
A New Server I/O Architecture for High Speed Networks 
 

Guangdeng Liao+, Xia Zhu±, Laxmi Bhuyan+ 
+University of California, Riverside 

±Intel Labs 

{gliao, bhuyan}@cs.ucr.edu, xia.zhu@intel.com 
 

Abstract 
Traditional architectural designs are normally 

focused on CPUs and have been often decoupled from 

I/O considerations. They are inefficient for high-speed 

network processing with a bandwidth of 10Gbps and 

beyond. Long latency I/O interconnects on mainstream 

servers also substantially complicate the NIC designs. 

In this paper, we start with fine-grained driver and OS 

instrumentation to fully understand the network 

processing overhead over 10GbE on mainstream 

servers. We obtain several new findings: 1) besides 

data copy identified by previous works, the driver and 

buffer release are two unexpected major overheads (up 

to 54%); 2) the major source of the overheads is 

memory stalls and data relating to socket buffer (SKB) 

and page data structures are mainly responsible for 

the stalls; 3) prevailing platform optimizations like 

Direct Cache Access (DCA) are insufficient for 

addressing the network processing bottlenecks.  

Motivated by the studies, we propose a new server  

I/O architecture where DMA descriptor management is 

shifted from NICs to an on-chip network engine 

(NEngine), and descriptors are extended with 

information about data incurring memory stalls. 

NEngine relies on data lookups and preloads data to 

eliminate the stalls during network processing. 

Moreover, NEngine implements efficient packet 

movement inside caches to address the remaining 

issues in data copy. The new architecture allows DMA 

engine to have very fast access to descriptors and 

keeps packets in CPU caches instead of NIC buffers, 

significantly simplifying NICs. Experimental results 

demonstrate that the new server I/O architecture 

improves the network processing efficiency by 47% 

and web server throughput by 14%, while substantially 

reducing the NIC hardware complexity. 

 

1. Introduction 
    Ethernet continues to be the most widely used 

network arch itecture today for its low cost and 

backward compatibility with the existing Ethernet 

infrastructure. It dominates in data centers and is 

replacing specialized fabrics such as InfiniBand [12], 

Quadrics [32], Myrinet [4] and Fiber Channel [6] in  

high performance computers. Driven by increasing 

networking demands such as Internet search, web 

hosting, video on demand etc, network speed is rap idly  

migrat ing from 1Gbps to 10Gbps and beyond [7]. High  

speed networks require servers to provide efficient  

network processing with a low design complexity  of 

network interfaces (NIC).  

    Tradit ional architectural designs of processors, 

cache hierarchies and system interconnect focus on 

CPU/memory -intensive applications, and are usually 

decoupled fro m I/O considerations. They are  

inefficient for network processing. It was reported that 

network processing in the receive side over 10Gbps 

Ethernet network (10GbE) easily saturates two cores of 

an Intel Xeon Quad-Core processor [19, 22]. Assuming  

ideal scalability over multip le cores, network 

processing over 40GbE and 100GbE will saturate 8 

and 20 cores, respectively. In addition to the 

processing inefficiency, the increasing network speed 

also poses a big challenge to NIC designs. DMA 

descriptor fetches over long latency PCI-E bus heavily 

stress the DMA engine in NICs and need larger NIC 

buffers to temporarily keep packets . These 

requirements significantly increase NIC's design 

complexity and price [37]. For instance, the price of a 

10GbE NIC can be up to $1.4K but a 1GbE NIC costs 

less than $40 [13, 14]. Our aim is to understand 

network processing efficiency over high speed 

networks and design a new server I/O architecture to 

tackle those challenges.   

In the past decade, a wide spectrum of research has 

been done in network processing to understand and 

optimize the processing efficiency [1-3, 9, 16-22, 25, 

27-28, 38].  Zhao et al. [38] used a cache simulator to  

study cache behavior of the TCP/IP protocol. They 

showed that packets show no temporal locality and  

proposed a copy engine to move packets in memory. 

To eliminate memory stalls to  packets, Intel proposed 

DCA to route incoming network data to caches [9, 18-

19]. Furthermore, Binkert et al. [2-3] integrated a 

simplified NIC into CPUs to naturally implement DCA 

and used Program I/O (PIO) to  move data from NICs 

in software. We also did extensive performance 

evaluation of an Integrated NIC (INIC) architecture 

[20] and along with Intel researchers , suggested some 



techniques to improve the network processing 

performance [21-22]. Recently, Intel proposed on-die 

message engines to move data between I/O devices and 

CPUs to reduce the PCI-E traffic  [17]. However, all 

these works did not study overheads at the operating 

system (OS) level (e.g. NIC driver, buffer management  

etc) and address those bottlenecks.  

In this paper, we begin with per-packet processing 

overhead breakdown by running a network benchmark 

Iperf [10] over 10GbE on Intel Xeon Quad-Core 

processor based servers. We find that besides data 

copy, the driver and buffer release, unexpectedly take 

46% of processing time for large I/O sizes and even 

54% for s mall I/O sizes. To understand the overheads, 

we instrument the driver and OS kernel using hardware 

performance counters [11]. Unlike existing profiling  

tools attributing CPU cost, such as retired cycles or 

cache misses, to function level [29], our 

instrumentation is at very  fine granularity and can  

pinpoint data incurring the cost. Through the above 

studies, we obtain several new findings: 1) the major 

network processing bottlenecks lie in the driver 

(>26%), data copy (up to 34% depending on I/O sizes) 

and buffer release (>20%), rather than the TCP/IP 

protocol itself; 2) in contrast to the generally accepted 

notion that long latency NIC register access res ults in 

the driver overhead [2-3], our results show that the 

overhead comes from memory stalls to network buffer 

data structures; 3) releasing network buffers in OS 

results in memory stalls to in-kernel page data 

structures, contributing to the buffer release overhead; 

4) besides memory stalls to packets, data copy 

implemented as a series of load/store instructions, also 

has significant time on L1 cache misses and instruction 

execution. Prevailing optimizations for data copy like  

DCA are insufficient to address the copy issue.  

