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Abstract—Current state-of-the-art task scheduling algorithms
for network packet processing schedule the program into a
parallel-pipeline topology on network processors to maximize the
throughput. However, there has been no existing work targeting
power budget for packet processing on off-the-shelf multicore
architectures. As energy consumption, reliability and cooling cost
for packet processing systems become increasingly important, it
is necessary to integrate power-awareness into a scheduler to
meet the power budget.

In this paper, we propose a novel scheduling algorithm to
optimize both throughput and latency given a power budget for
network packet processing on multicore architectures. This algo-
rithm addresses power-aware parallel-pipeline scheduling prob-
lem by applying per-core DVFS to optimally adjust frequency
on each core. We implement our algorithm on an AMD machine
with two Quad-Core Opteron 2350 processors and compare the
results with existing algorithms given the same power budget. For
six real packet processing applications, our algorithm improves
throughput and reduces latency by an average of 64.6% and
25.2%, respectively.

I. INTRODUCTION

1The explosive growth of network bandwidth requires
orders-of-magnitude increase in packet processing throughput.
In addition, many applications (e.g., fast IP-lookup, real-time
voice and video) demand not only high throughput but also
low latency.

The advent of commodity multicore platforms in the market
has opened a new era of computing for network applications.
More and more network packet processing systems have been
developed on such platforms based on general-purpose proces-
sors (e.g., Intel’s Xeon [1] and AMD’s Opteron [2]), network
processors (e.g., Intel’s IXP platform [3]) and programmable
logic devices (e.g., NetFPGA [4]). These systems incorporate
parallel scheduling to exploit packet and task-level parallelism
for higher throughput and lower latency.

Besides parallelization, pipelining is another important tech-
nique to further improve throughput in packet processing on
multicore architectures. The advantage of pipelining comes
from overlapping periodic executions from different threads,
which enhances the whole system throughput. Therefore,
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current task scheduling algorithms for packet processing usu-
ally combines parallelization and pipelining to maximize the
throughput, such as Random [5] and Bipar [6].

However, there is no existing work targeting the power
budget for parallel-pipeline scheduling. Previous power-aware
algorithms either have not considered latency (e.g., [7] [8]),
or have not explored the parallel-pipeline topology for task
scheduling (e.g., [9] [10] [11]). It is both interesting and
challenging to develop novel task scheduling algorithms that
will increase throughput and reduce latency. As energy con-
sumption, reliability and cooling cost for network packet pro-
cessing systems become increasingly important, the scheduling
algorithm must consider power constraint.

Traditionally, there are two popular approaches to deal with
power-awareness. One is Power Management (PM), which
saves power by dynamically turning on or off processors to
adapt to the varying resource demand. The other is Dynamical
Voltage and Frequency Scaling (DVFS), which trades power
with computation time by adjusting processor voltage and
frequency. Because PM can not be applied to task schedul-
ing [8], we resort to DVFS to integrate power-awareness into
parallel-pipeline scheduling. Widely-used DVFS schemes not
only include chip-wide DVFS such as IBMs TPMD [13] and
Intels Foxton technology [14], but also include per-core DVFS
such as AMDs Quad-Core Opteron [15], which can perfectly
support our algorithm.

To the best of our knowledge, we are the first to address the
power budget issue for parallel-pipeline scheduling in network
packet processing. Our algorithm works as follows. In the first
step, we reduce power by lowering the frequency on parallel
nodes without compromising throughput or latency. This goal
can only be achieved for parallel-pipeline topology. If the
resulting power consumption still exceeds the power budget,
we go to step two. In the second step, we reduce the power
with throughput unchanged and minimal latency increase by
optimally adjusting the frequency on each core. If both step
one and step two can not satisfy the power constraint, we go
to step three. In the third step, we reduce the power with
minimal throughput and latency performance loss adopting
similar approach as in step two. Step three and step two are
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recursively executed until the power budget is finally met.
It is also important to note that this algorithm is gener-

