changes
and context-switches.

running along with the application threads. However, we

can expect that BS is the major portion of HPP ICX (i.e.,

HPP ICX ∼ BS) when load crosses 100%. As shown in

Figure 2(b), priority change-rate increases as load increases

and also a major portion of priority changes are due to HPP

ICX. Another important point to note is that ICX (HPP ICX

and TQE ICX) causes a major portion of VCX. Figure 2(c)

shows a drastic increase in HPP ICX as load crosses 100%.

Therefore, we can expect that the frequency of lock-holder

thread preemptions will increase once load crosses 100%.

Thus, frequent ping-ponging [3] of thread priorities increases

HPP ICX, specifically BS, which in turn increases CX-Rate

(ICX-Rate + VCX-Rate), and ultimately vicious cycle is

created between context-switches and priority changes.

As shown in Fig. 4, the TS policy changes priorities of

threads based on their usage of system resources. Frequent

ping-ponging of thread priorities leads to HPP ICX, i.e., force

the threads off the CPU, which often include lock-holder

threads. When a lock-holder thread is preempted then all

the threads that are waiting for that lock will be blocked,

i.e., generates VCX. Then threads will join the lock’s sleep

queue and their priorities will be changed based on their

waiting time in the sleep queue. Thus, this process repeats

continuously, increasing CX-Rate and priority change-rate,

and thus leads to poor performance.

2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Time (sec)

IC
X

−
R

a
te

Total ICX
HPP ICX

(a) HPP ICX occupies a major portion of total ICX.

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Threads

P
ri

o
ri

ty
 C

h
a

n
g

e
 R

a
te

Total CX

HPP ICX

12 24 36 48

100%

200%

(b) HPP ICX leads to changes in thread priorities.

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Threads

IC
X

−
R

a
te

Total ICX

HPP ICX

12 24 36 48

100%

(c) Drastic increase in HPP ICX as load crosses 100%.

Figure 2: Frequent changes in thread priority drastically increases context-switches and in turn context-switches lead to changes in thread
priority. A vicious cycle is created between priority changes and context-switches.

3

A. Lock-contention vs Backstabbing (BS)

From the above observations, we can expect that high

contention applications suffer more from BS than contention-

free applications. This is because threads of high contention

application seriously compete for lock acquisitions leading

to high CX-Rate. Contention-free applications scale well

and typically they experience CX-Rate far lower than high

contention applications. To get a clear idea about this, we ran

three different benchmark programs (nearly contention-free,

medium contention, and high-contention) and observed how

BS varies along with thread count. Fig. 3 shows the results.

As shown in Fig. 3(a), swaptions is a nearly contention-

free program and it does not significantly suffer from BS. BS

is almost nil when the load is below 100% and small under

high loads. This is because when the load crosses 100%,

there are more chances of lock-holder thread preemptions

and also high HPP ICX. However, this becomes a prominent

problem for the high contention programs. As shown in Fig. 3

(b) and (c), programs fluidanimate and applu experience high

% of BS. As applu is a high contention program, it suffers

from high % of BS even under low loads. These observations

demonstrate two things: (1) BS rapidly increases under high

loads, specifically when the load crosses 100%, and (2) high

contention programs experience significant BS even when the

load is below 100%. Therefore, if we completely avoid BS

then we can minimize CX-Rate and improve performance. In

order to avoid BS completely, we need to break the vicious

cycle between priority changes and context-switches.

Thus, based on the above observations, in the next section,

we present a scheduling policy called faithful scheduling (FF),

which breaks the cycle between priority changes and context-

switches, completely eliminates BS, dramatically reduces

CX-Rate, and thus leads to higher performance.

III. FAITHFUL SCHEDULING POLICY (FF)

The previous section highlights the fact that the interactions

between contention management and OS scheduling create

vicious cycle between priority changes and context-switches,

which leads to poor performance. Therefore, to break the

vicious cycle and achieve high performance, we propose a

scheduling policy called Faithful Scheduling Policy (FF) with

the following key characteristics:

1) Same priority is assigned to all the threads of a given

application.

2) Time-quantum is allocated based on the resource usage

of the entire application, specifically based on lock-

contention and cache miss-ratio of the application.

By providing same priority to all the threads of an

application, FF policy completely avoids BS, dramatically

reduces CX-Rate, and leads to high performance. Since

priorities of all the threads of an application are same, FF

allocates equal time-quantum to all of them for reducing

unwanted TQE ICX. Moreover, this makes all the threads

of an application fair to each other. However, finding the

right time-quantum for an application is tricky. For this, via

extensive experimentation with a wide variety of benchmarks,

we derived a metric called “scaling-factor” and developed a

scaling-factor table that guides time quantum allocation.