Based on the studies, we discuss several intuitive 

solutions and find that a holistic I/O solution is needed 

for high speed networks. We propose a new server I/O 

architecture, where the responsibility for managing  

DMA descriptors is moved to an  on-chip network 

engine (NEngine). The on-chip  descriptor management  

exposes plenty of optimization opportunities like 

extending descriptors. We add informat ion about data 

incurring memory stalls during network processing 

into descriptors. When the NIC receives a packet, it 

directly pushes the packet into NEngine without 

wait ing for long latency descriptors fetches. NEngine 

reads extended descriptors to obtain packet destination 

location and informat ion about data incurring memory  

stalls. Then, it moves the packet  into the destination 

memory location and checks whether data incurring the 

stalls resides in caches. If not, NEngine sends data 

address to the hardware prefetching logic for loading  

the data. To address the data copy issue, NEngine 

moves payload inside last level cache (LLC) and  

invalidates source cache lines after the movement. The 

new I/O architecture allows DMA engine to have fast 

access to descriptors and keeps packets in CPU caches 

rather than in NIC buffers. These designs substantially  

reduce the burden on the DMA engine and avoid  

extensive NIC buffers in h igh speed networks. While 

NICs are decoupled from DMA engine, they still 

maintain other hardware features such as Receive Side 

Scaling (RSS) [33], and Interrupt Coalescing [7]. 

Different from prev ious research aiming at data copy, 

the new server I/O architecture ameliorates all major 

performance bottlenecks of network processing and 

simplifies NIC designs, making general purpose 

platforms well suited for high speed networks.   

    To evaluate our designs, we enhanced the full 

system simulator Simics [24] with detailed timing  

models and implemented the new I/O architecture in  

the simulator. We developed a 10GbE NIC as a device 

module of the simulator and a corresponding driver 

with the support of Large Receive Offload (LRO) [8] 

in Linux. In the experiments, both the micro-

benchmark Iperf and the macro-benchmark SPECWeb 

[34] are used. Experimental results demonstrate that 

the new I/O architecture improves the network 

processing efficiency by 47% and web server 

throughput by 14% while substantially reducing the 

NIC hardware complexity. 

    The remainder of this paper is organized as follows. 

We revisit the conventional I/O architecture in Section  

2 and then present a detailed  overhead analysis over 

10GbE in Sect ion 3. Sect ion 4 elaborates the new 

server I/O architecture in detail, fo llowed by 

performance evaluation in Section 5. Finally we 

discuss related work and conclude our paper in  Section  

6 and 7, respectively.  

 

2. Revisiting I/O Architecture 

2.1 Network Processing 
Unlike CPU-intensive applications, network 

processing is I/O-intensive and involves several 

hardware components (e.g. NIC, PCI-E, I/O Hub, 

memory, CPU) and system components (e.g. NIC 

driver, TCP/IP). Network processing in the receive side 

has significant processing overheads, consuming  

thousands of CPU cycles for each packet. In this 

subsection, we rev isit the network receiv ing process.  

In the receive side, an  incoming packet starts with  

the NIC/driver interaction. The RX descriptors 

(typically  16 bytes each), organized in  circular rings, 

are used as a communication channel between the 

driver and the NIC. The driver tells the NIC through 

these descriptors, where in the memory to copy the 

incoming packets. To be able to receive a packet, a 



NIC

Interrupt

CPU

Write Received

Data

Receive

Data

Write

Enable

Mask

Read

Interrupt

Cause

Read RX

Descriptors

Skb conversion

NIC Driver

(UC)

Rx Descriptor

Ring

3

2

1

4

5

6
9

TCP/IP Layer

7

skb

buf

Skb Buffer

skb

buf

skb

buf

…….

X

Write Status

8

Allocate new skb 

buffers

 
Figure 1. NIC/Driver interaction

descriptor should be in “ready” state, which means it  

has been initialized and pre-allocated with an empty 

packet buffer (SKB buffer in Linux) accessible by the 

NIC [36].  The SKB buffer is the in-kernel network 

buffer to hold any packet up to MTU (1.5 KB).  It  

contains an SKB data structure of 240 bytes carrying 

packet metadata used by the TCP/IP protocol and a 

DMA buffer of 2 KB holding the packet itself.  

    The detailed interaction is illustrated in Figure 1. 

Before transferring the received packets, the NIC needs 

to read ready descriptors from memory over PCI-E bus 

to know the DMA buffer address (step 1). After 

receiving the Ethernet frames from the network (step 

2), it transfers the received packets into those buffers 

(denoted as buf in Fig.1) using DMA engine (step 3). 

Once the data is placed in memory, the NIC updates 

descriptors with packet length and marks them as used 

(step 4). Then, the NIC generates an interrupt to kick 

off network processing in CPUs (step 5). Note that 

several interrupts can be coalesced into one interrupt to 

reduce overheads. In the CPU side, the interrupt 

handler in the driver reads the NIC register to check 

the cause of the interrupt (in step 6). If legal, the driver 

reads descriptors to obtain packet’s address and length, 

and then maps the packet  into SKB data structures 

(step 7). After the driver delivers SKB buffers to the 

protocol stack, it rein itializes and refills used 

descriptors with new allocated SKB buffers for future 

incoming packets (step 8). Finally, the driver re -

enables the interrupt by setting the NIC reg ister (step 

9). After the driver completes its operations , SKB 

buffers are delivered up to the protocol stack. Once the 

protocol stack finishes processing, applications are 

scheduled to move packets to user buffers. Finally, the 

SKB buffers are reclaimed into OS [5, 36].   

2.2 High Speed NIC Challenges 
As shown in Fig.1 (step 1), the NIC must init iate 

DMA transfers over PCI-E bus to fetch descriptors 

from memory before it writes packets into memory (or 

reads packets from memory in the transmit side). 

Although PCI-E bus bandwidth has improved, its 

latency has worsened by up to 25X over earlier PCI-X 

incarnations. The round-trip traversal over PCI-E bus 

can take up to  ~2200 ns, mostly due to  complex PCI-E 

transaction layer protocol implementation [26]. The 

long latency traversal substantially increases the 

processing overhead of DMA engine. As network 

traffic becomes intense, the DMA engine is heavily  

stressed [37]. Long latency descriptor fetches also 

require large NIC buffers to temporarily store packets. 

