
Design and Implementation of A Content-aware Switch using A Network
Processor

Li Zhao, Yan Luo and Laxmi Bhuyan
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
{zhao, yluo, bhuyan}@cs.ucr.edu

Ravi Iyer
Communications Technology Lab

Intel Corporation, Hillsboro, OR 97124
ravishankar.iyer@intel.com

Abstract

Cluster based server architectures have been widely
used as a solution to overloading in web servers because
of their cost effectiveness, scalability and reliability. A con-
tent aware switch can be used to examine the web requests
and distribute them to the servers based on application level
information. In this paper, we present the analysis, design
and implementation of such a content aware switch based
on an IXP2400 network processor (NP). We first analyze
the mechanisms for implementing a content-aware switch
and present the necessity for an NP-based solution. We then
present various possibilities of workload allocation among
different computation resources in an NP and discuss the
design tradeoffs. Measurement results based on an IXP
2400 NP demonstrate that our NP-based switch can reduce
the http processing latency by an average of 83.3% for a
1K byte web page, compared to a Linux-based switch. The
amount of reduction increases with larger file sizes. It is
also shown that the packet throughput can be improved by
up to 5.7x across a range of files by taking advantage of
multithreading and multiprocessing, available in the NP.

1 Introduction
With the explosive growth in Internet traffic, web servers

have been overloaded with high volume of requests. Many
ISPs and search engines employ a server cluster to build a
cost effective, scalable and reliable server system. To make
such a distributed server system transparent to the clients,
a switching device is usually placed in front of the server
cluster as a common interface. The switch is connected
to the external world and has one virtual IP (VIP) address,
whereas servers inside the cluster can have their private IP
addresses.

As shown in Figure 1, layer 5 or content-aware switches
[3] [6] [11], which route packets based on layer 5 informa-
tion (request content or application data) are gaining wide
popularity. Compared to traditional layer 4 switches, they

Figure 1. A cluster of servers front-ended by
a switch

can provide: (1) better load balancing by distributing re-
quests based on the content type, such as static or dynamic,
to servers optimized for a particular type; (2) faster response
by sending the request to servers that have already serviced
the same request recently to exploit cache affinity. (3) bet-
ter resource utilization by partitioning the servers’ database
among servers instead of replication.

Currently content-aware switches are built based on
ASICs [3] [6] [11] and general purpose processors [4] [7]
[20]. However, ASIC based switches have no flexibility or
programmability although they can achieve very high pro-
cessing capacity. Switches based on general purpose pro-
cessors, on the other hand, cannot provide satisfactory per-
formance due to (1) interrupt, (2) moving packets through
PCI bus and (3) large protocol stack overhead in the oper-
ating system. The third problem is introduced because of
the software implementation of the content aware switch.
Usually an HTTP proxy running on the application level
maintains connections with the client and the server sepa-
rately, and forwards data between these two connections.
Although this approach is easy to implement, the overhead
to copy data between these two connections is very high.
This data copy problem can be solved by TCP splicing tech-
nique [10] [17], which splices the two connections after
both of them are established. The switch then forwards sub-
sequent data packets on the spliced connection by modify-
ing particular fields (e.g. sequence numbers) in their TCP
and IP headers. Since this data forwarding is performed at



the IP level, the overhead of copying data between the user
space and the kernel space is avoided.

The above problems can be solved by using Network
processors (NPs). NPs operate at the link layer of the pro-
tocol like ASICs, thus avoiding the large overhead of inter-
rupt and moving data through PCI bus in general purpose
processors. At the same time, they are programmable so
that they can achieve the same flexibility as general pur-
pose processors. In addition, NPs have an instruction set
architecture optimized for packet processing, and are usu-
ally equipped with multiprocessing and multithreading in
hardware, which can provide a good throughput. To the
best of our knowledge, no study on design of content-aware
switches has been done using NPs. The aim of this paper
is to design and implement such an NP-based switch us-
ing TCP splicing technique and demonstrate its high per-
formance.

