
Program Mapping onto Network Processors by Recursive
Bipartitioning and Refining

Jia Yu, Jingnan Yao, Laxmi Bhuyan Jun Yang
University of California Riverside University of Pittsburgh

Riverside, CA 92521 Pittsburgh, PA 15261
{jiayu, jyao, bhuyan}@cs.ucr.edu junyang@ece.pitt.edu

ABSTRACT
Mapping packet processing applications onto embedded net-
work processors (NP) is a challenging task due to the unique
constraints of NP systems and the characteristics of network
application domains. A remarkable difference with general
multiprocessor task scheduling is that NPs are often pro-
grammed into a hybrid parallel and pipeline topology.

In this paper, we introduce a multilevel balancing and re-
fining algorithm for NP program mapping. We use a divide-
and-conquer approach to recursively bipartition the task graph
into disjoint subdomains. At each level of bipartition, the
processing resources will be co-allocated so that an estima-
tion of throughput can be derived. The bipartition contin-
ues until the code of the tasks can be fit into the instruc-
tion memory of processing elements. Then the algorithm
iteratively refines the solution by migrating tasks from the
bottleneck stage to other stages. The performance of our
scheme is evaluated with a suite of NP benchmarks using
SUIF/Machine SUIF compiler and Intel IXA Architecture
Tool. The throughput improvement is significant: average
throughput is increased by 20%, and the maximum is 108%.

Categories and Subject Descriptors: C.3: Special pur-
pose and Application-based Systems

General Terms: Algorithms, Performance

Keywords: Network Processors, Program Mapping

1. INTRODUCTION
The growth of Internet has required not only an order-

of-magnitude increase in the forwarding capacity of routing
equipment, but also support for a wider spectrum of applica-
tions, highlighting the need for scalable router design and ar-
chitecture. Network processors (NP), with programmability
and short time-to-market, have emerged as a new alternate
solution to next generation routers.

Although the idea of building programmable devices is ap-
pealing, the complex hardware and specialty of packet pro-
cessing applications make NP programming a challenging
task. NPs incorporate multi-core and/or multi-threading ar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

chitecture with exposed multi-level memory hierarchy. The
instruction memory on each processing element (PE) has
limited space due to relatively high chip area of memory
compared to processing logic. For instance, Intel IXP2800
contains 16 PEs, and each PE has an instruction memory
holding up to 8K instructions [1]. The limited instruction
memory space cannot accommodate the increasingly versa-
tile and complex applications, such as multimedia transcod-
ing, VoIP, and TCP offloading. Therefore the applications
have to be partitioned into micro-tasks which can be stored
into separate PEs. Then, the PEs executing different micro-
tasks form a coarse level pipeline. Limited local data memory
is not considered as the first-order constraint, because NPs
usually store bulk packet data and routing tables in off-chip
memory, and use multi-threading to hide memory latencies.

A distinct feature with an NP system is that multiple PEs
can be configured to run the same task, even within one
pipeline stage. Those PEs execute the same code to pro-
cess different packets concurrently, leveraging the abundant
packet level parallelism (PLP) in network applications. Thus
an NP application can be mapped onto a pipeline topology
with parallel sub-topology in some stages. Fig. 1 illustrates
an example of such hybrid parallel and pipeline programming
model. Stage 2 contains task 2 and 3. It is allocated with
three PEs while stage 1 and 3 only has one PE respectively.

T2 T3
T1 T4

T1 T1 T3 T4

T2 T3
T2 T3

 (a)

 1 PE 3 PEs 1 PE

Stage 1
Stage 2

Stage 3

Figure 1: (a) Program partition (b) Processing re-
source mapping

The throughput of the pipelined program mapping is de-
termined by the maximum stage latency, which includes both
the processing and the inbound/outbound communication
time. A good mapping scheme should minimize the maxi-
mum stage latency to achieve the highest throughput. Previ-
ous work [2, 4, 5] took the approach to duplicate PEs in the
bottleneck stage to reduce its effective stage time. However,
since PEs are not divisible, achieving true balanced stage
time would require a large number of PEs, resulting ineffi-
cient utilization of PE resources. Also, previous work either
neglect the communication cost [2], or do not keep the num-
ber of stages low so that the aggregated communication cost
is high [4, 5].