Moreover, in  order to leverage multip le cores in CMPs  

for packet processing, modern NICs typically introduce 

a large number of receive/transmit (RX/TX) queues 

and allow each core to have a dedicated RX/TX queue. 

For instance, an Intel 82599 10GbE NIC has 128 

RX/TX queues per port, corresponding to 512KB and  

160KB buffers [14]. All of these complicate NIC 

designs and pose big challenges.  

 

3. Understanding Processing Overheads  
    We conducted extensive experiments to understand 

network processing overheads over 10GbE across a 

range of I/O sizes. Both SUT (System under Test) and 

stress machines are Intel servers, which contain two 

Quad-Core Intel Xeon 5355 processors [11]. Each  core 

is running at 2.66GHz frequency and each processor 

has 2 LLC of 4MB each shared by 2 cores. The servers 

are connected by two Intel 10Gbps 82598 server 

adapters sitting in PCI-E X8 slots [13]. They ran Linux 

kernel 2.6.21 and Intel 10GbE NIC driver IXGBE 

version 1.3.31. We retain defau lt settings of the Linux 

network subsystem and the NIC driver, unless stated 

otherwise. Note that LRO [8], a technique to amort ize 

the per-packet processing overhead by combining  

multip le in-o rder packets into one single packet, is 

enabled in the NIC driver. Popular stream hardware 



 

Figure 2. Per-packet processing overhead break down 

prefetcher employing a memory access stride based 

predictive algorithm is configured in the servers [11]. 

In our experiments, the micro -benchmark Iperf with 8 

TCP connections is run to generate network traffic 

between servers (SUT is a receiver). We find that one 

core with 4MB LLC achieves ~5.6Gbps throughput 

and two cores with 8MB LLC are saturated in order to 

obtain line rate throughput. The high processing 

overhead motivates us to further breakdown the per-

packet processing overhead.  

3.1. Packet Processing Overhead Breakdown  
    We used Oprofile [29] to collect system-wide 

function overheads while Iperf is running over 10GbE. 

We group all functions into components along the 

network processing path: the driver, IP, TCP, data 

copy, buffer release, system call and Iperf.  A ll other 

supportive kernel functions such as scheduling, context  

switches etc. are categorized as others. Per-packet  

processing time breakdown under various I/O sizes is 

calculated and illustrated in Figure 2. Note that I/O size 

is used by TCP/IP stack and I/Os larger than MTU are 

segmented into several Ethernet packets (<=MTU).  

    We observe the following from Fig.2: 1) the 

overhead in data copy increases as the I/O size grows 

and becomes a major bottleneck with large I/Os 

(>=256 bytes); 2) the driver and buffer release 

consume ~1200 cycles and ~1100 cycles per packet, 

respectively, regardless of I/O sizes. They correspond 

to ~26% and 20% of processing time for large I/Os and 

even higher for s mall I/Os; 3) the TCP/IP protocol 

processing overhead is substantially reduced because 

LRO coalesces mult iple packets into one large packet  

to amortize the processing overhead. Thus Fig.2 

reveals that, besides data copy, high speed network 

processing over mainstream servers has another two 

unexpected major bottlenecks: the driver and buffer 

release.  

3.2. Fine-Grained Instrumentation 
 Oprofile in Subsection 3.1 does profiling at the 

coarse-grained level and attributes CPU cost, such as 

retired cycles and cache misses , to functions. It is 

unable to identify data or macro incurring the cost, so 

we had to manually instrument inside functions. Table 

1 shows one such example of instrumentation in the 

driver. We first measured the function's cost and then 

did fine-grained instrumentation for every code 

segment if the function has high cost. We continue to 

instrument each code segment until we locate the 

bottlenecks in all functions along the processing path. 

Most events are collected includ ing CPU cycles, 

instruction and data cache misses, LLC misses, ITLB 

misses and DTLB misses etc. Since large I/Os include 

all three major overheads, this subsection presents the 

detailed analysis only for the 16KB I/O.  

Table1. Fine-grained instrumentation 

 

 3.2.1. Driver 

The driver comprises of three main components: 

NIC register access (step 6 and 9), SKB conversion 

(step 7) and SKB buffer allocation (step 8), as shown 

in Fig.1. Existing studies [2-3] claimed that NIC 

register access contributes to the driver overhead due 

to long latency traversal over PCI-E bus, and then 

proposed NIC integration to reduce the overhead. In 

this subsection, we architecturally breakdown the 

driver overhead for each packet and present results in 

Figure 3. In contrast to the generally accepted notion 

that the long latency NIC register access results in the 

overhead [3], the breakdown reveals that the overhead 

comes from SKB conversion and buffer allocation. 

Although NIC register access takes ~2500 CPU cycles 

on mainstream servers, ~60 packets are processed per 

interrupt over 10GbE (~7 packets/interrupt over 1GbE) 

substantially amortizing the overhead. In addition, 

Fig.3 also reveals that L2 cache misses mainly result in  

0

500

1000

1500

2000

Driver Buffer Release IP TCP Data Copy System Call Iperf others

C
P

U
 C

yc
le

s
64B 256B 1KB 4KB 16KB



the SKB conversion overhead, and long instruction 

path is the largest contributor of the SKB buffer 

allocation overhead. 

 
Figure 3. Architectural break down 

 
Figure 4. L2 cache misses break down for step 7    

Since L2 cache misses in the SKB conversion 

constitute ~50% of the driver overhead, we d id further 

instrumentation to identify the data incurring those 

misses. We group data in the driver into various data 

types (SKB, descriptors, packet headers and other local 

variables) and measure their percentage of misses. The 

result, presented in Figure 4, reveals that SKB is the 

major source of the memory stalls (~1.5 L2 

misses/packet on SKB). Different from the results in  

prior studies [2-3], we find that the memory stalls to 

packet headers are hidden and overlapped with 

computation. It is because the new drivers use software 

prefetch instructions to preload headers before being 

accessed. Unfortunately, SKB access occurs at the very 

beginning of the driver and software prefetch 

instructions cannot help. Although DMA invalidates 

descriptors to maintain cache coherence, the memory  

stalls to descriptors are neglig ible (~0.04 L2 

misses/packet). That is because each 64 bytes cache 

line can host 4 descriptors of 16 bytes each, and the 

hardware p refetchers preload several consecutive 

descriptors with a cache miss. To understand the SKB 

misses, we also instrumented the kernel to study its 

reuse distance over 10GbE. It is observed that SKB has 

long reuse distance (~240K L2 access), which explains 

the miss behavior.  