A. Scaling-factor Table

Finding right time-quantum is very important to provide

fair allocation of CPU cycles for all the threads of a multi-

threaded application. Threads of a CPU-intensive and low

contention application heavily compete for CPU resources.

Therefore, it is appropriate to provide small time quantum for

both CPU-intensive and low contention application threads.

In this way no thread will wait for a long time for a CPU.

In contrast, it is appropriate to provide large time-quantum

for both high-contention and memory-intensive application

threads. In case of high-contention applications, large time-

quantum allows lock-holder thread to complete its work

quickly, release the lock, and allow other threads to make

progress. Moreover large time-quantum for contention bound

application threads reduces unwanted TQE ICX and also

reduces the lock acquisition overhead since a wakeup and a

context-switch are required before the blocking thread can

become the owner of the lock it requires [3]. Based on the

above observations, the metric scaling-factor is defined in

Eq. (1).

l l

l l

0
2
0

4
0

6
0

8
0

1
0
0

#Threads

%
B

S

0
2
0

4
0

6
0

8
0

1
0
0

12 24 36 48

%
 L

o
c
k
−

c
o
n
te

n
ti
o
n

l %BS

%Lock

(a) swaptions (No contention).

l

l

l

l

0
2
0

4
0

6
0

8
0

1
0
0

#Threads

%
B

S

0
2
0

4
0

6
0

8
0

1
0
0

12 24 36 48

%
 L

o
c
k
−

c
o
n
te

n
ti
o
n

l %BS

%Lock

100%

(b) fluidanimate (Medium contention).

l

l

l l

0
2
0

4
0

6
0

8
0

1
0
0

#Threads

%
B

S

12 24 36 48

%
 L

o
c
k
−

c
o
n
te

n
ti
o
n

0
2
0

4
0

6
0

8
0

1
0
0

l %BS

%Lock

100%

(c) applu (High contention).

Figure 3: Lock-contention vs BS (24 threads is 100% load).

4

Scaling-factor = 1 - max(Miss-ratio, Lock-contention) (1)

Where ‘Miss-ratio’ is last-level cache miss-ratio and ‘Lock-

contention’ is the percentage of time application threads

spend waiting for user locks, condition-variables, etc. Using

Miss-ratio we can identify whether an application is memory-

intensive or not.

By conducting experiments with a wide variety of multi-

threaded programs and different time-quanta, we developed

the scaling-factor table shown in Table I, in which the

time-quantum goes down as the scaling-factor goes up

(inspiration from the priority dispatcher tables [3] of modern

OS). More specifically, to derive the table, first we categorize

the applications as memory intensive, CPU intensive, high

contention, or low contention applications. Then we selected

a few of applications from each category -- a total of 8

out of 22 applications, and ran them with varying time-

quantum ranging from 10 ms to 400 ms. The scaling factor

table obtained was then used in our experiments for all 22

applications. The 8 applications used to populate the scaling

factor table are: streamcluster, swim, swaptions, ferret, apsi,

applu, art, and bodytrack.

Therefore, based on the application’s cache miss-ratio and

lock-contention, scaling-factor of the application is between

one and zero. For scalable applications such as CPU-intensive

and low-contention applications, scaling-factor is high and

close to one, and for non-scalable applications such as

high memory-intensive or high lock-contention applications,

scaling-factor is close to zero. One important point here

is that the scaling-factor value is for the entire application

not per thread. Based on the scaling-factor value, FF policy

allocates corresponding time-quantum to all the threads of

the application.

Table I: The Scaling-factor Table. The range of the scaling-factor
is 0.10.

scaling-factor TQ(ms)

(0.01 -- 0.10) 250

(0.11 -- 0.20) 200

(0.21 -- 0.30) 150

(0.31 -- 0.40) 120

(0.41 -- 0.50) 100

(0.51 -- 0.60) 80

(0.61 -- 0.70) 50

(0.71 -- 0.80) 30

(0.81 -- 0.90) 20

(0.91 -- 1.00) 10

B. Dealing with phase changes

Some applications have multiple different phases or regions

and exhibit different usages of system resources over time.

Therefore, we need to continuously monitor the applications

and apply appropriate time-quantum according to the resource

usage of their current phase. However, among the 22

benchmark programs we studied, only a couple of programs

ammp and SPECjbb2005 show significantly two different

phases in their execution. For example, consider ammp

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (sec)

M
is

s
−

ra
ti
o

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

L
o
c
k
−

c
o
n
te

n
ti
o
n

Miss−ratio
Lock−contention

Phase 1 Phase 2

Figure 5: Phase changes of ammp. Here ammp is run with 24
threads. Lock-contention value 1 means application experiences
lock-contention for 100% of the total elapsed time.