In this paper, we propose to improve the throughput through

both reducing the number of pipeline stages with minimum
aggregated communication cost, and reducing the maximum
stage time. We use a recursive bipartition algorithm to re-
strain the stage numbers while keeping the aggregated com-
munication cost minimum. To reduce the maximum stage
time, we propose to use stage refinement to migrate tasks
from bottleneck stages to non-bottleneck stages in the frame-
work of our recursive bipartitioning. Such an approach is
more effective and precise to reduce the bottleneck stage
time. Also, it does not require excessive PE resources, and
can achieve better throughput with the same number of PEs.
Our methodology is particularly appealing when a large num-
ber of applications are mapped onto limited PEs, or when the
PEs for main packet processing are reduced due to dedicated
PEs on routine tasks, such as packet receiving/transmitting
and queue management. Experimental results show that
our recursive bipartitioning and refining algorithm improves
throughput by about 20% on average and 108% at maximum,
compared with previous algorithms.

The remainder of paper is organized as follows. Section
2 describes the problem formulation and existing mapping
algorithms. Section 3 introduces the recursive bipartitioning
and refining algorithm with its extension for multi-application
mapping. Section 4 presents the simulation results. Finally,
Section 5 concludes this paper and discusses the future work.

2. PROBLEM FORMULATION AND EXIST-
ING ALGORITHMS

2.1 Problem Formulation
A program is characterized by a program dependence graph

(PDG). The PDG can be constructed from the control flow
graph (CFG) following Ferrante’s algorithm [6]. An example
of a CFG and its corresponding PDG is shown in Fig. 2. This
PDG contains six basic blocks (in circles and diamonds) rep-
resenting B1 to B6 in the CFG. They are taken as tasks. The
“region” vertices {Entry, R2, R3, R4} (in pentagons) sum-
marize the set of control conditions for a task. For example,
B5 is executed under the control condition {4T}. Hence a
region vertex R4 is inserted to represent {4T}, and B5 is a
child of R4. The dashed arrows with numbers represent the
communication costs between tasks. The solid arrows with
labels T or F , represent true or false control dependencies.
This example does not have an else statement, so we only
observe control dependencies with T condition in the PDG.

Entry

B1: nleft = len;
w = addr;

sum = csum;

B2: while (nleft >1)

B3: sum += *w ++;
nleft -= 2;

B4: if (nleft ==1)

B5: sum += ((*w<<8) & 0xff <<
8 | (*w<<8) & 0xff00>> 8);

B6: sum = (sum >> 16) +
(sum & 0xffff);

......

Exit

T

T

Entry

1 R2

2

R3

3

4

R4

5

6

T

T

3

3

3

1

1

1

1

(a) CFG (b) PDG

Figure 2: The CFG and PDG of a snippet of IPv4
forwarding application

Let N be the number of PEs in an NP. The N PEs are
arranged into k pipeline stages. We denote STi as the ac-

tual stage time of stage Si. STi reflects the latency of an
individual packet in Si, which includes task execution time,
inbound and outbound communication latency:

STi =
�

j∈Si

Ej +
�

i/∈Si,j∈Si

Cij +
�

i/∈Si,j∈Si

Cji (1)

The first term is the total execution time of tasks in Si (Ej is
the execution time of task j). The second and third terms are
the inbound and outbound communication cost respectively
(Cij is the weight of the dashed line from task i to j in the
PDG). Here we assume an ideal case with multi-threading,
where the PEs are 100% utilized. We will augment the stage
time model with multi-threading effect in future work.