3.2.2. Data Copy 

After protocol processing, user applications are 

scheduled to copy packets from SKB buffers to user 

buffers. Data copy incurs mandatory cache misses on 

payload because DMA triggers cache invalidation to 

maintain cache coherence. We study the architectural 

overhead breakdown of data copy and show the results 

in Figure 5. 16KB I/O is segmented into small packets 

of MTU each in  the sender and they are sent to the 

receiver. Fig.5 shows that L2 cache misses are the 

major overhead (~50%, ~3.5 L2 misses/packet), 

followed by data cache misses (~27%, ~50 

misses/packet) and instruction execution (~20%).  

Although DCA, implemented in recent Intel platforms  

avoids L2 cache misses, it is unable to reduce 

overheads of L1 cache misses and a series of load/store 

instruction executions (total ~47%).  Also, routing 

network data into L1 caches would pollute caches and 

degrade performance because of small L1 cache size 

[19, 35]. Since packets become dead after data copy 

[36], loading them into L1 caches may evict other 

valuable data. Hence, more optimizations are needed to 

fully address the data copy issue. 

 
Figure 5. Data copy overhead break down 

 
Figure 6. Buffer release overhead break down 

 

Figure 7.  L2 cache misses break down 

3.2.3. Buffer Release 

SKB buffers need to be reclaimed after packets are 

copied to user applications. SKB buffer allocation and 

release are managed by slab allocator [5]. The basis for 

this allocator is retaining an allocated memory that 

used to contain a data object of certain type and 

reusing that memory for the next allocations for 

another object of the same type. Buffer release consists 

of two phases: looking up an object buffer controller in  

OS and releasing the object into the controller. In the 

implementation of slab allocator, the page data 

structure is used to keep  buffer controller in formation  

and read during the object  lookup. This technique is 

widely used by mainstream OS such as FreeBSD, 

Solaris and Linux etc. 

Figure 6 shows the architectural overhead 

breakdown of buffer release. We observe from Fig.6 

0

200

400

600

800

Step 6&9 Step 7 Step 8

C
yc

le
s

L2

DTLB

ITLB

Dcache 

Icache

inst

0%

50%

100%

Memory stalls

Other

Descriptor

Header

SKB

0%

50%

100%

data copy

L2
DTLB
ITLB
Dcache 
Icache
inst

0%

50%

100%

Buffer release

L2
DTLB
ITLB
Dcache 
Icache
inst

90%

95%

100%

Memory stalls

others

page structure



that L2 cache misses are the single largest contributor 

to the overhead (~1.6 L2 cache misses/ packet).  

Similarly, we analyze data sources of L2 cache misses 

and present results in Figure 7. The figure reveals that 

L2 cache misses are from 128 bytes in-kernel page data 

structures. The structure reuse distance analysis shows 

that it is reused after ~255K L2 cache access, which  

results in the large cache misses. 

The above studies reveal that besides memory stalls  

to itself, each packet incurs several cache misses on 

corresponding data (skb buffer and page data 

structures) and has considerable data copy overhead. 

Some intuitive solutions like having larger LLC 

(>8MB for 10GbE) o r extending the optimizat ion DCA  

might help to some extent. Our simulation results show 

that, without considering application memory  

footprint, 16MB LLC is needed to avoid those cache 

misses for packet processing over 10GbE. When 

network jumps to 40GbE and beyond, increasing LLC 

becomes an ineffective solution.  More importantly, it  

is unable to address NIC challenges and the data copy 

issue. Extending DCA to deliver both packets and 

those missed data from NICs into caches is more 

efficient in avoid ing memory stalls. Unfortunately, it  

stresses NICs more heavily and degrades PCI-E 

efficiency of packet  transfers [30-31], and does not 

consider the data copy issue as well. In order to attack 

all challenges from increasing network speed, a new 

holistic I/O solution is needed.  

 

4. Proposed Server I/O Architecture  
In this section, we propose a new server I/O 

architecture for h igh speed networks. The overview of 

architecture is illustrated in Figure 8. Essentially, we 

move the DMA descriptor management from NICs to  

an added on-chip network engine (NEngine) close to 

LLC. The on-chip  descriptor management enables us 

to easily extend descriptors with information about 

data incurring  memory  stalls. Similar to the memory  

controller, the NEngine connects to I/O Hub (IOH) for 

parsing PCI-E transactions. It communicates with  

faster cache hierarchy for DMA descriptor 

fetches/writes and packet movement, allev iating the 

processing burden on the DMA engine. The NEngine 

has low communication cost with LLC due to its close 

proximity. 

When NEngine receives a packet, it reads 

descriptors from cache hierarchy. Then it moves the 

packet into corresponding cache location and preloads 

those data incurring memory stalls. The new 

architecture exploits LLC to keep packets instead of 

multip le RX/TX queues in NICs. Modern high speed 

NICs have one dedicated RX/TX queue for each core, 

thus increasing their cost and impeding scalability over 

a large number of cores. Moreover, NEngine also 

implements efficient payload movement inside LLC 

and proactively purges dead packet data after data copy 

is finished to address the data copy issue. The new I/O 

architecture fundamentally reduces all three major 

performance bottlenecks of network processing while 

effectively simplify ing NICs. The proposed designs are 

elaborated in the following subsections.  