Implementing a content aware switch using an NP is not
simple. First, the NPs are programmed at a low level lan-
guage (microC or microcode) without the availability of a
compiler that can directly translate C code to this language.
Second, the instruction memory available in an NP is lim-
ited, so an incredible amount of effort is needed to reduce
and optimize the existing code. In this paper, we first ana-
lyze several design options for a content-aware switch built
upon an NP. Then we carefully allocate the workload among
various resources in the NP for optimal performance. In the
process, we have to ensure that the computational power of
the NP is fully utilized for maximum throughput. We im-
plement a content aware switch on an ENP2611 board that
contains an Intel’s IXP2400 NP. Our performance evalua-
tion results show that this switch can significantly improve
the processing latency as well as the throughput.

The rest of the paper is organized as follows. Sec-
tion 2 gives a background of content aware switches and
presents the design options to build an NP-based content-
aware switch. Section 3 describes details of our design and
implementation based on an IXP2400 NP. The experimen-
tal results are presented in Section 4. Section 5 describes
the related work. Section 6 summarizes and concludes this
paper.

2 Design Options
Content-aware switches have been built in Linux ma-

chines by inserting loadable kernel modules into the oper-
ating system [20] [15]. As shown in Figure 2(a), although
data copy between two connections is avoided, packets have
to be moved between the host DRAM and the NIC over the
PCI bus. This imposes heavy bandwidth pressure on PCI
bus when the number of connections is large. It also intro-
duces interrupt overhead to the host CPU.

Figures 2(b) and (c) utilize NP-based network inter-
faces. An NP usually has a control processor (CP) and mul-

tiple data processors (DPs). CPs are typically embedded
general purpose processors, which enable us to easily de-
velop complex software. Therefore they are used to main-
tain control information. DPs are tuned specifically for pro-
cessing network packets in fast path, but need to be devel-
oped in low level languages. CPs and DPs communicate
through shared DRAMs.

In Figure 2(b), the CP can be used to create connec-
tions to clients and servers, and splice these two connec-
tions. Then packets sent after splicing can be processed on
the DPs. However, since DPs are responsible to receive and
transmit packets through NICs, packets sent before splicing
need to be passed up through DRAM queues to the CP and
passed down to the DP after they are processed. The packet
en-queueing, de-queueing and polling time taken together
increase the processing latency on these packets. Notice
that these packets fall in the critical path for TCP splic-
ing. This delay is detrimental to the overall performance
because longer delay may cause timeout on clients and lead
to packet retransmissions.

Given a large number of DPs and threads in an NP, Fig-
ure 2(c) is a natural evolution over (b). After receiving pack-
ets from NICs, the data processors handle the connection
creation, splicing and data forwarding, without the need to
communicate with the CP or the host CPU. The large num-
ber of hardware threads in data processors are capable of
fast packet processing and eliminating data copying. How-
ever, developing optimized code on the DPs without com-
piler support and with limited control memory is a chal-
lenge. We use this architecture to design and implement
a content-aware switch, which is described in detail in the
next section.

3 Design and Implementation

In this section, we first describe the architecture of the
Intel IXP2400 network processor. Then, we study how to
efficiently distribute the workload among various resources
in such a hardware environment. After that, detailed design
and implementation are presented.

3.1 Hardware

Figure 3 shows an ENP2611 board with an embedded
IXP2400 network processor, which is connected to the host
machine through a PCI bus. The IXP2400 network proces-
sor contains a general-purpose XScale core, and eight mi-
croengines (MEs), which have instruction sets tuned specif-
ically for processing network packets. Each microengine
has a 16KB instruction memory preloaded by the XScale
processor core. Up to eight threads can run in parallel on
each microengine. The XScale runs an embedded Linux.
All processors share an SRAM and a DRAM.



NIC NIC

(a)

CPU
User

DRAM

PCI

Kernel

CPU

DRAM

Kernel

PCI

User
CPU

DRAM

Kernel

PCI

User

(b)

DRAM user

kernel

DPs

(c)

DRAM

DPs

kernel

user

CP CP

Figure 2. Three architecture candidates for web switches

XScale

SRAM
Controller

DRAM
Controller

Scratch
Hash
CSR

ME

ME ME

ME

ME ME

ME ME

IX bus
Interface

SRAM

DRAM

Host CPU

MSF

MAC

IXP2400

PCI Bus

Figure 3. A high level architec-
ture of the ENP2611

When a packet arrives at the Ethernet interface, it is
received by one of the Media Access Controller (MAC)
devices attached to the Media Switching Fabric (MSF).
Threads in Microengines are programmed to move packets
into a Receive FIFO, do some processing, and put outgoing
packets in a Transmit FIFO, where they are transmitted to
the line.