ally applicable to any type of multicore packet processing
systems ranging from general-purpose processors to network
processors and programmable logic devices as long as per-
core DVFS is available. In addition, the scheduling granularity
can also vary from fine-grain (e.g., basic block) to course-
grain (e.g., loop, function, task) in practice. We implement
our algorithm as well as five other conventional algorithms
for six real packet processing applications chosen from Net-
Bench [16] and PacketBench [17] on an AMD machine with
two Quad-Core Opteron 2350 processors [2]. The five chosen
algorithms are Clock Gating (CG) [8] in PM category, and
S-SPM [9], PDP-SPM [10], G-SPM [11] and P-SPM [11] in
DVFS category. Compared to existing algorithms given the
same power budget, our algorithm exhibits substantially better
throughput and latency by an average of 64.6% and 25.2%,
respectively.

The rest of this paper is organized as follows. Section II
introduces preliminaries, including the application model,
the power model and the problem statement. Section III
presents the optimization model and the three-step power-
aware scheduling algorithm in detail. Section IV describes the
experimental framework and shows the performance evalua-
tion. Section V addresses the related work and Section VI
concludes this paper.

II. PRELIMINARIES

A. Application Model

We define a task graph as a weighted DAG by tuple
G=(V, E, C, T ), where V ={ni,i=1:v} is the set of nodes
and v=|V |, E={ei,j=<ni, nj>} is the set of communication
edges and e=|E|. C is the set of edge communication times
and T is the set of node computation times. ci,j is the
communication time on edge ei,j and ti is the computation
time on node ni. Figure 1 (a) gives a DAG example.

We assume the application is scheduled into a parallel-
pipeline topology from the DAG based on a static scheduling
policy. Suppose there are N nodes running on N processors
with S pipeline stages and Mi parallel nodes in stage Si.
The stage time Ti is the maximal node computation time in
Si. Figure 1 (b) illustrates an example of such scheduling.
In addition, we can label each node in the parallel pipeline
scheduling as node Ni,j , where i refers to the stage number
and j refers to the node order within a certain stage starting
from the top.

We then define the two objective metrics in the paper:
throughput and latency. In pipeline topology, throughput is
calculated by the inverse of the longest stage time 1

Tmax
,

where Tmax = Max{Ti}, and latency is computed as the
sum of stage time Ti, i = 1, 2, ..., S. We ignore communication
time in this paper without losing validation because it can be
considered constant in DVFS scheme [11].
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Fig. 1: A parallel-pipeline scheduling from DAG.

B. Power Model

Consider that task T consists of C clock cycles on processor
P , which runs at voltage V and frequency f . We assume that
C does not change with different V and f . For a given voltage
V , processor P has an average power consumption Pow. It
is known that processor power consumption is dominated by
dynamic power dissipation given by: Pow = Ka · f · V 2,
where Ka is a task/processor dependent factor determined by
the switched capacitance.

The energy consumed by executing task T on processor
P is computed as: E = C · Pow

f . We can rewrite it as:
E = C ·Ef,V = C ·Ka ·V 2, where Ef,V is the average cycle
energy. From this we can see that lowering the voltage would
yield a drastic decrease in energy consumption. The frequency
f is almost linearly related to the voltage: f = Kb · (V−VT )2

V ,
where VT is the threshold voltage and Kb is a constant.
For a sufficiently small threshold voltage, the frequency is
approximated to Kb · V .

C. Problem Statement

Assume the initial parallel-pipeline scheduling with the
highest frequency produces the best throughput and latency,
which defines the upper bound for throughput and the lower
bound for latency. Under such assumption, we give the
problem statement as follows: Given the parallel-pipeline
scheduling and power budget, how to optimize the per-core
frequency to maximize the throughput and minimize the latency
for multicore architectures.

The problem we want to optimize is: given a set of N cores
P1...N that can each run at Q different frequency levels F1...Q,
find the best selection of frequency levels for all the cores that
maximizes the throughput and minimize the latency, subject
to the constraint that the total power is less than or equal to
POWbudget.

We start with the objective functions for throughput and
latency in Equation 1 and 2.