 

 Figure 8. New server I/O architecture  

4.1. NEngine 
During network processing, CPUs and NICs  

communicate through DMA descriptors , as described 

in detail in Section 2. Descriptors are organized as a 

circular ring. Each descriptor is 16 bytes long and 

includes packet metadata such as packet length, 

memory address and status etc.  In the contemporary 

I/O architecture, NICs fetch or write descriptors via 

PCI-E bus before or after packet movement. The 

descriptor fetches/writes have long latency stressing 

DMA engine [37] and also waste a large number of 

PCI-E transactions degrading PCI-E payload efficiency 

[30-31]. Our on-chip descriptors management scheme 

avoids these issues and more importantly, enables us to 

easily extend the descriptors due to faster 

communicat ion with the cache hierarchy. By exp loiting  

this design, we extend RX descriptors with in formation  

about data incurring memory stalls: SKB and page data 

structures, as pinpointed in Subsection 3.2. The 

extended descriptors are illustrated in Figure 9.  

Besides original 16 bytes, each new descriptor includes 

4 bytes physical address of SKB and page data 

structures each. Two hardware registers in NEngine are 

dedicated to storing data structure length in terms  of 

the number of cache lines. For example in  Linux, SKB 

is 240 bytes and page structure is 128 bytes, 

corresponding to four and two cache lines of 64 bytes 

each. For a typical ring buffer size of 1024 entries in  

10GbE NICs, the new ring buffer size only increases 

by 8KB.  



The block diagram of NEngine is illustrated in 

Figure 10 with the new descriptors . Besides major 

components shown in Fig. 10, NEngine also offers 

dedicated registers to keep ring buffer base address and 

ring pointer information as traditional NICs do. When 

a packet arrives at the NIC, without fetching DMA 

descriptors to know memory location for the packet, 

the NIC calculates core ID for packet processing using 

RSS hardware unit (RSS hardware d istributes packets 

among cores by hashing packet's 4-tuple) and sends the 

packet with core ID into a small buffer in NEngine. 

Fetch descriptor unit identifies the corresponding 

descriptor address according to the ring base address of 

the core ID and ring buffer pointers, and then sends a 

cache read request to get the descriptor. Sec.3 shows 

that mainstream severs exh ibit extremely high  

descriptor cache hit rat ios even with DMA invalidation  

(96%). The on-chip  descriptor management avoids 

DMA invalidation and has a higher descriptor cache hit 

ratio. Thus, the fetch descriptor unit can access the 

descriptors very fast and is much simpler than the 

original DMA engine. With the knowledge of memory  

location and data incurring memory stalls, the write 

packet unit moves the packet into caches. Meanwhile, 

the lookup/load unit lookups and preloads those data. 

To facilitate the unit, we extend the cache architecture 

with a new cache operation: lookup. The new operation 

lookup returns whether data is in caches, other than 

data themselves. The lookup/load unit sends lookup 

operations to lookup those data and generates prefetch 

commands to the hardware prefetching logic if they are  

not in caches. After the packet is moved into cache 

hierarchy, NEngine updates the descriptor status field  

and ring buffer pointers similar to the traditional NICs.   

In addition, NEngine is capable of moving payload  

inside LLC. Since the source data becomes dead after 

data copy [36], NEngine invalidates source cache lines 

to purge the data. To support efficient movement, we 

extend the cache architecture with a new cache 

operation: read_invalidate, which  reads cache lines 

and then does cache invalidation. During data copy, 

TCP/IP protocol breaks discontinuous physical address 

ranges into a set of consecutive physical ranges and 

programs NEngine via three hardware registers: src, 

dst, len. Then, NEngine breaks continuous physical 

address ranges into a set of chunks at the cache line 

granularity and generates new read_invalidate 

operations to read and invalidate cache lines. Finally, it  

writes those data into destination cache lines. Our 

payload movement differs from prio r copy engines [1, 

16, 38] as fo llows: 1) payload movement is done inside 

caches as opposed to memory in prev ious cases, and 

payload in caches is invalidated after movement. The 

invalidation avoids unnecessary memory  write-backs 

of dirty data, reducing memory traffic and improving  

performance [15, 23]; 2) the virtual-to-physical address 

translation overhead is negligible because data copy is 

done in the OS context. In Linux, less than 10 cycles 

are needed for the address translation.  

When we come to the transmit side, NEngine reads 

transmitted packets from cache hierarchy and transfers 

them into the NIC over PCI-E bus. Once the NIC 

receives the transmitted packets from NEngine, the 

MAC processing units automatically sends them over 

Ethernet links. Besides efficient network processing, 

our designs simplify NIC designs in terms of buffer 

resource and DMA engine and also reduce PCI-E 

traffic used for descriptor fetches/writes.  

4.2. NIC 
    In the new architecture, NICs are simplified with  

less hardware resource. Figure 11 illustrates a 

traditional NIC in the left box and the new NIC in the 

right box.  In the traditional NIC, the MAC processing 

unit receives packets from Ethernet and does RSS to  

load balance incoming packets among cores at the 

connection level. The packets are stored in  

corresponding RX queues. DMA engine uses PCI-E 

transactions to fetch descriptors from memory and to 

move data from RX queues to memory. Interrupt 

coalescing unit will send interrupts to cores when the 

number of transferred packets reach up to a threshold 

set by the driver or a preprogrammed timer exp ires. 

Similarly, in order to transmit packets, the NIC fetches 

Figure 10.  Basic blocks of NEngine  Figure 9.  Extended descriptors  



TX descriptors to know packet memory location and 

moves packets into corresponding TX queues. Then, 

packets are sent over Ethernet and interrupts are sent to 

cores. In the new NIC, we remove large multip le 

hardware queues and DMA engine marked as grey in 

the left box. When RSS receives a packet from the 

MAC processing unit, it  calcu lates the core assigned to 

packet processing. Then, the NIC d irectly sends the 

packet with core ID to NEngine. Similar to the receive 

side, when the NIC receives a transmitted packet, the 

MAC processing unit direct ly takes over the packet for 

transmission. RSS and Interrupt coalescing units 

behave the same as the traditional NICs.    

 

Figure 11.  Simplification of the NIC    

4.3. Software Support 
   The new server I/O architecture inherits the 

descriptor-based software/hardware interface , and only 

needs some modest support from the device driver and 

the data copy components. When new SKB buffers are 

allocated to refill RX descriptors, the driver sets 

starting address of SKB and page data structures in 

descriptors in addition to DMA buffer address . When 

packets finish protocol processing, the data copy 

component programs NEngine to move payload and 

waits until NEngine finishes the movement. There is 

no need to modify TCP/IP protocol stack, system call 

and user applications.    