SPEC OMP program. As shown in Fig. 5, ammp has two

significantly different phases. While ammp experiences high

miss-ratio and high lock-contention in Phase-1 (i.e., for the

first 25 seconds), it experiences low miss-ratio and low lock-

contention in Phase-2. Therefore according to the scaling-

factor table, FF policy allocates large time-quantum for the

first 25 seconds, and small time-quantum for the rest of its

execution.

C. Dealing with pipeline parallelism

It is fine to allocate equal time-quantum to all the threads of

an application based on pure data-parallelism. This is because,

the threads of a data-parallelism application more or less do

the same work. However, it may not be appropriate to allocate

equal time-quantum to all the threads of an application that

uses pipelined parallelism because resource usage of the

threads from different pipeline stages may differ greatly.

However, our experiments with different pipeline parallel

applications reveal that allocating equal time-quantum to all

the threads also works well for pipeline parallel applications.

This is because the scaling-factor is calculated based on the

resource usage of the entire application, which allows to

account the overall effect of all the threads or the dominating

pipeline stage threads. For example, consider ‘ferret’ pipeline

parallel application from PARSEC benchmark. ferret is a

search engine which finds a set of images similar to a query

image by analyzing their contents. The program is divided

into six pipeline stages -- the results of processing in one

stage are passed on to the next stage. The stages are: Load,

Segment, Extract, Vector, Rank, and Out. The speedup of

ferret increases linearly starting from 6 threads to all the way

up to 63 threads even though only 24 cores are available.

The reason for the observed behavior is as follows. The Rank

stage performs most of the work and thus the speedup of

the application is determined by the Rank stage. Moreover

the other stages perform relatively little work and thus their

threads together use only a fraction of the compute power of

the available cores. Thus, as long as cores are not sufficiently

5

utilized, more speedup can be obtained by creating additional

threads for the Rank stage. Therefore, Rank stage threads of

ferret program dominates the behavior of all other threads

and represents resource usage of whole ferret program. Thus,

since the scaling-factor represents the resource usage of the

entire application, allocating time-quantum based on the

scaling-factor works well also for pipeline parallel programs.

D. Implementation of FF policy

There are two important components of the implementation

of FF policy framework: (1) providing same priority to all

the application threads, and (2) allocating appropriate time-

quantum based on the resource usage of the application.

OpenSolaris provides a scheduling class called Fixed Priority

scheduling [3]; with the combination of this class and

priocntl(1) [4] utility, we can allocate same priority to all the

threads of an application. However, there is no way to find

appropriate time-quantum for an application in OpenSolaris

with the fixed priority scheduling class. Moreover, this

class does not provide any capability for updating time-

quantum [3]. Thus, there is no way to deal with the phase

changes of an application. Therefore, in addition to devel-

oping a scaling-factor table, we also perform continuously

monitoring of an application to allocate appropriate time-

quantum according to its phase changes.

Let us consider the FF policy implementation in detail. As

shown in Algorithm 1, our implementation uses a daemon

thread. First we start the target program with the default TS

policy and start monitoring the program’s last-level cache

miss-ratio and lock-contention after the creation of target

program’s worker threads. We use cputrack(1) utility to

monitor miss-ratio and prstat(1) utility for lock-contention

with one second interval. We used a timer that fires a timer

signal for every one second and the framework catches

the signal and collects miss-ratio and lock-contention of

the target program with one second interval, calculates a

scaling-factor, and based on this it allocates appropriate

time-quantum to the application threads using the scaling-

factor table. More specifically, the framework measures a

scaling-factor of the target application for every one second,

and checks whether to change the time-quantum or not by

comparing the current scaling-factor with the previous one.

Although we can use an interval with milliseconds resolution,

we used one second interval because our experiments showed

that one second interval is enough to deal with the phase

changes of the programs studied in this work. Although,

one second time-interval is the minimum timeout value we

could have used with the default implementation of prstat(1)

utility, we modified this utility to allow time intervals with

millisecond resolution to monitor lock-contention. Therefore,

it is easy to use an interval less than one second for an

application that experiences rapid phase changes.

Thus, our framework continuously monitors the target

multithreaded program and allocates same priority using

Algorithm 1: FF Policy Framework

Profile Data Structure and Variables;
Profile P:

missRatio: last-level cache misses/accesses;
lockContention: (% lock-contention/100);

// range of the scaling-factor

range = 0.10;

Subroutines:
getProfile():

Monitor missRatio using cputrack(1) and lockConetntion
using prstat(1) of the target program with one second
interval and return a Profile P;

getScalingFactor(missRatio, lockContention):
return [1 - max(missRatio, lockContention)] ;

getTimeQuantum(scalingFactor):
return corresponding TQ from the Scaling-Factor Table;

Input : Target Multithreaded Benchmark Program
Output : Apply FF policy.