Maximize Th =
1

Tmax
(1)

Minimize L = T1 + T2 + ... + TS (2)
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The execution time of each node ti can be calculated as
ti = Ci

fi
, where Ci is the clock cycles of task ni and fi is the

frequency on that core. f1..N are the set of frequency levels
we are trying to find. Thus, throughput Th and latency L can
be rewritten in Equation 3 and 4.

Th =
1

Tmax
=

1
Max{Ci

fi
} = Min{ fi

Ci
} (3)

L = T1 + T2 + ... + TS

= (
C1

f1
+

C2

f2
+ ... +

CS

fS
) (4)

Next, we define the constraint, which specifies that the total
power is less than or equal to POWbudget. According to [12],
we can linearly approximate the power equation as pi = bifi+
ci, where bi and ci can be obtained by the linear approximation
of the power dependence on frequency [12]. The constraint
equation can then be written in Equation 5, where all the c1..N

constraints are folded into c:

b1f1 + b2f2 + ... + bNfN + c ≤ POWbudget (5)

However, combining Equation 3 and 4 with Equation 1
and 2, we can see that these objective functions are not linearly
solvable by the conventional Linear Programming (LP) as
in [12]. The two reasons are: 1) The total throughput in
parallel-pipeline scheduling is not just a linear summation
of the partial throughput from all processors. Instead, it
only depends on the inverse of the longest stage time. 2)
The latency from each stage is inversely proportional to the
frequency, which is also non-linear. As a result, we form a new
optimization model to this problem in Section III and propose
a novel algorithm to address that model.

III. POWER-AWARE SCHEDULING ALGORITHM

In this section, we address the power-aware scheduling
algorithm that is capable of optimizing both throughput and
latency for parallel-pipeline topology. We first introduce the
optimization model, followed by the three-step recursive al-
gorithm in detail. Then, we address the practical issues with
discrete frequency levels.

A. Optimization Model

As mentioned in Section II, we assume the initial parallel-
pipeline scheduling with the highest frequency sets the up-
per bound for throughput and the lower bound for latency.
Therefore, if the initial power consumption is already less than
or equal to the power budget, the initial scheduling itself is
acceptable.

Otherwise, we can reduce the frequency on each core to
satisfy the power constraint. Hence, we express the optimiza-
tion problem as follows: given the initial throughput Th0

and latency L0 with the highest frequency and power budget,
minimize the throughput and latency performance loss by
optimally adjusting the frequency on each core.

Equation 6 and 7 show the two new objective functions.
They are inherently equivalent to the one introduced in Sec-
tion II (Equation 1 and 2) but expressed from the complemen-
tary direction. We prioritize throughput to latency in our model
because: 1) Throughput is still the most important metric
for current network packet processing systems. 2) Latency
is only required to meet the deadline requirement instead of
minimization for most systems.

Minimize ∆Th = Th0 − Th (6)

Minimize ∆L = L− L0 (7)

B. A Three-Step Recursive Algorithm

Step One: In the first step, we reduce the power without
compromising throughput or latency by keeping the pipeline
stage time Ti, i = 1, 2, ..., S unchanged. We define a critical
node as the node in a pipeline stage that dominates the
computation time. Therefore, the computation time of a critical
node is equal to the pipeline stage time (ti = Ti). For each
stage Si, we increase the computation time of non-critical
nodes in that stage to the length of Ti. Since all stage times
remain the same, the throughput and the latency will also keep
unchanged during this step.
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Fig. 2: Illustration of the first step of the algorithm. Grey
area represents the extension of computation time. Power
consumption is saved on nodes B, C and F .

Figure 2 illustrates the first step, where the length of a
node represents its computation time. Figure 2 (a) is the same
as Figure 1 (b). In Figure 2 (b), we can see that node B

and node C are extended to the length of node D in that
stage. Similarly, node F is extended to match node E in the
next stage. Because increasing computation time and lowering
frequency essentially refer to the same meaning [12], we
use them interchangeably. As a result, power consumption is
reduced by lowering the frequency on nodes B, C and F .