 

5. Evaluation 
    We choose the full system simulator Simics to 

evaluate our designs by enhancing it with detailed  

cache, I/O t iming models and effects of network DMA. 

We extend the DEC 21140A Ethernet device with the 

support of interrupt coalescing using Device Modeling 

language to simulate a 10GbE Ethernet NIC. The 

device itself is connected to a lossless , full-duplex link 

of configurable bandwidth. The latency of a packet  

traversing the link is simply fixed to 1 us. Two systems 

(client and server) running Linux 2.6.16 are simulated 

and interconnected with 10GbE. Since the stream 

hardware prefetcher is the most popular prefetcher in  

servers, we employ it in the simulator to speed up the 

memory access of network data. 

    We implemented the new I/O arch itecture and 

developed a NIC driver in Linux. LRO was 

implemented in the driver. To understand performance 

impacts of our designs on network processing, we first 

used the micro-benchmark Iperf. Then, we study how 

much benefit web servers achieve by running the 

SPECWeb benchmark. In each case, only one system 

is of interest, while the other merely serves as a 

stressor. SUT is configured with detailed timing  

models and the stressor runs with the fast functional 

mode and is not a bottleneck. The parameters we used 

in modeling the configuration are listed in Table 2. We 

are more interested in the relative behavior of these 

systems than their absolute performance, so some of 

these parameters are approximate. 

Table 2. System configurations  

Processor Quad-Core, 3GHz, two-issue, in-order 

ICache/DCache 32KB 2-way, 3 cycles hit, 64 bytes cache line 

L2 Cache 8M, 16-way, 14 cycles hit, 64 bytes cache 
line, shared by all cores 

Main memory 400 cycles 

Prefetcher Stream prefetch with degree 4 

I/O Register 1600 cycles 

Interrupt rate 64 packets per interrupt 

NEngine 10 cycles to L2 cache 

Ring buffer  1024 entries/ring 

5.1. Network Performance 
    First, we looked at network performance in the 

receive side by running Iperf under various 

configurations: the orig inal system (orig), DCA 

routing data to L1 caches (DCA-L1), DCA routing data 

into L2 caches (DCA-L2), and the new server I/O 

architecture (new). LRO is included in all 

configurations. Since large I/Os have all three major 

overheads, we present large I/O results in this 

subsection.  

    Figure 12 illustrates network throughput achieved by 

various configurations. We also present corresponding 

core utilization and utilization breakdown in  Figure 13. 

As shown in the figures, orig can achieve only  ~8 

Gbps throughput by consuming ~225% core utilization  

in the SUT with four cores. Memory subsystem is the 

potential bottleneck of achieving line rate throughput 

and an increase in CPU performance could not further 

improve throughput. We observe from Fig. 13 that data 

copy, the NIC driver and buffer release are three major 

overheads. By in jecting network data into L1 caches, 

DCA-L1 eliminates the memory stalls to packets and 

obtains line rate throughput using ~200% core 

utilizat ion. Utilization breakdown reveals that the 

higher network processing efficiency or 

throughput/core is from CPU cycle savings in data 



copy. Instead of L1 caches, DCA-L2 routes network 

data into a larger L2 cache. It ach ieves line rate 

throughput and consumes fewer CPU cycles than 

DCA-L1. That is because DCA-L1 delivers ~64 packets 

or ~96KB data for each interrupt into small L1 caches 

of 32 KB each, incurring cache pollution. With high  

speed networks like 10GbE and beyond, DCA-L2 is a  

more practical approach.   

   
Figure 12. Network throughput 

 
Figure 13. Utilization break down 

    A lthough DCA is able to reduce the data copy 

overhead, it is unable to resolve the performance issues 

in other components such as the driver and buffer 

release. The new I/O architecture not only avoids 

memory stalls in the driver and buffer release, but also 

further improves data copy performance. Fig. 12 and  

Fig.13 show that it obtains line rate throughput but 

substantially reduces core utilization to ~125%. The 

utilizat ion breakdown confirms that the reduction is 

from the driver, buffer release and data copy. 

Compared to DCA-L2 which is employed in recent 

commercial servers, the new I/O architecture reduces 

core utilization by 33%, corresponding to 47% network 

processing efficiency improvement. The reduced core 

utilizat ion or h igher processing efficiency means that 

the cores can be better used for application processing 
instead of network processing. 

    Additionally, we also investigate cache behavior of 

high speed network processing under various 

configurations in Figure 14. We observe that orig only 

achieves a 92% L2 cache hit ratio. By avoiding the 

memory stalls to packets, both DCA-L1 and DCA-L2  

increase L2 cache hit ratios to 96%. The new 

architecture almost avoids memory stalls during  

network processing and escalates the L2 cache hit ratio  

to 99%. The higher L2 cache hit ratio explains the 

benefits of core utilization shown in Fig.13. All 

configurations achieve similar hit ratios in L1 cache 

except DCA-L1 and new. Due to small cache sizes, 

DCA-L1 results in L1 cache pollution and decreases 

the L1 cache hit rat io. New bypasses L1 caches during 

data copy and has a higher L1 cache hit  ratio. We do  

not present results for the sender side because 

performance is not significantly improved.   

Figure 14. Cache hi t ratios  

Figure 15. Web server throughput 

 
Figure 16.  Utilization break down   

5.2. Web Server Performance 
    We also studied web server performance by running 

the web server benchmark SPECweb99 over 10GbE. 

The same configurations as subsection 5.1 were used. 

Web server throughput with various configurations is 

illustrated in Figure 15, where the  server achieves 

~2.8Gbps, ~3.1Gbps and ~3.3Gbps throughput in orig, 

DCA-L1 and DCA-L2. CPU utilization b reakdown in  

Figure 16 reveals that throughput increases are from 

the CPU cycle savings in network processing. In the 

new architecture, the network processing overhead is 

further reduced due to the elimination of the memory  

stalls and more efficient data copy. The improved 

network processing translates up to ~3.8Gbps server 

throughput, 14% better than DCA-L2.     