Start the target program with TS policy;
while program hasn’t create its worker threads do

Sleep(); // checks like a deamon process

end

Wait for one more second to allow the application threads for
their initialization period;

oldP = getProfile();
oldScalingFactor = getScalingFactor(oldP.missRatio,
oldP.lockContention);
oldTQ = getTimeQuantum(oldScalingFactor);

Allocate oldTQ and same priority using priocntl(1) utility;

// continuous monitoring

repeat
newP = getProfile();
newScalingFactor = getScalingFactor(newP.missRatio,
newP.lockContention);

if (newScalingFactor > (oldScalingFactor + range)) or
(newScalingFactor < (oldScalingFactor - range)) then

newTQ = getTimeQuantum(newScalingFactor);
oldScalingFactor = newScalingFactor;
Allocate newTQ using priocntl utility;

end
until completion of the target program;

priocntl(1) utility and assigns appropriate time-quantum based

on the scaling-factor table. Moreover, the overhead of this

framework is negligible (0.02% of CPU utilization) and it

requires no changes to the application source code or to the

OS kernel.

IV. EXPERIMENTAL SETUP

This section describes the execution environment where

FF policy is developed and evaluated.

A. Target Machine and OS

Our experimental setup consists of a Dell PowerEdge R905

server whose configuration is shown in Table II. As we can

see this machine has 24 cores and is running OpenSolaris.

6

Table II: Target Machine and Operating System.
DellTM PowerEdge R905:

24 Cores:

4 × 6-Core 64-bit AMD Opteron 8431 Processors (2.4 GHz);

L1 : 128 KB; Private to a core; L2 : 512 KB; Private to a core;

L3 : 6144 KB; Shared among 6 cores; Memory: 32 GB RAM;

Operating System: OpenSolaris.2009.06.

B. Benchmarks

We evaluate FF policy with a wide variety of benchmarks

-- 22 benchmark programs in all. We also included a micro-

benchmark [1] to study how FF policy works under varying

levels of contention. This benchmark consists of M threads

running on N cores that repeatedly acquire and release a

single global lock. The critical section consists of a single

call to gethrtime(), which takes around 300 ns to execute

on our machine. Between lock acquires, threads busy-wait a

fixed period of time before the first measurement and stop

after the last one. Threads increment a local counter with

each lock releases, and the benchmark harness computes

throughput by comparing two successive readings of each

thread’s counter while threads continue to run.

The other 21 complete programs are as follows: eight

programs (streamcluster, facesim, canneal, x264, fluidanimate,

swaptions, ferret, and bodytrack) from PARSEC [26], 11

programs (swim, wupwise, equake, gafort, art, apsi, ammp,

applu, fma3d, galgel, and mgrid) from SPEC OMP [27],

SPECjbb2005 [27], and TATP [24] database transaction

program. The implementations of PARSEC programs are

based upon pthreads and we ran them using native inputs.

SPEC OMP programs were run on medium input data sets.

SPECjbb2005 with single JVM is used in all our experiments.

TATP (a.k.a NDBB and TM-1) uses a 10000 subscriber

dataset of size 20MB with a solidDB [25] engine. TATP

is not IO-intensive and disk performance does not affect it

significantly [1]. In this work, we ran each experiment 10

times and present average results from the ten runs.

V. EVALUATING FF POLICY

In this section, we analyze the effectiveness of FF policy

using the microbenchmark and the 21 complete programs

introduced in Section IV.

A. Against varying contention levels

Since FF policy completely avoids BS and specifically

lock-holder thread preemptions, it is very effective against

varying lock-contention levels. Fig. 6 demonstrates this. We

use a microbenchmark where threads contend for a single

global lock, with a fixed delay between requests [1]. High

contention occurs for short requests on the left of the x-axis

and drops off moving toward the right. We consider three

cases, where the machine is 95% loaded (i.e., 23 threads),

150% loaded (i.e., 36 threads) and 200% loaded (i.e., 48

threads) [1]. As we move right along the x-axis, contention

decreases, and throughput is improved in all three cases. As

we can see in Fig. 6, when contention is high and the system

is overloaded, program experiences high BS, and leads to

poor performance. For lightly loaded systems, FF performs

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0 TS FF

Delay in lock requests (us)

20 30 50

95% 150% 200% 95% 150% 200% 95% 150% 200%

Figure 6: FF policy is very effective against varying contention
levels.

slightly better than TS because program experiences low

BS. However, overall, FF outperforms TS significantly at all

contention levels.