To quantify the power savings in the first step, we derive the
formula in Equation 8 to calculate ∆P . For each node Ni,j ,
∆tNi,j

represents the difference of computation time.
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∆P = ∆P1 + ∆P2 + ... + ∆PN

=
S∑

i=1

Mi∑

j=1

∆PNi,j

=
S∑

i=1

Mi∑

j=1

(bNi,j
· (f − fnew))

=
S∑

i=1

Mi∑

j=1

(bNi,j · (
CNi,j

tNi,j

− CNi,j

Ti
))

=
S∑

i=1

Mi∑

j=1

(bNi,j
· CNi,j

· ∆tNi,j

Ti · tNi,j

) (8)

If the resulting power consumption after step one is still
larger than power budget, we proceed to step two.

Step Two: In the second step, we reduce the power with
throughput unchanged and minimal latency increase. This is
achieved by keeping the longest stage time Tmax unchanged
while we increase the stage time of other stages. We denote
the stage with Tmax as the bottleneck stage in the pipeline.
Thus, all other stages are non-bottleneck stages.

We define ∆T as the shortest time period by which we
can increase the latency. To minimize the latency increase, we
iteratively increase the latency by ∆T until the power budget is
satisfied or all the stages reach Tmax. If the former comes true,
the algorithm returns and the resulting scheduling guarantees
the minimal latency increase, which will be proved shortly.
Otherwise, if the latter comes true, we proceed to step three.

In each iteration, we optimally choose a non-bottleneck
stage to increase its time from Ti to Ti + ∆T . The candidate
stage is chosen by comparing the potential power savings from
all non-bottleneck stages. The stage with the largest power
reduction will be selected. Because ∆T is the shortest time
period that can be increased, and the corresponding power
reduction is the largest during each iteration, The algorithm
therefore guarantees optimality.

∆Pi = ∆P1 + ∆P2 + ... + ∆PMi

=
Mi∑

i=1

(bi · (f − fnew))

=
Mi∑

i=1

(bi · (Ci

Ti
− Ci

(Ti + ∆T )
))

=
Mi∑

i=1

(bi · Ci · ∆T

Ti · (Ti + ∆T )
) (9)

Intuitively, a stage with more parallel nodes will be a good
candidate because more power savings will be available in
that stage. In fact, besides the degree of parallelism, other
parameters also matter. For a given latency increase ∆T , the
potential power savings of stage Si can be obtained from
Equation 9.

Figure 3 illustrates the process of this step. Figure 3 (a)
comes from the end of step one as shown in Figure 2 (b). In
Figure 3 (b), we extend nodes A, E and F to the length of
6, respectively, to further reduce the power consumption. Now
we end up with a scheduling which consists of equal-length
pipeline stages.

In fact, Figure 3 shows the maximum power savings by
step two, which results in maximal latency increase. Chances
are that the actual latency would be lower than what we have
seen here if the power budget is less stringent, in which case
the algorithm would return earlier before every stage reaches
Tmax. According to Equation 8, we can also obtain the exact
power savings in this step.
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Fig. 3: Illustration of the second step of the algorithm. Grey
area represents the extension of computation time. Power
consumption is saved on nodes A, E and F .

Step Three: In the third step, we reduce the power by
minimizing both the throughput and the latency performance
loss. Remember that after step two, every stage has the same
stage time Tmax. Following the same rule of choosing a
candidate stage in step two, we optimally choose a stage to
further increase its stage time by ∆T . Since the original Tmax

is increased, the throughput is compromised accordingly. How-
ever, our algorithm is able to guarantee a minimal performance
loss in this scenario.

To optimally choose the candidate stage, we follow the
same formula in Equation 9. The only difference is that we
need to substitute Ti with Tmax in the equation. The proof of
optimality is in line with that in step two, where the minimal
time period increment guarantees that when we satisfy the
power budget constraint, the performance loss is minimal.

Figure 4 demonstrates step three. Figure 4 (a) is the result
of step two as shown in Figure 3 (b). Suppose the candidate
stage at the moment is stage two. We then increase the stage
time from 6 to 6 + ∆T for that stage. Notice that all other
stages remain unchanged as shown in Figure 4 (b).