3.2 Resource Allocation

Given the hardware environment of the IXP2400 net-
work processor, consisting of multiple processors/threads
and various memory modules, it is a challenge to allocate
these resources for minimum packet processing time. We
also have to carefully allocate data in the memory. The two
off-chip memory modules, SRAM and DRAM, not only
have different sizes, but also have different access laten-
cies. When unloaded, their access latencies are about 90 and
120 cycles, respectively [5]. Because SRAM is faster than
DRAM, we use it to maintain all the control data structures.
DRAM is relatively large and used for buffering packets.

Figure 4 shows the resource allocation for our content-
aware switch. We first differentiate client ports from server
ports. Client ports connect with the external world (clients).
Server ports connect to servers in the cluster and are respon-
sible for receiving packets from servers. Microengines are
divided into four groups: receiving microengines (RX ME),
transmitting microengines (TX ME), microengines that
process packets from the client ports (ClientME) and from
the server ports (ServerME). These microengines form a
pipeline for processing packets. RX MEs receive packets
from the input ports and put them into the input queue.
ClientME or ServerME process packets from these queues
and put them into the next output queue. Finally TX MEs
are responsible to transmit those packets out onto the line.

The input and output queues are used to convey packet
information between microengines. These queues are im-
plemented in SRAM. They store packet descriptors, which

Client−side
Control
Block List

ServerME

Server−side
Control
Block List

URL Table

RX_ME TX_ME

ClientME

SRAM

input queue

input queue

output queue

Packet path Memory access

Figure 4. Microengines workload partition

contain the DRAM address, length of packets, input and
output ports, etc. TX MEs send these packets out based on
the output port number.

Three major data structures are used in our switch: a
client-side control block list (C-list), a server-side control
block list (S-list) and a URL table. The C-list records the
state for the connection between the client and the switch,
and the state for forwarding data packets after connections
are spliced. The S-list records the state for the connection
between the switch and the selected server. The URL table
is used to select a back-end server for an incoming HTTP
request. This table contains a set of pre-defined mappings
from URL suffixes to back-end servers. We left the im-
plementation of more advanced algorithms for future work.
All these data structures are maintained in SRAM. In addi-
tion, since the control blocks might be accessed by multiple
threads/microengines simultaneously, updating these con-
trol blocks must be performed atomically. We exploit the
SRAM locks supported in IXP2400 for this purpose.

3.3 Processing on Microengines

We classify packets into two types: control packets and
data packets. Control packets are those sent before the two
connections are spliced. These packets, such as SYN pack-



ets, are used to set up connections. The HTTP request
packet is also treated as a control packet as it causes the
second connection to be setup. Data packets are those sent
after the two connections are spliced. They are response
packets from the server, ACK packets from the client, and
FIN packets from both sides.

When a packet arrives, a clientME/serverME extracts its
IP and TCP headers and does a lookup of a control block in
the control block list. The processing on this packet is based
on the state in the control block. The detailed operations on
clientMEs/serverMEs are described below.

3.3.1 ClientMEs

Figure 5 shows the data flow on a clientME starting when
the clientME de-queues a packet from the input queue. This
packet is first checked to make sure it is a valid IP packet.
The IP validation includes checking its version, length and
header checksum. Corrupted packets or packets other than
IP or TCP are dropped. IP options are not handled as they
are rarely used.