5.3. NIC Design Benefits 
    Besides having efficient network processing, the 

new server I/O architecture also simplifies NIC 

hardware designs by lessening pressure on DMA 

engine and avoiding extensive NIC buffers. We 

measure round-trip t ime over PCI-E bus on mainstream 

servers and assume that each PCI-E transaction 

(typically, 256 bytes transaction size) transfers 16 

0

5

10

orig DCA-L1 DCA-L2 new

Th
ro

u
gh

p
u

t 
(G

b
p

s)

0%

50%

100%

150%

200%

250%

orig DCA-L1 DCA-L2 new

C
o

re
 U

ti
li

za
ti

o
n

Others

Iperf

System Call

Data Copy

TCP/IP

Buffer Release

NIC Driver

85%

90%

95%

100%

orig DCA-L1 DCA-L2 new

C
ac

h
e

 h
it

 r
at

io
s

L1 Cache

L2 Cache

0

2

4

orig DCA-L1 DCA-L2 new

Th
ro

u
gh

p
u

t 
(G

b
p

s)

0%

50%

100%

orig DCA-L1 DCA-L2 new

TCP/IP 
procesisng
users



descriptors. We obtain average per packet time for 

descriptor read/write by amort izing the round-trip time 

over the number o f descriptors per transfer.  Packets 

themselves can be transferred in a pipelined way and 

do not stress DMA engine.  Assuming DMA engine 

runs at 200MHz, time of a MTU packet spent on DMA 

engine is illustrated in Figure 17. It  shows that the new 

architecture substantially ameliorates DMA engine 

pressure. Although results for DCA configurations are 

not shown, they do not avoid long latency descriptor 

fetches/writes and behave the same as orig. In addition  

to the benefits from DMA engine, the new I/O 

architecture also reduces NIC buffers. Our experiment  

results show that it only needs 8KB buffer (4KB buffer 

in the NEngine and 4KB buffer in the NIC) for the 

10Gbps network, but more than 512KB NIC buffer is 

needed in traditional I/O arch itectures. With 40Gbps 

and 100Gbps networks, the new I/O architecture will 

achieve much higher benefits. In the new architecture, 

NEngine essentially behaves similarly to DMA engine 

but simplifies designs of DMA engine and reduces 

NIC buffers. Therefore, it saves overall hardware cost 

(CPU+NIC) and offers a promising I/O solution for 

high speed networks.  

  
Figure 17.  Per packet time on DMA Engine  

6. Related Work 
    A wide spectrum of research has been done to 

understand the network processing overhead [18-22, 

25, 28, 38]. Nahum et  al. [28] used a cache simulator 

to study cache behavior of the TCP/IP protocol and 

showed that instruction cache has the greatest effect on 

network performance. Similarly, Zhao et al. [38] 

revealed that packets and DMA descriptors exh ibit no  

temporal locality. Makineni et al. [25] conducted 

architectural characterization of TCP/IP processing on 

Pentium M microprocessors and concluded that the 

receive side is more memory-intensive than the send 

side. Unfortunately, they did  not conduct a system-

wide arch itectural analysis for high speed network 

processing on mainstream servers. Moreover, due to a 

lack of fine-grained instrumentation, none of them 

located the performance bottlenecks. 

    In addit ion, researchers have proposed several 

architectural schemes to optimize the processing 

efficiency [1-3, 9, 27, 35, 38]. Most of them aimed to  

reducing the data copy overhead. Mukerjee et al. [27] 

put a NIC in coherent memory to improve the 

performance by facilitating transfers of whole cache 

blocks and reducing control overheads. Zhao et al. [38] 

designed an off-chip DMA engine close to memory to  

move data inside memory. The similar idea has been 

implemented in the Intel I/OAT technique [1], but has 

litt le performance improvement because memory stalls 

to packets are still incurred. To eliminate the memory  

stalls, Intel proposed DCA to route network data into 

caches [9], and implemented it in Intel 10 GbE NICs 

and server chipsets. Its performance evaluation on real 

servers has demonstrated overhead reduction in data 

copy [18-19]. Recently, Tang et al. [35] claimed that 

DCA might incur cache pollution on s mall LLC and  

introduced two cache designs (a dedicated DMA cache 

or limited ways of LLC) to  keep packets. Similar to  

our work, Binkert et al. [2-3] integrated a redesigned 

NIC to reduce the processing overhead by 

implementing zero-copy and reducing access latency to 

NIC registers. The major d ifference between the 

integrated NIC and our designs lies in as follows: 1) 

our architecture only integrates DMA descriptor 

management onto CPU rather than the whole NIC, 

leveraging existing NIC designs and reducing CPU die 

area; 2) the integrated NIC targets at data copy and 

uses PIO to move data from NICs lacking scalability  

over a large number of cores. Our architecture 

enhances the legacy DMA mechanis m and uses 

efficient on-chip data movement to attack all three 

major performance challenges; 3) instead of multip le 

queues in NICs, our designs leverage caches for 

keeping packets, thus further saving NIC cost and 

achieving better NIC scalability over cores. 

  

7. Conclusion 
As network speed continues to grow, it becomes 

critical to understand and address challenges of 

network processing in servers. In this paper, we first 

studied the per-packet p rocessing overhead on servers 

with 10GbE and pinpointed three bottlenecks: data 

copy, the driver and buffer release. Then, we 

instrumented the driver and OS to do a system-wide 

architectural analysis. Unlike existing tools attributing 

CPU cost at the function level, our instrumentation was 

done with fine g ranularity to reveal exact bottlenecks. 

Motivated by the studies, we proposed a new server 

I/O arch itecture that addresses all three performance 

challenges by using extended on-chip DMA 

descriptors and efficient payload movement. It allows 

DMA engine to have very fast access to descriptors 

allev iating burden on the DMA engine and keep 

packets in CPU caches avoiding extensive NIC buffers. 

Evaluation results show that the new architecture 

0

50

100

150

orig new

ti
m

e
 (n

s)

descriptor

packet



significantly improves network processing efficiency 

and achieves better web server performance while 

reducing the NIC hardware complexity. Given the 

trend towards rapid evolution of network speed in  

future, we view the new architecture as a promising 

I/O solution.  