After increasing the original Tmax to Tmax + ∆T , we go
back to step two with the updated Tmax if further power
reduction is needed. The algorithm then recursively executes
step two and step three until the power budget is finally met
as shown in Figure 5. Algorithm 1 gives the pseudocode for
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the entire algorithm.
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Fig. 4: Illustration of the third step of the algorithm. Grey
area represents the extension of computation time. Power
consumption is saved on nodes B, C and D.

With respect to the complexity, we conclude that step one
has a complexity of O(N), step two has a complexity of
O(Tmax−Tmin

∆T · S2 · N) and step three has a complexity of
O(m · Tmax−Tmin

∆T ·S2 ·N). Tmax−Tmin

∆T is the maximal number
of iterations in step two and m is the maximal recursive times
in step three. Because both ∆T and m depend on the number
of discrete frequency levels in practice and are thus constant,
the total complexity for our algorithm is O(S2 ·N). Therefore,
our algorithm will terminate if 1) the power constraint is met
or 2) the maximal number of updates is exceeded in either
step two or step three. There will be no oscillations occurring
in the updates within the while loop as shown in Algorithm 1,
which guarantees the convergence of our algorithm.
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Fig. 5: The power-aware parallel-pipeline scheduling algo-
rithm with the goals for throughput (Th) and latency (L).

C. Practical Issues with Discrete Frequency Levels

So far, we only address the ideal case where the frequency
levels are continuous. However, in practice, those values
are discrete, which requires some minor corrections in our
algorithm.

The essential problem is about the shortest time period ∆T .
In practice, the value of ∆T is determined by Equation 10,
assuming f1 and f2 are two contiguous frequency levels and

their difference is ∆f . As a result, ∆T depends on the clock
cycles Ci running on that processor and the current frequency
on that processor.

∆Ti =
Ci

f1
− Ci

f2
= Ci · ∆f

f1 · f2
(10)

Thus, the following two changes are necessary in practice.
First, in step one, we increase the computation time of non-
critical nodes for each stage as much as possible without
violating the initial stage time. We do not require that all
non-critical nodes be increased to the same length of the
critical node in that stage as in ideal case. Second, in step
two and step three, we use the practical ∆T value obtained
from Equation 10 when calculating the potential power savings
for each stage.

Algorithm 1 Power-aware parallel-pipeline scheduling
1: if POW ≤ POWbudget then return
2: for each stage Si do /* Step 1 */
3: for each parallel task nj do
4: tj ← Ti

5: if POW ≤ POWbudget then return
6: while Tmax unchanged do /* Step 2 */
7: for each stage Si except Tmax stage do
8: calculate ∆Pi according to Equation 9
9: choose stage Si with Max{∆Pi}

10: for each parallel task nj in Si do
11: tj←tj+∆T

12: update POW

13: if POW ≤ POWbudget then return
14: while POW > POWbudget do /* Step 3 */
15: for each stage Si do
16: calculate ∆Pi according to Equation 9
17: choose stage Si with Max{∆Pi}
18: for each parallel task nj in Si do
19: tj←tj+∆T

20: update POW and Tmax

21: if POW ≤ POWbudget then return else goto 6

IV. EXPERIMENTS AND EVALUATION

A. Experimental Framework

Figure 6 shows our experimental framework and flowchart,
which consists of two steps. In the first step, we generate the
program dependency graph (PDG) with profile information by
SUIF/Machine SUIF compilers [18] [19], partition and map
the application on an AMD machine with two Quad-Core
Opteron 2350 processors [2].

More specifically, the original C program is first converted
to the control flow graph (CFG). For the ease of dependency
analysis, we include all the functions of an application into one
single file. After that, we write a Machine SUIF pass to extract
the PDG based on both control and data flow information [20].
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Finally, by using the Halt library in Machine SUIF, we profile
the program in the basic block level with continuous traffic
traces to obtain the average execution time and execution fre-
quency. At last, we schedule the program onto the real machine
based on the application model presented in Section II.
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CFG Partition

& Map
PDG

AMD

Opteron

machine

gcc
Instrumented 
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exe & 
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Power-aware
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algorithm

Power analyzer

Fig. 6: Experiment framework and flowchart.