We denote ST e
i as the effective stage time, which is defined

from the stage throughput point of view. That is, every ST e
i

time, a packet can be released from stage Si. ST e
i can be

determined by the actual stage time and the number of PEs
assigned to this stage, PSi :

ST e
i =

STi

PSi

(2)

The throughput of a pipelined mapping is determined by the
slowest stage, i.e.,

Throughput =
1

Maxk−1
i=0 {ST e

i }
(3)

Thus the goal of NP mapping is to minimize the max ef-
fective stage time. During this procedure, some constraints
should be considered [4]: (i) The code size of tasks in each
pipeline stage should be less than the instruction memory
size. (ii) Minimize the communication cost across stages,
and no backward dependencies should exist across pipeline
stages. Otherwise, the earlier stage will be required to stall in
the middle of execution until the data comes in from a later
stage. Backward-flow synchronization is very expensive, so
it is usually avoided in mapping. For loops, where backward
dependencies usually happen, we consolidate those tasks into
big tasks and avoid partitioning them across stages.

2.2 Existing Algorithms
In general, optimal partitioning and mapping is an NP-

hard problem [2]. Stream programming offers heuristic par-
titioning algorithms (i.e. greedy heuristic) to attain high per-
formance [3]. However, these algorithms cannot be applied to
NP domain directly, because they rely on language support
that exposes coarse-grained parallelism and the constraint
of limited instruction memory is not considered. Therefore,
we do not compare NP partitioning algorithms with stream
programming in this paper.

For NP program mapping, Wolf et al. [7] describe an it-
erative randomization algorithm to map the tasks. This al-
gorithm is not scalable with increasing number of tasks in
the graph, because the search space is too big, and signifi-
cant time is spent filtering out invalid mappings that violate
dependency constraints.

Yao et al. [2] proposed to greedily pack the tasks in sequen-
tial order until the code size in a stage exceeds instruction
memory size. After code packing, the algorithm allocates
PEs to stages in proportion to the actual stage time. We call
this algorithm a code greedy algorithm. This algorithm does
not consider the tradeoff of code space and communication
cost in the code packing. Thus it may generate a mapping
which has high communication cost.

Intel IXP auto-partitioning C compiler [4] used a min-cut
algorithm k−1 times to divide the program into k sequential
parts of roughly the same size. The k parts are then mapped
to PEs to form a k-stage pipeline. The min-cut algorithm
automatically minimizes communication costs across edges.

However, the algorithm assumes that the number of stages k
is given, and the programs are equally divided into k parts,
thus is not directly applicable to hybrid parallel and pipeline
model, which allows heterogeneous actual stage times with a
balanced effective stage time.

Shangri-la [5] uses a throughput-driven heuristic algorithm
to merge tasks into stages from bottom up. Their heuristic
is “if the throughput at step i increases by zeroing the high-
est edge cost then zero this edge.” Shangri-la algorithm is
suitable for coarse granularity graphs which have very non-
homogeneous edge costs. If the edge costs are same or sim-
ilar, the algorithm will lose the hint of which edge to merge
and thus generate sub-optimal pipeline mapping.

Our algorithm uses the concept of partitioning with control
on the pipeline stage number and the aggregated communi-
cation cost. We do not require that the stage number is
known apriori. Moreover, our algorithm automatically gen-
erates hybrid parallel and pipeline topology after task graph
partitioning and PE resource mapping.

3. PROPOSED RECURSIVE BIPARTITION-
ING AND REFINING

In this section, we describe the recursive bipartitioning of
the task-to-processor mapping, and a local refinement mech-
anism of migrating tasks from bottleneck stages to other
stages.

3.1 Resource Balanced Bipartitioning
To minimize the aggregated communication cost of the en-

tire pipelining, we adopt the divide-and-conquer approach.
That is, we bipartition the program recursively into fewest
number of stages with minimum communication cost dur-
ing each partition. The recursive bipartioning serves for the
purpose of finding the optimal number of stages. And the
minimum aggregated communication cost is achieved by ap-
plying the min-cut in each step of partition. The biparti-
tion algorithm has been studied in multiprocessor task al-
location for achieving balanced parallel task execution and
minimal total execution time [10]. We extend this algorithm
to our problem to achieve balanced pipelining and maximum
throughput. The procedure is given in Fig. 3.

Resource Balanced Bipartitioning

Input: Task graph G(T, E) and number of PEs N .