Enqueue
Packet

Handshake
Processing

Request
Processing

Dequeue packet

IP Verification

Control block
Lookup

Header
Rewriting

TCP Verification

SYN, ACK Request

Control packets Data packets

Figure 5. Data flow on the clientME/serverME

The C-list is searched to identify whether this a con-
trol packet or data packet based on a hash value calculated
from the source port and IP address of this packet. Control
packet processing and data packet processing are shown in
the two shaded boxes respectively in Figure 5. For a control
packet, the clientME first validates the TCP checksum and
sequence number of this packet. Then it checks whether this
packet is a SYN, an ACK, or an ACK/request packet. These
three types of packets are the only control packets that need
to be processed at the clientME. The handshake processing
part processes SYN or ACK for connection establishment.
For a SYN packet (with CSEQ as its initial sequence num-
ber), a control block is inserted into the C-list for the new
connection. The ACK packet finishes the establishment of
the connection. The request packet is parsed in the request
processing module, and a back-end server is chosen based
on the URL table. Then the clientME set up the second con-

nection with the selected server by sending a SYN packet
with the client’s IP and port as its source IP address and port
number. The initial sequence number of this SYN packet is
set as CSEQ. The effect is that the switch masquerades as
the client to send this SYN packet, so that only minimum
changes are required in the subsequent forwarding part. For
this second connection, the clientME inserts a control block
in the S-list.

If the incoming packet is found to be a data packet
(it is an ACK packet to acknowledge server’s response
in most cases or a FIN packet used to close the con-
nection), it is directly forwarded with its IP and TCP
header updated. Its destination IP address is changed
to the server IP. The acknowledge number is updated
with the following formula: new acknowledge number =
old acknowledge number - DSEQ + SSEQ, where DSEQ
and SSEQ are initial sequence numbers in the SYN packet
sent from the switch and the server respectively. The check-
sum in both the IP and TCP header are recalculated with the
incremental checksum calculation method [14].

3.3.2 ServerMEs

Processing on ServerMEs has a similar data flow in Figure 5
with minor differences. One difference is that the serverME
accesses the C-list using the hash value based on the desti-
nation IP address and port number. For the control packet,
the serverME only needs to handle the SYN/ACK packet
from the server because the SYN packet to initialize a con-
nection with the chosen server is sent by the clientME. In re-
sponse to this SYN/ACK packet, the serverME can send an
ACK packet, and then the HTTP request. Since the data can
be piggybacked with the ACK packet, we send the saved re-
quest along with the ACK. The state of the control block in
the C-list is changed to SPLICED thereafter. The corre-
sponding entry in the S-list is deleted.

The data packet processing is also similar to that on
the clientME, with the difference on updated fields. The
source IP is set to the switch IP address VIP. The se-
quence number is updated with the following formula:
new sequence number = old sequence number − SSEQ +
DSEQ.

3.4 Other Implementation Issues

When the connection between the server and the client
is terminated, the corresponding control block needs to be
deleted after 2MSL (120 seconds). To implement this time
control, we maintain a timeout table in SRAM, with each
entry containing a pointer to a control block and a times-
tamp that records the time when the control block should
be deleted. As the deletion of the control block is not on
the critical path for a connection, we run a timeout-table
checking program on the XScale. Its main functionality is



to check the timeout table regularly and delete the control
block if it expires.

TCP options such as Maximum Segment Size (MSS),
timestamp, and SACK are negotiated between the two end
points in a three-way handshake. Since the cluster of servers
may have various options, the switch may either reject all
TCP options, or maintain a minimum set of options for the
web servers. Currently we implement MSS option process-
ing in the switch (1460 bytes in Ethernet). Other options
like timestamp and SACK are left as the future work.

4 Performance Evaluation

In this section, we describe the experimental environ-
ment and present the performance results on our NP-based
content-aware switch in terms of latency and throughput.
The data are compared with a Linux based switch.

4.1 Experimental Setup

We implement a content aware switch using an ENP2611
board that contains an Intel IXP2400 processor. The XS-
cale and microengines run at 600MHz. This board has 8MB
SRAM and 128MB DRAM. It also has three 1Gbps Ether-
net ports. We use one port as the client port and the other as
a server port. The server port is connected with an Apache
[1] web server running on an Intel 3.0GHz Xeon processor.
The client port is connected to a layer 2 switch that connects
two clients. Each client runs htt per f [9] on a 2.5GHz Intel
Pentium 4 processor. All PCs are running Linux 2.4.20. To
compare its performance with that of Linux-based switch,
we also build a Linux-based switch by inserting a loadable
kernel module [8] into its operating system. This switch
runs a Linux 2.4.20 kernel on a 2.5GHz Pentium 4 system
with two 1Gbps Ethernet NICs.