In the second step, we apply our power-aware task schedul-
ing algorithm and five other existing algorithms on the initial
parallel pipeline scheduling. The predefined frequency levels
of the Opteron 2350 processor are shown in Table I. Mean-
while, the default power for each corresponding frequency is
also listed in that table (default power refers to the power
consumption when the system is not running our experimental
applications). We use the EXTECH power analyzer (model
380801 [21]) to get the whole system power.

TABLE I: Frequency(GHz) and power(W) configuration.

Frequency Level 1.0 1.2 1.4 1.7 2.0
Default Power 133.0 134.5 137.0 141.2 142.5

The hardware configuration is set by default as an 8-core
machine with the instruction cache size up to 4k instructions.
Six network applications are chosen from NetBench [16] and
PacketBench [17]. Their functionalities and code sizes are
listed in Table II. For the code size, we measure them in
terms of the number of instructions. The packet trace is from
NetBench itself, which contains 10, 000 packets. The routing
table used for IPv4-trie is MAE-WEST [17] and the routing
table size for DRR, IPchains and Route is set to 128 by default.
The input file for URL contains 100 lines of rules.

TABLE II: Packet processing applications.

Application Functionality Code Size (ins)
URL URL-based switching 1428
Flow Flow classification 3190

IPv4-trie IPv4 routing based on trie 4596
Route IPv4 routing based on radix 6600
DRR Deficit-round robin scheduling 7633

IPchains Firewall based on IP source 14735

B. Performance Evaluation

We compare our algorithm with five other conventional
algorithms to show its performance advantage in optimizing
throughput and latency given the same power budget. Latency

refers to the average execution time of one packet in mi-
croseconds (usec). Throughput is measured by million packets
per second (mpps). Power consumption is measured by watts
(w) and we use the net power consumed exclusively by our
experimental applications as the metric.

In the PM category, we choose Clock Gating (CG) [8]
since it also addresses the energy reduction issue in packet
processing for network processors. As regard to DVFS, we
choose four different static power management schemes for
comparison, namely S-SPM [9], PDP-SPM [10], G-SPM [11]
and P-SPM [11]. The reason why we compare with them is
that their power-aware schemes are all built on top of task
scheduling, which are inline with our algorithm. We briefly
introduce them as follows:
• CG (Clock Gating): reduces power consumption by turn-

ing off processors.
• S-SPM (Simple SPM): distributes global static slack

proportionally to the length of the schedule.
• G-SPM (Greedy SPM): allocates global static slack to the

first task on each processor.
• P-SPM (Parallel SPM): distributes global static slack

according to the degree of parallelism.
• PDP-SPM (Proportional Distribution and Parallelism

SPM): distributes global static slack according to the
degree of parallelism and exploits the local slack.

C. Power Reduction in Step One

Figure 7 and Table III show the power reduction after
step one for six applications compared with the initial power
consumption. Four applications have lowered the power by
an average of 10.5% and a maximum of 23.1% in Flow.
These power savings come from the reduced frequency for
non-critical parallel tasks as shown in Figure 2. URL and
IPchains consume the same power because their scheduling
can not benefit from step one. Notice that during this process,
both throughput and latency keep unchanged, which means
the power savings come at no cost.
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Fig. 7: Power consumption of six applications after step one.

D. Power and Latency Performance in Step Two

Figure 8, Figure 9 and Table III exhibit the power and
latency after step two for six applications compared with
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TABLE III: Power and latency performance of six applications compared to their initial state.

URL Flow IPv4-trie Route DRR Ipchains Average
Power reduction percentage after step one 0.0% 23.1% 11.2% 9.0% 19.8% 0.0% 10.5%
Power reduction percentage after step two 9.8% 34.5% 28.0% 23.8% 31.7% 16.5% 24.1%
Latency increase percentage after step two 18.5% 28.9% 29.9% 19.0% 29.9% 20.9% 24.5%

the initial results. From Figure 8 we observe that all six
applications have enjoyed power savings by an average of
24.1% through the frequency adjustment for tasks in non-
bottleneck stages corresponding to Figure 3. More specifically,
Flow achieves the maximum of 34.5% power reduction in this
step due to its vastly differing stage times.