Compute the cut ratio for bipartitioning.

Call the r-Balanced Min-Cut procedure over task graph
G(T, E) and get subgraphs G1(T1, E1), G2(T2, E2).

Compute actual stage time of two partitions (G1, G2) using
Formula (1) and allocate N1, N2 PEs to them.

Insert G1, G2 into the partition tree T.

/* Recursively partition */
if (G1’s code size > IM size) then

Call Resource Balanced Bipartitioning with G1 and N1.
if (G2’s code size > IM size)then

Call Resource Balanced Bipartitioning with G2 and N2.

Figure 3: The resource balanced bipartitioning pro-
cedure

Our bipartition algorithm is based on the r-Balanced Min-
Cut which cuts off vertices whose total weights are of fraction
r of the total graph weight [11]. This algorithm is adopted
from the iterative balanced push-relabel algorithm which is
widely used to find Max-Flow-Min-Cut [12]. r is the cut ratio
between two partitions with the default value of 0.5. If the

estimated number of stages is odd, r should be adjusted ac-
cordingly. For example, r can be adjusted to 2 : 3 = 0.4 (or
0.6) for a 5-stage pipeline in the bipartition procedure.

The initial value of r should be a tight estimation. That is,
if the program needs at least p partitions, then r should be
set according to p. Otherwise, the algorithm would find more
stages than necessary. We use the minimum stage number to
derive the initial estimation of r. The minimum stage num-
ber is the total program code size divided by the instruction
memory size per PE, as shown in (4).

MIN stage number = �
�

i∈T Mi

IM Size
� (4)

where Mi is the code size of task i. Note that the final opti-
mal number of stages is not necessarily the minimum stage
number. Other factors including task granularity, communi-
cation variance might bias the cut and increase the number
of stages. The bipartition procedure takes into account these
factors and adjusts the stage number accordingly.

After a min-cut is performed, we compute the actual stage
time of the two subgraphs using (1). Then we partition the
N PEs into N1, N2 and allocate them to the two subgraphs.
We first allocate enough PEs to accommodate the static code.
However, this allocation does not necessarily balance the ex-
ecution time between the two subgraphs. Therefore, we allo-
cate remaining PEs in proportion to the actual stage time to
form parallel execution. This also helps minimize the effec-
tive stage time because the more time consuming a stage is,
the more PEs should be allocated to it to balance the pipeline
workload. Equation (5) and (6) show the lower bound and
upper bound of number of PEs that should be allocated to
partition 1 and 2 respectively.

N1 ∈ [�
�

i∈T1
Mi

IM Size
�, �N ∗ STpart1

STpart1 + STpart2
�] (5)

N2 ∈ [�
�

j∈T2
Mj

IM Size
�, �N ∗ STpart2

STpart1 + STpart2
�] (6)

During the recursive bipartitioning process, we maintain
a partition tree, which will be used in the local refinement
for pipeline workload balancing. Balanced trees [16], such as
AVL tree, splay tree have similar property, but are used to
balance heights of the two child subtrees. In our approach,
we balance the throughput in the two child subtrees.

The bipartition procedure continues until each partition’s
code size is less than the size of instruction memory. After
we derive all the leaves in the partition tree, we get an initial
mapping in a hybrid parallel and pipeline topology.

3.2 Refinement
The initial mapping we derive from recursive bipartitioning

is often suboptimal in workload balancing due to combina-
torial constraints. For example, suppose the stage time ratio
between two stages is 2:3, but the PE number ratio is 1:2 be-
cause only integer number of PEs can be allocated to the two
stages. As a result, their effective stage time is 2:1.5 while a
perfect ratio is 1:1. Previous work [2, 4, 5] rely solely on allo-
cating more PEs to heavy loaded stages to achieve balanced
pipeline. Due to the indivisibility of the PEs, such an ap-
proach is insufficient to attain an optimal balanced pipeline.