 

Acknowledgements  
The research was supported by NSF grants CCF-

0811834, CSR-0912850, and a grant from Intel 

Corporation.  

 

References 
[1] "Accelerating High-Speed Networking with Intel I/O 

Acceleration Technology", 
http://download.intel.com/support/network/sb/98856.pdf  

[2]  N. L. Binkert, A. G. Saidi, S. K. Reinhardt, "Integrated 
Network Interfaces for High-Bandwidth TCP/IP",  
ASPLOS, 2006.  

[3]  N. L. Binkert, L. R. Hsu, A. G. Saidi et al.,  
"Performance Analysis of System Overheads in TCP/IP 
Workloads", PACT, 2004.  

[4]  N. J. Boden,  D. Cohen, R. E. Felderman et al.,  
"Myrinet: A Gigabit-per-Second Local Area Network", 
IEEE MICRO, 1995.  

[5] J. Bonwick, "The Slab Allocator: An Object-Caching 
Kernel Memory Allocator", USENIX Technical 
Conference, 1994.  

[6]  L. Cherkasova, V. Kotov, T. Rokichi et al., "Fiber 
Channel Fabrics: Evaluation and Design", HICSS, 1996. 

[7] S. GadelRab, "10-Gigabit Ethernet Connectivity for 
Computer Servers", Vol.27, Issue 3, IEEE Micro, 2007.  

[8]  L. Grossman, "Large Receive Offload Implementation 
in Neterion 10GbE Ethernet Driver", OLS, 2005.  

[9] R. Huggahalli, R. Iyer, S. Tetrick,  "Direct Cache 
Access for High Bandwidth Network I/O", ISCA, 2005. 

[10]  Iperf, http://sourceforge.net/projects/iperf/.  

[11] "Inside Intel Core Micro-architecture: Setting New 
Standards for Energy-Efficient Performance", 
http://www.intel.com/technology/architecture-
silicon/core.  

[12]  Infiniband Trade Association. 
http://www.infinibandta.org.  

[13]  Intel 82598 
http://www.intel.com/assets/pdf/prodbrief/317796.pdf.  

[14]  Intel 82599 
http://download.intel.com/design/network/prodbrf/3217
31.pdf.  

[15] X. Jiang, N. Madan, L. Zhao et al., "CHOP: Adaptive 
Filter-based DRAM Caching for CMP Server 
Platforms", HPCA, 2010. 

[16] X. Jiang, Y. Solihin, L. Zhao et al., “Architecture 
Support for Improving Bulk Memory Copying and 
Initialization Performance”, PACT, 2009.  

[17] S. King, R. Huggahalli, X. Zhu, M. Memon, F. Berry, 
N. Bhardwaj, A. Kumar, T. Willke, "Message 
Communication Techniques", US Patent Application 
Publication,  2010/0169501. 

[18] A. Kumar, R. Huggahalli, "Impact of Cache Coherence 
Protocols on the Processing of Network Traffic",  
MICRO,  2007. 

[19]  A. Kumar, R. Huggahalli, S. Makineni, 
"Characterization of Direct Cache Access on Multi-core 
Systems and 10GbE", HPCA, 2009.  

[20]  G. Liao, L. Bhuyan, "Performance Measurement of an 
Integrated NIC Architecture with 10GbE", HotI, 2009.  

[21] G. Liao, L. Bhuyan, D. Guo, S. King, "EINIC: An 
Architecture for High Bandwidth Network I/O on Multi-
Core Processors", ANCS, 2009.  

[22] G. Liao, L. Bhuyan, W. Wu, H. Yu, S. King "A New 
TCB Cache to Efficiently Manage TCP Sessions for 
Web Servers", ANCS, 2010.  

[23] F. Liu,  X. Jiang, Y. Solihin, "Understanding How Off-
chip Memory Bandwidth Partitioning in Chip-
Multiprocessors Affects System Performance", HPCA,  
2010.  

[24] P. S. Magnusson, M. Christensson, J. Eskilson et al.,  
"Simics: A Full System Simulation Platform", IEEE 
Computer, February 2002. 

[25]  S. Makineni, R. Iyer, "Architectural Characterization of 
TCP/IP Packet Processing on the Pentium M 
Microprocessor", HPCA, 2004. 

[26] D. J. Miller, P. M. Watts, A. W. Moore, "Motivating 
Future Interconnects: A Differential Measurement 
Analysis of PCI Latency", ANCS, 2009.  

[27]  S. S. Mukherjee, B. Falsafi, M. D. Hill et al., "A 
Coherent Network Interfaces for Fine-Grain 
Communication",  ISCA, 1996. 

[28]  E. Nahum, D. Yates, D. Towsley et al., "Cache 
Behavior of  Network Protocols", SIGMETRICS, 1997.  

[29]  Oprofile, http://oprofile.sourceforge.net/news/.  

[30]  PCI-E Performance Measurement, 
http://cp.literature.agilent.com/litweb/pdf/5989-
4076EN.pdf.  

[31]  PCI-E Specificiation, 
http://www.pcisig.com/specifications/pciexpress/base2/.  

[32]  F. Petrini, W. Feng, A. Hoisie et al., "The Quadrics 
Network (QsNet): High-Performance Clustering 
Technology", HotI, 2001.  

[33] "Scalable Networking: Eliminating the Receive 
Processing Bottleneck", Microsoft WinHEC April 2004. 

[34]  Standard Performance Evaluation Corporation. 
SPECweb benchmark. http://www.spec.org.  

[35]  D. Tang, Y. Bao, W. Hu et al., "DMA Cache: Using 
On-chip Storage to Architecturally Separate I/O Data 
from CPU Data for Improving I/O Performance", 
HPCA, 2010.  

[36]  Understanding the Linux Kernel, Third Edition, O' 
Reilly Media.  

[37] P. Willmann, H. Kim, S. Rixner et al.,  "An Efficient  
Programmable 10 Gigabit Ethernet Network Interface 
Card", HPCA, 2005.  

[38] L. Zhao, L. Bhuyan, R. Iyer et al., "Hardware Support 
for Accelerating Data Movement in Server platform", 
IEEE Transactions On Computer, Vol 56, No. 6, 2007.  