From Figure 9 we can see that the latency increase ranges
from 18.5% in URL to 29.9% in DRR and IPv4-trie with
an average of 24.5%. Although we trade latency with power
on the same percentage scale, our algorithm guarantees the
minimal latency increase while maintaining the throughput
unchanged in this step. Moreover, because we demonstrate
the maximal possible power reduction and latency increase in
step two, chances are that actual latency performance would
be even better if the real power budget is less than what we
have achieved here.
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Fig. 8: Power consumption of six applications after step two.
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Fig. 9: Latency performance of six applications after step two.

E. Throughput and Latency Comparison with Five Other
Algorithms in Step Three

We set the power budget to be 75% of the initial power
consumption, so that all three steps in our algorithm will be

required to satisfy the power budget constraint. The resulting
throughput and latency of six different algorithms are shown
in Figure 10 and Figure 11. With respect to throughput, our
algorithm outperforms all others uniformly, with an average
improvement of 64.6% compared to the lowest throughput
for each application. The maximum increase appears in IPv4-
trie where we observe a 100.6% improvement. The other
five algorithms exhibit fluctuating performance for different
applications as shown in Figure 10. This is because each of
them has its own shortcoming. For CG, the reduction of active
cores results in increased longest stage time, which adversely
affects the throughput. For other SPM algorithms, they do not
differentiate the bottleneck stage in parallel-pipeline schedul-
ing. Therefore, they can not produce optimal throughput.
Our algorithm is capable of achieving better throughput by
optimally adjusting the frequency on each core during each
step.

In terms of latency, we also observe the advantage of our
algorithm from Figure 11. Compared with the highest latency
for each application, our algorithm results an average of 25.2%
latency reduction and the maximum reduction of 33.2% in
Flow. PDP-SPM and P-SPM are the best among other SPM
algorithms to produce low latency due to their consideration
of parallelism. However, they still suffer from longer latency
compared to our algorithm in most cases. Our strength lies
in the fact that we iteratively apply step three and step two
to guarantee the minimal latency increase, whereas PDP-SPM
and P-SPM only greedily reduce frequency in parallel stages.
On the other hand, we notice that CG performs better in terms
of latency for four applications than our algorithm because
it maintains the highest frequency all the time. However,
its better latency performance actually comes at the cost of
substantial throughput deterioration.

F. Power Budget Sensitivity Performance

Lastly, we analyze the effect of varying power budget on
throughput and latency. We study a representative application
IPchains for six algorithms by changing the power budget
ratio from 1 to 4/8 of the initial power consumption. From
Figure 12 we can see that our algorithm always produces
the best throughput. As the power budget decreases, G-SPM
suffers most because it always reduces frequencies from the
first stage, which happens to be the bottleneck stage in this
application. The other four algorithms also follow the same
decreasing trend. Although their throughput plummets with
different speeds, all of them fall behind our algorithm. On
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Fig. 10: Throughput performance comparison when power
budget is 75% of the initial power consumption.
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Fig. 11: Latency performance comparison when power budget
is 75% of the initial power consumption.

an average, our algorithm exhibits 55.8% improvement on
throughput compared to the worst algorithm for each applica-
tion. The maximum improvement appears to be 100.0% over
G-SPM when the power budget ratio is 7/8.

Figure 13 illustrates the increasing trend in latency for six
algorithms when the power budget decreases. Compared to
the highest latency for each application, our algorithm shows
an average of 13.0% reduction of latency with a maximum
of 20.3% over G-SPM when the power budget ratio is 6/8.
We observe that P-SPM and PDP-SPM perform better than
S-SPM and G-SPM in general, because both P-SPM and
PDP-SPM take into consideration the degree of parallelism.
However, these two still attain higher latency due to the
lack of specialized optimization for parallel-pipeline topology.
CG, on the other hand, has slightly lower latency in some
scenarios, for it never reduces frequency. However, as shown
in Figure 12, CG’s throughput deteriorates substantially in
those scenarios. Therefore, our algorithm once again proves
its advantage in both throughput and latency due to its optimal
adjustment of frequency on each core.