B. Against phase changes

As explained in Section III-D, the FF framework con-

tinuously monitors the target multithreaded program and

allocates appropriate time-quantum to effectively deal with

its phase changes. For example, consider the ammp program

which exhibits two significantly different execution phases

described in Section III-B. Using the scaling-factor table,

the FF policy allocates appropriate time-quantum according

to the resource usage of its phases. As ammp suffers from

high lock contention for around 84% of elapsed time in the

first phase, scaling-factor is 0.16 for the first phase. Here

lock-contention is higher than miss-ratio value. Likewise,

scaling-factor is 0.88 for the second phase of the ammp

program as it suffers from low lock contention for around

12%. Therefore, using continuous monitoring, the FF policy

allocates time-quantum 200 ms for the first phase, 20 ms for

the second phase, and thus effectively deals with the phase

changes of the ammp program.

As shown in Fig. 7, FF policy is very efficient against the

phase changes of ammp program. It dramatically reduces

ICX-Rate and leads to high performance. As we can

see in Fig. 7(c), ammp achieves up to 15% performance

improvement with FF policy. Since, we use small time-

quantum for the phases that have high scaling-factor, we

can expect a little increase in TQE ICX. Thus, as we can see

in Fig. 7, there is a rise in the ICX-Rate in the second phase

with FF policy. However, FF policy produces less TQE ICX

compared to TS policy at both 100% and 150% loads.

C. Against dynamic load changes

Since FF policy completely eliminates BS, consequently

reducing CX-Rate, it brings stability in load management.

Fig. 8 demonstrates this. The y-axis of the figure represents

normalized run-queue length of the system, i.e. total number

of runnable threads on the dispatcher queues of the system [3],

[4]. The x-axis shows the time in seconds. Fig. 8 shows the

normalized run-queue lengths of swaptions, fluidanimate,

applu programs at 100%, 150%, and 200% loads. As shown

7

0 20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Time (sec)

IC
X

−
R

a
te

TS

FF

(a) Dramatic reduction in ICX-Rate at 100% load.

0 20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Time (sec)

IC
X

−
R

a
te

TS

FF

(b) Dramatic reduction in ICX-Rate at 150% load.

12 24 36 48

Threads

%
 P

e
rf

o
rm

a
n

c
e

 I
m

p
ro

ve
m

e
n

t

0
5

1
0

1
5

(c) Performance improvement over TS policy.

Figure 7: FF policy effectively deals with phases of ammp program and improves its performance.

l

l l l l

l

l
l l

l

2 4 6 8 10

0
.9

8
1
.0

0
1
.0

2

100% Load

Time (sec)

N
o

rm
a

liz
e

d
 R

u
n

−
q

u
e

u
e

 L
e

n
g

th

l TS FF

l

l l
l

l
l

l l

l

l

2 4 6 8 10

1
1
.9

0
1
2
.0

0

150% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n

g
th

l

l l

l
l

l

l

l l l

2 4 6 8 10

2
3
.9

0
2
3
.9

6

200% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n
g
th

(a) swaptions (no contention).

l

l

l

l

l

l

l

l

l

l

2 4 6 8 10

0
.1

0
0
.2

0
0
.3

0

100% Load

Time (sec)

N
o

rm
a

liz
e

d
 R

u
n

−
q

u
e

u
e

 L
e

n
g

th

l TS FF

l

l

l

l

l

l

l

l

l

l

2 4 6 8 10

1
.5

2
.5

3
.5

150% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n

g
th

l

l

l

l

l

l

l
l

l

l

2 4 6 8 10

5
.5

6
.5

7
.5

200% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n
g
th

(b) fluidanimate (medium contention).

l

l l

l l l

l

l

l l

2 4 6 8 10

0
.3

0
0
.4

0
0
.5

0

100% Load

Time (sec)

N
o

rm
a

liz
e

d
 R

u
n

−
q

u
e

u
e

 L
e

n
g

th

l TS FF

l

l

l
l

l
l

l

l
l l

2 4 6 8 10

1
2

3
4

5

150% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n

g
th

l
l

l

l

l

l

l

l

l

l

2 4 6 8 10

2
6

1
0

1
4

200% Load

Time (sec)

N
o
rm

a
liz

e
d
 R

u
n
−

q
u
e
u
e
 L

e
n
g
th

(c) applu (high contention).