The following results are obtained with one ME for
RX ME and one ME for TX ME. In our experiments, we
did vary the number of ClientMEs and ServerMEs. How-
ever, the result using one ClientME and one ServerME is
the same as that using 2 ClientME and 2 ServerME, which
implies that a pool of processors may not be helpful because
all the MEs compete for the shared SRAM and DRAM.

4.2 Latency

First we conduct experiments to obtain the latency of
packet processing for an HTTP session. Figure 6 shows the
latency spent on the switch when we vary the request file
size. We can see that the latency is reduced significantly by
using IXP2400. Compared to the Linux-based switch, the
latency on the NP-based switch is reduced by 83.3% (0.6
ms to 0.1 ms) with a small file size as 1KB, and the larger
the file size, the reduction is higher. At a very large file
size as 1024KB, the latency is reduced by 89.5%. We also
measure the processing latency for data and control packets

separately. It is shown that the latency reduction for control
packets is larger than that of data packets (80% vs. 50%,
detailed results are not shown due to space limitations).

The latency reduction by using NP comes from three fac-
tors: (1) Interrupt vs. polling: When NIC in the Linux ma-
chine receives packets, it raises an interrupt to the CPU. Al-
though current NICs have the ability to accumulate multiple
packets and then notify the processor using a single inter-
rupt, the overhead of interrupt is still very high. NPs use
polling instead of interrupt to reduce this overhead.

(2) NIC-to-memory copy vs. no copy: In the Linux-
based switch, the NIC has to copy the received packets to
the main memory, which is a DMA transfer through the PCI
bus. Similarly, when the packets are sent out, they are trans-
ferred from the memory to the NIC buffer by DMA again.
In NP-based switch, however, packets are processed inside
the NIC without these two copying (transfers). We had an
experiment on Xeon 3.0 GHz Dual processor with 1Gbps
Intel 88544GC NIC (Intel Pro 1000). The result showed
that about three microseconds is spent on DMA receiving
for a 64-byte packet. We do not have this latency in IXP
implementation.

(3) Linux processing vs. IXP processing: Even if the
whole functionality of the content aware switch is imple-
mented in the Linux kernel, the OS overhead like context
switch would happen, whereas NPs do not have such over-
heads. In addition, optimized instruction set enables us to
process packets much more efficiently. We can reduce the
number of instructions executed. e.g., we can load an IP
or TCP header in one instruction, and the memory latency
can be hidden by switching to other threads. We observed
that processing a data packet (only the packet rewriting part,
not including receiving and transmitting) in splicing state is
about 6.5 µs for IXP compared to 13.6 µs for Linux.

Note that the above advantages are obtained by compar-
ing with commonly used protocol stack. Although there ex-
ist optimized network protocol implementations which use
polling instead of interrupt, our design still has the latter
two advantages.

4.3 Throughput

We measure the throughput achieved by these two
switches by sending requests of a uniform size as fast as
possible from the clients. Figure 7 shows the results. We
can see that the throughput is increased by 5.7x for small
size requests like 1KB (8.2 Mbps to 46.4 Mbps). For a
much larger file size like 1024KB, the improvement is 2.2x.
Requests for small files have higher improvement because
control packets take a larger portion in HTTP session for
small files. Since the latency reduction for control packets
is larger than that of data packets, the improvement is more
apparent for small requests. As we increase the request file
size, data packet processing becomes dominant, thus we see



0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024

Request file size (KB)

L
a
te
n
c
y
 o
n
 t
h
e
 s
w
it
c
h
 (
m
s
) Linux-basedr

NP-based

Figure 6. Latency comparison
for an HTTP session

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024

Request file size (KB)

T
h
ro
u
g
h
p
u
t 
(M
b
p
s
)

Linux-based

NP-based

Figure 7. Throughput compar-
ison for HTTP sessions

400

450

500

550

600

650

700

750

800

1000 1100 1200 1300 1400 1500 1600

Request Rate (requests/second)

T
h
ro
u
g
h
p
u
t 
(M
b
p
s
)

SRAM

DRAM

Figure 8. Throughput compar-
ison for control blocks imple-
mented in SRAM and DRAM

relatively smaller improvement on SpliceNP. It is noticed
here that we use only one clientME and one serverME to
process the packets, as shown in Figure 4. The throughput
may be further improved by using more microengines in the
IXP2400.