We adopt a refinement algorithm to improve our initial
mapping result. Refinement is widely used in adjusting tasks
among vertices in a general network. Well known algorithms
such as the Kernighan-Lin’s algorithm [13] and its subse-
quent extensions can be applied to our hybrid parallel and
pipeline mapping with some modifications. Although we gen-
erally refer to the refinement algorithm as a local search, the

paradigm does not preclude the use of more complex tech-
niques, such as simulated annealing, genetic algorithms, etc.

Our essential idea is to migrate tasks from bottleneck stage
to non-bottleneck stage. The simplest method is to perform
local adjustment, as illustrated in Fig. 4 (a). Here we move
tasks from the bottleneck stage only to its neighbors. This
works well when the neighbors have sufficient instruction
memory capacity and computation power. Otherwise it may
fail. For example, the processing pressure in S5 cannot be
mitigated if S4 and S6 cannot accommodate additional tasks
due to full instruction memory or high workload. To make
the migration global, we propose a hierarchical adjustment
that combines the local adjustment with our partition tree.
It performs local adjustment within a subtree, and gradu-
ally increases the tree level until a migration is successful. A
successful migration is one that increases the overall through-
put. For example, in Fig. 4 (b), S5 first tries to move tasks
to S6. If unsuccessful, S5 passes the processing pressure to
the parent node, which checks if the left subtree (S3, S4) can
take the additional tasks without deteriorating the overall
throughput. If S3 and S4 cannot accommodate tasks from
S5, the algorithm goes up another level to probe S1, S2.

S1 S6S2 S3 S4 S5

 (a) Local Adjustment

Bottleneck

S3 S4 S5 S6

S1 S2

2

Bottleneck

1

3

 (b) Hierarchical Adjustment

Stage with full
instruction store in PEs

Stage with non-full
instruction store in PEs

Figure 4: Two methods to perform refinement

During the hierarchical adjustment, tasks are migrated
within a subtree subject to the precedence constraint of the
program. Only the tasks at the stage boundary can be moved
into neighbors. That is, tasks near the front (back) boundary
can only be moved to the upstream (downstream) neighbor.
For example in Fig. 4, when S5 cannot move the back bound-
ary tasks to S6, it will try the sibling subtree (S3, S4). This
adjustment may require S3 taking some front border tasks
from S4 and S4 taking some front border tasks from S5. The
boundary tasks are defined as:

Ti ∈ FrontSi iff ∀Ti ∈ Si, Tj ∈ Si, (Tj , Ti) /∈ E (7)

Ti ∈ BackSi iff ∀Ti ∈ Si Tj ∈ Si, (Ti, Tj) /∈ E (8)

where FrontSi (BackSi) denotes the front (back) border
tasks for stage i. For each task Ti considered for migration,
we compute the throughput gain were Ti to migrate to some
other stage. To verify if the sibling subtree can accommodate
Ti, the algorithm calls the Bipartition procedure to reparti-
tion the graph after task migration. It migrates the task
with the highest gain first. The refinement terminates when
(i) the throughput of two subtrees are balanced within a tol-
erance or (ii) further task migration cannot help to improve
throughput. The pseudocode of recursive local refinement is
sketched in Fig. 5.

Local Refinement

Input: Partition tree T and root node R.

/* Recursively refine, refine child nodes first */
if (R’s left subtree contains bottleneck stage) then

Call Local Refinement with R and R’s left child.
if (R’s right subtree contains bottleneck stage) then

Call Local Refinement with R and R’s right child.
do

Compute the boundary tasks of bottleneck tree (left or
right subtree).
for (all tasks on the boundary)

compute the throughput gain if shifting this task to
sibling subtree.

Migrate the task that maximizes the throughput gain.
Update the partition tree T .

while (|Throughputleft − Throughputright| > ε and ∃ task
on the boundary whose throughput gain ≥ 0)

Figure 5: The local refinement procedure

3.3 Time Complexity
To bipartition an NP program into k stages, at most k −

1 times of r-Balanced Min-cut will be executed. Based on
Goldberg and Tarjan’s work [12], r-Balanced Min-cut has
O(|T ||E|) time complexity, where T, E are tasks and edges.
Therefore, the complexity for our bipartition procedure is
O(k|T ||E|). Considering that k is a small integer which is
less than the number of PEs, we safely round the complexity
to O(|T ||E|).