V. RELATED WORK

We distinguish the vast literatures in this area by the
following three criteria: 1) Whether PM or DVFS is used. 2)
Whether task scheduling is considered. 3) Whether parallel-
pipeline topology is used in the scheduling. We group related
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Fig. 12: Throughput performance comparison for IPchains
application when power budget varies.

0

1

2

3

4

5

6

7

8

9

1 7/8 6/8 5/8 4/8

Power budget ratio

L
a
te
n
c
y
 (
u
s
e
c
)

Our Alg. CG S-SPM

G-SPM P-SPM PDP-SPM

Fig. 13: Latency performance comparison for IPchains appli-
cation when power budget varies.

works into four categories according to their target domains
and the above criteria.

The first group focuses specifically on packet processing
for network processors. [8] develops a low power online
technique to adjust the activities of PEs according to the
varying traffic volume. It reduces energy consumption by
turning off unnecessary PEs when traffic is light. [7] adapts
the number of activated processors based on the queuing
theory. It achieves minimized total energy consumption while
maintaining a bounded delay. Both works belong to PM
category without considering task scheduling.

The second group targets on CMP. [22] regulates concur-
rency and changes the processors/threads configuration as the
program executes by hardware event-driven profiling. [23]
optimizes a parallel workload by dynamically changing the
number of active processors and the voltage/frequency levels.
It applies chip-wide DVFS rather than per-core DVFS. [24]
considers a 4-core CMP with core-level DVFS and examines
different DVFS policies based on the exhaustive search of the
solution space, which is not scalable to large systems. [12]
proposes LinOpt, which uses linear programming (LP) to find
the best voltage and frequency for each core. [25] proposes
a chip-level power control algorithm that is systematically
designed based on optimal control theory. Similar to the first
group, none of these works considers task scheduling.
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The third group combines traditional task scheduling with
power. [26] is based on a list-scheduling heuristic with dy-
namic recalculation of priorities. It minimizes the energy by
choosing the best combination of voltages for each task. [27]
applies genetic list scheduling algorithms (GLSA) to schedule
and map tasks. Besides simply exploiting available slack time,
it also considers the PE power profile during a refined volt-
age section. [28] presents CASPER (Combined Assignment,
Scheduling, and PowER-management) for task mapping and
scheduling using a genetic algorithm. It employs two power
management techniques (PDP-SPM for homogeneous system
and PV-DVS for heterogeneous one) in the fitness function
of the genetic algorithm. Although these works address task
scheduling, they do not deal with parallel-pipeline topology.

The last group is the real-time community. Most of these
works also couple traditional task scheduling algorithms with
power reduction schemes. They propose different strategies
based on static power management (SPM). [9] uses simple
static power management (S-SPM), which distributes global
static slack proportionally to the length of the schedule. [11]
proposes both greedy static power management (G-SPM),
where the entire global static slack is allocated to the first
task on each processor, and static power management for
parallelism (P-SPM), where the degree of parallelism is taken
into considered. [10] introduces the static power management
with proportional distribution and parallelism (PDP-SPM)
which exploits both the global and local slack. This scheme is
so far the best among other SPM mechanisms. However, no
parallel-pipeline topology is considered in this group, either.

VI. CONCLUSION

In this paper, we proposed a novel algorithm to optimize
both throughput and latency given a power budget for network
packet processing on multicore architectures. This algorithm
addresses power-aware parallel-pipeline scheduling problem
by applying per-core DVFS to optimally adjust frequency on
each core. We implemented our algorithm in addition to five
other conventional algorithms on an AMD machine with two
Quad-Core Opteron 2350 processors. Compared to existing
algorithms given the same power budget for six real packet
processing applications, our algorithm exhibits substantially
better throughput and latency by an average of 64.6% and
25.2%, respectively.
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