4.4 SRAM vs. DRAM

The previous results are obtained by maintaining the
control blocks in SRAM. Hash tables that help fast table
lookup for control blocks are also maintained in SRAM. In
addition, locks are implemented in SRAM too. Therefore,
for each packet to access its control block, there are at least
three contiguous SRAM accesses: one for the lock, one for
the hash table and another for the control block. When thou-
sands of connections are processed simultaneously, these
SRAM accesses can become a bottleneck. Also, maintain-
ing a large number of control blocks in SRAM is not pos-
sible due to its size limitation. Therefore we measure the
performance when maintaining the control blocks in the
DRAM but keeping the locks and hash tables in SRAM.
In this way, the memory accesses can also be distributed
more evenly into the SRAM and DRAM modules, and their
accesses can be pipelined. Further, since DRAM is much
larger than SRAM, this allows us to increase the number
of control blocks so that the switch can support many more
connections simultaneously. It is found that the latency ob-
tained on the client side is the same when control blocks are
implemented in the SRAM or DRAM. Although DRAM
latency is longer than that of SRAM (120 cycles vs. 90 cy-
cles), the difference in http latency is negligible because of
the waiting time for SRAM when all the tables are imple-
mented in SRAM.

We then measure the throughput when the control blocks
are implemented in DRAM and SRAM as a function of the
request rate. We also increase the number of servers to 2
so that more requests are satisfied. Figure 8 shows the re-
sults when we fix the request file size at 64 Kbytes. The
x-axis is the request rate in the unit of requests per sec-
ond (or connections per second as we send one request in

one connection). As we increase the request rate, the inter-
arrival time between packets is reduced accordingly. When
the request rate is increased to 1300, the throughput satu-
rates at 665.6Mbps when control blocks are implemented
in SRAM. However, with control blocks in DRAM, the
throughput keeps increasing until 720.9Mbps. This verifies
that the throughput can be increased by distributing memory
requests to as many modules as possible.

5 Related Work

Content aware switches have been studied extensively.
Cohen et al. [4] implement a content-aware switch in Linux
using TCP splicing. They use an application level proxy
to determine the destination server based on the clients’ re-
quests. Yang et al. [20] further moves all the processing
down to the Linux kernel, so that the data forwarding as
well as the routing decision are all performed in the kernel
level. This can avoid the overhead of passing the HTTP
request packet through the protocol stack to the user level
proxy as in [4]. Our approach, implemented on NPs, moves
the whole processing further down to the NIC level, thus re-
duces the end-to-end latency as much as possible. G. Apos-
tolopoulos et al. [2] build a content-aware switch based on
a switch core with custom built intelligent port controllers
and a PowerPC processor. As an ASIC design, this switch
can achieve very high throughput. However, it can hardly be
extended to incorporate new services such as QoS schedul-
ing. In addition to ASICs, FPGAs can be used to speed
up pattern matching process in the content-aware switches
[18]. However, they have higher power consumption com-
pared to NPs.

Tammo Spalink et al. [16] suggest that TCP splicing
processing be separated on a data forwarder and a control
forwarder, which run on the IXP2400 microengines and
the host processor (a Pentium), respectively. However, our
analysis shows that performing all the processing on the mi-
croengines gives better performance. Therefore, not only
data forwarder, but also the control forwarder are put on the



microengines.
Besides TCP splicing, TCP handoff [12] is another

mechanism to build a content-aware switch. It allows the
response from the server to reach the client directly without
going through the switch, so that the switch’s load can be
reduced. However this approach requires that the TCP state
machine in servers’ operating system be modified. This
would be impractical to large scale server clusters. Pap-
athanasiou et al. [13] exploit both the TCP splicing and
hand-off techniques on a web switch. The switch performs
TCP splicing whereas back-end servers perform the handoff
operation. Their approach requires that a proxy application
runs on each of the back-end servers, though no modifica-
tion is required to the operating system.