Figure 8: FF policy avoids spikes in the load.

in Fig. 8(a), there are no significant load changes with

both TS and FF policies in case of very low contention

swaptions program even at 200% load. However, there are

significant spikes in the load for high contention programs --

fluidanimate and applu -- with TS policy, but there are no

spikes in the load with FF policy. Therefore, by completely

eliminating BS and consequently reducing CX-Rate, FF

policy avoids spikes in the load and leads to high performance.

Moreover, threads experience higher CPU latencies with TS

policy under high loads compared with FF policy, i.e., threads

wait for longer times in the dispatch queues with TS policy,

which slows down the progress of the application.

Thus, FF policy is agnostic to dynamic load changes

and improves performance predictability of multithreaded

programs running on multicore machines. In contrast to this,

the load-controller [1] is sensitive to spikes in the load.

D. Performance Improvements

As shown in Fig. 9 and 10, FF policy improves per-

formance for a wide variety of programs at 50%, 100%,

150%, and 200% loads over TS policy. As high contention

programs suffer heavily from BS, they achieve tremendous

performance improvement with FF policy. Fig. 9(a), Fig. 10,

and Fig. 7(c) all show this. There are moderate improvements

for the medium contention programs shown in Fig. 9(b)

and small improvements for the low contention programs

shown in Fig. 9(c). Although FF policy considers whole

application for allocating time-quantum, as shown in Fig. 9(b)

and Fig. 9(c), FF policy improves performance of pipeline

parallel programs bodytrack, x264, and ferret.

More specifically, at 100% load, FF policy achieves

more than 10% performance improvement for five programs

with a maximum of 35% improvement, 4%-10% for six

programs, less than 4% for nine programs, and there is no

improvement for one program over TS policy. At 200%

load, FF policy achieves more than 10% performance

improvement for eight programs with a maximum of 107%

improvement, 4%-10% for six programs, less than 4% for

seven programs over TS policy. Moreover, FF policy also

achieves performance improvements for several programs

under light loads, specifically at 50% load.

Since our execution environment is different from [1],

it is not possible to directly compare the performance

improvement data of TATP using our FF policy against

the performance improvement with the load-controller [1].

However, as shown in Fig. 10 (c), FF policy improves

performance of TATP like the load-controller does and also

the performance degradation is steady as load increases.

Moreover, in contrast to the load-controller, we did not need

to modify the application source code for ensuring visible

spin locks and also FF policy is agnostic to dynamic load

changes.

8

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

0
10

20
30

40
50

fma3d equake apsi mgrid galgel applu

50% 100% 150% 200%

(a) High Performance Improvements.

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

0
2

4
6

8

50% 100% 150% 200%

wupwise fluidanimate gafort bodytrack x264

(b) Medium Performance Improvements.

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

0
2

4
6

8

50% 100% 150% 200%

art streamcluster ferret canneal swim swaptions

(c) Low Performance Improvements.

Figure 9: FF policy improves performance of a wide variety of programs.

36 42 45 48 60

Threads

%
 P

e
rf

o
rm

a
n

c
e

 I
m

p
ro

v
e

m
e

n
t

0
2

4
6

8
1
0

(a) SPECjbb2005.

8 16 32 64

#Threads

%
 P

e
rf

o
rm

a
n

c
e

 I
m

p
ro

v
e

m
e

n
t

0
2

4
6

8
1

0
1

2
1

4

(b) facesim.

24 36 48

#Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0 TS FF

(c) TATP

Figure 10: Performance improvement of SPECjbb2005, facesim,
and TATP with FF policy. SPECjbb2005 creates 35 threads with
one warehouse.

E. Discussion

The previous section demonstrates that FF policy improves

performance of a wide variety of multithreaded applications

at different loads. We next discuss some of the extensions

and limitations of FF policy framework.

1) Concurrent runs of more than one application

TS policy has been widely used in modern operating

systems. It does not consider the whole application but rather

assigns priority and time-quantum on a per thread basis. That

is why FF policy significantly outperforms TS policy when

single multithreaded application is running on the system.

However, TS policy is quite effective when there are multiple

multithreaded applications running on a multicore system.

Therefore, we would like to see how FF policy works with

parallel runs of more than one application on a multicore

system. For this, we conducted two experiments. In the first

experiment we ran applu with 24 threads along with extra

load offered by mgrid – we ran 24 threads of applu along with

12 threads, 24 threads, and 36 threads of mgrid. In the second

experiment we run both applu and mgrid with equal number

of threads – (12, 12), (18, 18), and (24, 24) threads. As shown

in Fig. 11 (a) and Fig. 11 (b), FF policy greatly outperforms

TS policy. Similar performance improvements resulted from

several experiments of running multiple applications with FF

policy. We are unable to present those due to lack of space.

Thus, FF policy is also effective when there is more than

one application running on the system.