In the refinement procedure, the total number of task mi-
gration is O(|T |), because we restrict task migration in one-
way direction and the adjustments are only performed on the
boundaries. There is little chance that the same task will
be migrated twice, due to graphs’ precedence constraints. In
each task migration, the complexity of computing the bound-
ary tasks of a partition is O(|E|). A recursive bipartition
might be called to calculate the throughput gain which has
O(|T ||E|) complexity. Thus the total complexity of refine-
ment is O(|T | ∗ (|E| + |T ||E|)).

Summing up the complexity of bipartition and refinement,
we show that the total complexity is O(|T |2|E|). This time
complexity should be acceptable, considering that program
mapping is performed offline by compilers.

3.4 Extension to Map Multiple Applications
Our partitioning algorithm can be extended to map mul-

tiple applications. Instead of partitioning the applications
individually, we merge the program dependency graphs of
different applications into one unified graph. We add a vir-
tual source vertex and a virtual sink node, which connect to
the original source and sink nodes respectively. The weight
of edges going out of the virtual source and coming into sink
are set to 0. By doing so, the bipartition algorithm tends to
cut these zero-cost edges for minimum cut cost. As a result,
the tasks belonging to different applications will be parti-
tioned into different stages, which can be executed concur-
rently. The application level parallelism can be maintained
in the mapping results.

4. EXPERIMENT AND EVALUATION
In this section, we present the experimental results of our

algorithm and highlight certain intrinsic advantages. We will
first present the experimental framework, and then compare
the throughput of our algorithm with two previous works and
furnish sensitivity results of our algorithm.

4.1 Experimental Framework

.c files Suif &
Machine

Suif

Control Flow
Graph

SSA &
PDG

passes

Program
Dependence

Graph

Halt
pass

Instrumented .s
files gcc

exe &
profile

Partition
& Map

Intel IXA
Arch Tool

Result

.xml files
Program

Mapping &
Hardware Config

Figure 6: Experimental Framework

Table 1: Packet Processing Applications

Application Functionality Code Size(insn)

ipv4fwdr Validation & trie-based lookup 1548
nat Replacing address and port 1645
ipsec AES encryption 3833
flow Hashing based on 5-tuple 4215

portscan Detecting suspicious activity 4760
md5 Integrity verification 4934

Fig. 6 shows our experimental framework which combines
the SUIF/Machine SUIF [8][9] compilers and the Intel IXA
Architecture Tool [1]. The original C programs are first con-
verted to SUIF control flow graphs (CFGs). For the ease of
data dependency analysis, we inlined all the major functions,
which is a common approach in NP program construction
[1]. Next we translate the intermediate representations (IRs)
into the static single-assignment form, which facilitates the
data flow analysis. We then wrote a new pass pdg to extract
program dependence graphs (PDGs) based on control flow
and data flow information. To profile the tasks’ execution
frequency, we use the Machine SUIF HALT library to in-
strument the program and then convert the IRs to assembly
programs. Then the instrumented version of programs are
compiled by gcc. The binaries are executed with continuous
traffic traces to exploit the execution frequency of the tasks.
Once the PDG with profiled information is acquired, differ-
ent program mapping algorithms are applied to obtain the
mapping results.

We evaluate the performance in Intel IXA Architecture
Tool (AT) [1]. AT enables a full dynamic simulation of
the application at the thread level. We use Intel IXP2800
[1]’s hardware configuration, which features 16 PEs running
at 1.4GHz with 32MB SRAM and 512MB DRAM memory.
Tasks are described by I/O references (references to Scratch
ring, SRAM, DRAM memory units), code blocks (the num-
ber of PE instruction cycles taken by tasks), signals and wait
(allows a wait on 0 or more signals). A group of tasks can
be aggregated into a pipeline stage and duplicated accord-
ing to the mapping results. The communication between
pipeline stages is modeled as Scratch Ring and SRAM oper-
ations. The packet handler, control dependency information,
contents of live registers will be considered in the communi-
cation cost between pipeline stages.