6 Conclusions and Future Work
In this paper, we designed and implemented a content

aware switch on a network processor - Intel’s IXP2400. We
analyzed various tradeoffs in implementation and compared
the performance of this NP-based switch with the Linux-
based one. Our experimental results showed that the pro-
cessing latency of the NP-based switch is reduced by about
83.3% for a 1K byte web page. It also showed that the
throughput can be improved by up to 5.7x.

Our future work includes processing all the TCP options
in the network processor since they can affect the perfor-
mance. We plan to further breakdown the functionality
of the ClientME/ServerME and assign them to more MEs,
so that the processing can be parallelized and pipelined to
improve the throughput. In addition, we plan to incorpo-
rate other functionalities such as Quality of Service (QoS)
by identifying the packet flows and providing differentiated
service to an individual flow.

Acknowledgement

This work is supported by NSF grant and Intel Corp.

References

[1] Apache Software Foundation, http://www.apache.org.

[2] G. Apostolopoulos, et.al, Design, Implementation and
Performance of a Content-Based Switch, in Proc.
IEEE INFOCOM’00.

[3] Cisco Systems, Cisco Content ServicesSwitch,
http://www.cisco.com/en/US/products/hw/
contnetw/ps789/prod models home.html

[4] A. Cohe, S. Rangarajan, H. Slye, On the Performance
of TCP Splicing for URL-Aware Redirection. In Pro-
ceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems, Boulder, CO, Oct. 1999

[5] Erik J. Johnson and Aaron R. Kunze, IXP 1200 Pro-
gramming The Microengine Coding Guide for the In-
tel IXP2400 network Processor Family, Intel Press

[6] Foundry Systems, Foundry ServerIron XL/G,
http://www.b2net.co.uk/foundry/
foundry serveriron xlg web switch.htm

[7] IBM, IBM WebSphere Edge Server,
http://www.ibm.com/software/webservers/edgeserver/

[8] Linux Virtual Server Project,
http://www.linuxvirtualserver.org

[9] D. Mosberger and T. Jin, HP Research Labs A Tool
for Measuring Web Server Performance, 1998

[10] D. Maltz, P. Bhagwat, TCP Splicing for Application
Layer Proxy Performance, IBM Research Report RC
21139, 1998

[11] Nortel Networks, Alteon Web Switches,
http://www.nortelnetworks.com/products/01/
alteon/webswitch/index.html

[12] V. Pai, et. al, Locality-Aware Request Distribution in
Cluster-based Network Servers. In Proc. ASPLOS’98

[13] A. Papathanasiou, E. Hensbergen, KNITS: Switch-
based Connection Hand-off, 21st Annual Joint Con-
ference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, Volume 1, 2002

[14] RFC1624: Computation of the Internet Checksum via
Incremental Update, May 1994

[15] M. Rosu, D. Rosu, Kernel Support for Faster Web
Proxies, USENIX Annual Technical Conference, June
2003

[16] T. Spalink, S. Karlin, L. Peterson, Y. Gottlieb, Build-
ing a Robust Software-Based Router Using Network
Processors, Proceedings of the eighteenth ACM sym-
posium on Operating systems principles, pages 216 -
229, 2001

[17] Oliver Spatscheck, et. al, Optimizing TCP Forwarder
Performance, IEEE/ACM Transactions on Network-
ing, 2000

[18] Tarari Inc., Regular Expression Content Processor,
http://www.tarari.com/regexEAP/index.html

[19] The Linux Kernel Archives, http://www.kernel.org

[20] C. Yang and M. Luo, Efficient Support for Content-
Based Routing in Web Server Clusters. In Proceedings
of the 2nd USENIX Symposium on Internet Technolo-
gies and Systems, Boulder, CO, Oct. 1999