2) Limitations

Although FF policy is quite effective against pipeline

parallel programs, still we can improve their performance

if we use different and appropriate time-quanta for different

S
p

e
e

d
u

p

0
1

2
3

4
5

6

applu mgrid applu mgrid applu mgrid

50% 100% 150%

Extra load offered by mgrid

TS FF

(a) applu with extra load offered by mgrid.

S
p

e
e

d
u

p

0
1

2
3

4
5

6

applu mgrid applu mgrid applu mgrid

100% 150% 200%

Total Load

TS FF

(b) Both applu and mgrid offer same load.

Figure 11: FF policy is very effective against parallel runs of more
than one application.

pipeline stage threads according to their resource usage. The

22 applications studied in this work mainly stress CPU and

Memory. However, it is easy to extend FF policy framework

for IO-intensive applications by considering how much time

threads utilizing CPU, IO characteristics, and modifying the

scaling-factor table appropriately.

VI. RELATED WORK

The problems with spinning and blocking are well known

and have prompted many approaches, such as queue-based

spinlocks [7], [8] and ticket spinlocks [9], to alleviate these

problems. Both Queue-based spinlocks and ticket spinlocks

provide an efficient way of orderly lock-handoffs because

waiting threads form a FIFO queue and each lock handoff

targets a specific thread. However, they also suffer from

lock-holder thread preemptions at high load and create lock

convoys [1], [10]. Time-published locks [11] eliminate the

main problem with queue-based locks by only handing the

lock to running threads. However, these also allow lock

holders to be vulnerable to preemption [1]. By limiting the

number of waiting threads which can respond simultaneously,

backoff-based techniques [12], [13], [19] provide another

solution to the “thundering herd” problem [1], where all

waiting threads race for the lock at each release and cause

both contention and memory traffic. However, finding optimal

backoff length for the general case is a challenging problem.

Hybrid spin-then-block techniques [3], [17], [19] use spinning

to reduce context switching imposed by a blocking primitive.

However, these also face challenges to provide optimal

balance between spinning and blocking as load increases [2].

In order to avoid unexpected load changes because of

the interactions between irregular parallelism of database

9

applications and scheduling, several admission control tech-

niques [14], [15], [18] are employed. These techniques

monitor system statistics regarding CPU, memory, lock

contention and tune the amount of work allowed into the

system [1]. Using simulations, Gupta et al. [12] explored

the trade-offs between the use of busy-waiting and blocking

synchronization primitives and their interactions with the

scheduling strategies. They also explored the impact of

the scheduling strategies on the caching behavior of the

applications. Several researchers [20]–[23] use application

characteristics such as cache miss ratio to make better

scheduling decisions in multicore environments.

To alleviate the problems with the hybrid spin-then-

block approaches, Johnson et al., [1], [6] proposed a “load

control” mechanism that decouples load management with

the contention management. This approach uses blocking to

control the number of runnable threads and then spinning

in response to contention. Although this approach works

well, it needs to modify the applications for providing visible

spin lock and load controller is sensitive to large changes

in the load. It also faces problems when priority inversions

arise due to nested critical sections, it does not completely

eliminate BS, and leads to high CX-Rate as load increases.

Moreover, the implementation of load controller uses 7 ms

as an update interval, with which, it is difficult to obtain

accurate processor usage statistics and the overhead increases

linearly with the number of threads [1].

In contrast, in this work, we dramatically reduce the

problems caused by the unwanted interactions between OS

scheduling policy and contention management policy. We

presented a scheduling policy called faithful scheduling (FF),

where all threads of an application have same priority for

its entire execution, however the time-quantum is allocated

according to their usage of system resources. By providing

same priority to all the threads of an application, this policy

completely eliminates BS, dramatically reducing CX-Rate,

and leads to high performance. It avoids priority inversion

problems and therefore it is not effected by nested critical

sections. Moreover, FF policy avoids spikes in the load, it

does not require any modifications to application source

code, and its implementation is also simple with negligible

overhead.

VII. CONCLUSIONS

This paper presents a scheduling policy called Faithful

(FF) Scheduling, where threads of an application have same

priority and the time-quantum is allocated according to the

resource usage of the entire application. FF policy is very

effective against varying contention levels, phase changes,

dynamic load changes, and improves performance of a wide

variety of benchmark programs over the default scheduling

policy Time Share (TS). Moreover, FF policy is an attractive

approach as it does not require any changes to the application

source code or the OS kernel.