Six NP applications are ported from NetBench [15] and
PacketBench [14]. Their code sizes are listed in Table 1 in
ascending order. These code sizes will determine the pipeline
depth. In order to measure the worst-case throughput, we
feed unlimited continuous traffic with minimum packet size
(i.e. 64B) to the simulations. The routing table used for the
IPv4 forwarding is MAE-WEST [14].

4.2 Performance Results
We compare the throughput of our algorithm with two

previous works: the Code Greedy [2] and the Intel IXP auto-
partitioning C compiler [4]. We do not compare with the

Shangri-la algorithm [5] because it assumes coarse granu-
larity task graphs and may not produce valid mappings for
PDGs. We vary the available PEs from 4 to 16 and instruc-
tion memory from 1K instructions to 5K instructions. These
configurations closely match the specification of state-of-the-
art NP products. The throughput is measured in million
packets per second (mpps).

Fig. 7 shows the throughput of three approaches with 8
PEs and instruction memory size of 1K instructions. We
have six benchmarks and five combination benchmarks that
can be accommodated by 8 PEs. The combination bench-
marks represent situations where packets are processed by
more than one application at the same time. The bench-
marks are arranged in an increasing order of code size, in
Fig. 7.

We observe that our bipartitioning with refinement per-
forms better than code greedy [2] and balanced cut [4] algo-
rithms. For 9 out of 11 benchmarks, our algorithm demon-
strates higher throughput. The throughput improvement
ranges from 6% to 108% with an average of 22%. For flow,
our algorithm achieves the highest improvement of 108%.
This is because flow has comparatively larger code size (as
shown in Table 1), which requires at least 5 pipeline stages.
Given 8 PEs, only 3 PEs are available for duplication pur-
pose. Pure code duplication is no longer effective in balancing
the workload in this case, thus balancing stage time in the
hybrid parallel and pipeline model becomes critical.

For benchmarks ipv4fwdr and nat, we observe compara-
tively lower throughput improvement. This is because these
two benchmarks have smaller code sizes, so the pipeline is not
very deep. All the three approaches aggressively duplicate
the pipeline stages and produce similar throughput. Ipsec,
portscan and md5 do not show much improvement even if
their pipelines are deep, because they have big loops which
are not divisible due to backward dependencies. Under such
circumstances, no opportunity is left for refining the map-
pings.

0

1

2

3

4

5

6

7

ip
v4

fw
dr

nat

ip
se

c
flo

w

ports
ca

n
m

d5

ip
v4

fw
dr_

nat

ip
v4

fw
dr_

ip
se

c

ip
v4

fw
dr_

flo
w

flo
w_n

at

ip
v4

fw
dr_

m
d5

T
h

ro
u

g
h

p
u

t(
m

p
p

s)

Greedy BalancedCut BiPar+Refinement

Figure 7: Throughput performance in three ap-
proaches, PE number=8, IM size=1K insns

Fig. 8 presents the throughput result with 16 PEs, 1K in-
struction memory. With more PE resource, the duplication
possibility is significantly increased. Moreover, additional

0

2

4

6

8

10

12

14

ip
v4

fw
dr

nat

ip
se

c
flo

w

ports
ca

n
m

d5

ip
v4

fw
dr_

ip
se

c

ip
v4

fw
dr_

flo
w

flo
w_n

at

ip
v4

_f
wdr_

m
d5

flo
w_p

orts
ca

n

flo
w_m

d5

ip
v4

fw
dr_

flo
w_n

at
_m

d5

T
h

ro
u

g
h

p
u

t
(m

p
p

s)

Greedy BalancedCut BiPar+Refinement

Figure 8: Throughput performance in three ap-
proaches, PE number=16, IM size=1K insns

benchmarks can be accommodated into a 16 PE NP. For
the 13 benchmarks measured, we observe 19.3% throughput
improvement on average. For single benchmarks (ipv4fwdr
etc.), we observe little throughput improvement. This is be-
cause the three mapping algorithms have plenty of PEs for
duplication, which are enough for balancing the pipeline’s ef-
fective stage time. For combined benchmarks where resource
constraint exists, we still observe significant throughput gain,
i.e. 100% for flow md5. These results demonstrate that our
algorithm can effectively improve the NP throughput under
resource constrained cases.