ACKNOWLEDGEMENTS

The authors would like to thank Antoni Wolski and Simo

Neuvonen of IBM Research for their help in installing the

TATP benchmark and Ryan Johnson of University of Toronto

for his help in developing the micro benchmark. Jim Mauro

and Rick Weisner of Oracle for their help throughout this

work. The authors would also like to thank the anonymous

reviewers for their helpful comments.

This work is supported in part by NSF grants CCF-

0963996 and CNS-0810906 to the University of California,

Riverside.

REFERENCES
[1] R. Johnson, R. Stoica, A. Ailamaki, T. C. Mowry. Decoupling contention

management from scheduling. In ASPLOS 2010.

[2] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, A. Vainshtein. Optimal

strategies for spinning and blocking. Journal of Parallel and Distributed Com-

puting, Volume 21, Issue 2, PP. 246-254, May 1994.

[3] R. McDougall, J. Mauro. Solaris Internals, Prentice Hall Publications, Second

Edition, July 2006 .

[4] R. McDougall, J. Mauro, and B. Gregg. Solaris Performance and Tools: DTrace

and MDB Techniques for Solaris 10 and OpenSolaris, Prentice Hall, 2006.

[5] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic instrumentation of produc-

tion systems. In USENIX ATC, 2004.

[6] R. Johnson, M. Athannassoulis, R. Stoica, and A. Ailamaki. A new look at

the roles of spinning and blocking. In ACM SIGMOD DaMoN workshop,

Providence, RI, July 2009.

[7] J. M. Mellor-Crummey, M. L. Scott, Algorithms for scalable synchronization

on shared-memory multiprocessors, ACM TOCS 9,1, p.21-65, Feb. 1991.

[8] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache coherent

multiprocessors. In International Symposium on Parallel Processing, pp. 165-

171, Apr. 1994.

[9] D. P. Reed and R. K. Kanodia. Synchronization with Event-counts and Se-

quencers. Communications of the ACM, 22(2):115-123, Feb. 1979.

[10] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The convoy phenomenon. ACM

SIGOPS Operating Systems Review 13,2, pp. 20-25. 1979.

[11] B. He, W. N. Scherer III, and M. L. Scott. Preemption adaptivity in time-

published queue-based spin locks. In HiPC, 2005.

[12] A. Gupta, A. Tucker, and S. Urushibara. The Impact Of Operating System

Scheduling Policies And Synchronization Methods On Performance Of Parallel

Applications. SIGMETRICS Perform. Eval. Rev., 1995.

[13] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In

ISCA, pp. 396-406, 1989.

[14] N. Bartolini, G. Bongiovanni, Simone Silvestri. Self-*through self-learning:

Overload control for distributed web systems. In International Journal of

Computer and Telecommunications Networking 53,5, pp. 727-743, Apr. 2009.

[15] M. Carey, S. Krishnamurthi, and M. Livny. Load control for locking: the “half-

and-half” approach. In PODS, Apr. 1990.

[16] J. Carlstrom and R. Rom. Application aware admission control and scheduling

in web servers. In INFOCOM, 2002.

[17] H. Franke, R. Russell, M. K. Fuss. Futexes and furwocks: Fast userlevel locking

in linux. In Proc. 2002 Ottawa Linux Summit, 2002.

[18] A. Monkeberg, G. Weikum. Performance evaluation of an adaptive and robust

load control method for the avoidance of data contention thrashing. In VLDB,

1992.

[19] J. K. Ousterhout. Scheduling techniques for concurrent systems. In Dist. Com-

puting Systems, 1982.

[20] E. W. Parsons, K. C. Sevcik. Benefits of speedup knowledge in memory-

constrained multiprocessor scheduling. Performance Evaluation 27/28, pages

253-272, 1996.

[21] M. Bhadauria, S. A. McKee. An Approach to Resource-Aware Co-Scheduling

for CMPs. In ICS, June, 2010.

[22] Guangdeng Liao, Danhua Guo, Laxmi N. Bhuyan and Steve R. King. Software

Techniques to Improve Virtualized I/O on Multi-core Platforms. In proceedings

of ANCS 2008, San Jose, USA, 2008.

[23] S. Zhuravlev, S. Blagodurov and A. Fedorova. Addressing Shared Resource

Contention in Multicore Processors via Scheduling. In ASPLOS, 2010.

[24] IBM. Telecom Application Transaction Processing (TATP) Benchmark De-

scription. Available online at http://tatpbench-mark.sourceforge.net/TATP_

Description.pdf.

[25] IBM solidDB 6.5 Fix Pack 3 - 6.5.0.3 Build 2010-10-04 https://www-304.ibm.

com/support/docview.wss?uid=swg24028071

[26] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In PACT, 2008.

[27] SPEC OMP, SPECJbb2005. http://www.spec.org/

10