We vary the instruction memory size for flow md5 bench-
mark in Fig. 9, and illustrate the throughput increase with
16 PEs. Our refinement is very effective in balancing the
pipeline workload when IM size equals 1K and 2K instruc-
tions. The throughput is increased from 1.4 mpps to 2 mpps
with 1K instruction memory. As we increase the IM size
to 5K instructions, the throughput improvement starts to
level off. This is because the pipeline depth is significantly
reduced with larger IM size. In the extreme case, the en-
tire program can fit into one PE with rest PEs duplicated as
parallel engines without pipelining.

Fig. 10 shows the packet throughput as a function of the
number of PEs. Clearly the performance improves as more
PEs are employed. As more PEs are recruited, the two pre-
vious algorithms also have enough PEs for code duplication.
Hence the effect of refinement is less significant. However, our
algorithm does show a consistent better throughput than the
other two algorithms.

From Fig. 9 and 10, we observe that our recursive bipar-
titioning and refining algorithm is especially effective under
resource constrained conditions. As we move to more com-
plex applications on the Internet, code size of applications
will increase and resources will be more constrained. The
proposed algorithm will be more and more effective.

PE = 16

0

0.5

1

1.5

2

2.5

3

1K 2K 3K 4K 5K
IM Size

T
h

ro
u

g
h

p
u

t
(m

p
p

s)

Greedy BalancedCut BiPar+Refinement

Figure 9: Throughput in three approaches with vari-
ous sizes of IM, PE number=16, flow md5 benchmark

IM = 3K

0

0.5

1

1.5

2

2.5

3

4 6 8 10 12 14 16
Number of PEs

T
h

ro
u

g
h

p
u

t
(m

p
p

s)

Greedy BalancedCut BiPar+Refinement

Figure 10: Throughput in three approaches with
various number of PEs, IM size=4K insns, flow md5
benchmark

5. CONCLUSION
This paper addresses the challenges of task partitioning

and mapping onto hybrid parallel and pipeline topology in
NP systems. We propose recursive bipartitioning and refin-
ing to find a load balanced pipeline. The algorithm recur-
sively migrates tasks from bottleneck stage to non-bottleneck
stage to improve the throughput. Simulation results have
shown that our algorithm can improve throughput by 20%
on average with the state-of-the-art NP configurations. In
our future work, we plan to exploit other factors that af-
fect program mapping (i.e. data memory and heterogenous
threads).

6. REFERENCES
[1] Intel IXP2XXX Product Line of Network Processors, Intel

Corporation.
[2] J. Yao, Y. Luo, L. Bhuyan and R. Iyer “Optimal Network

Processor Topologies for Efficient Packet Processing,” IEEE
Globecom, 2005.

[3] M.I. Gordon, W. Thies, and S. Amarasinghe “Exploiting
Coarse-Grained Task, Data, and Pipeline Parallelism in Stream
Programs,” ASPLOS, 2006

[4] J. Dai, B. Huang, L. Li and L. Harrison, “Automatically
Partitioning Packet Processing Applications for Pipelined
Architectures,” PLDI ’05, pp. 237-248, 2005.

[5] M.K. Chen, X.F. Li, R. Lian, J.H. Lin, L. Liu, T. Liu and R. Ju
“Shangri-La: Achieving High Performance from Compiled
Network Applications while Enabling Ease of Programming,”
PLDI ’05, pp. 224-236, 2005.

[6] Steven S. Muchnick, “Advanced compiler design and
implementation,” Morgan Kaufmann Publishers Inc., 1997

[7] N. Weng and T. Wolf “Pipelining vs. Multiprocessors – Choosing
the Right Network Processor System Topology,” ANCHOR in
conjunction with ISCA 2004.

[8] SUIF Compiler System, Stanford University.
[9] Machine-SUIF, Harvard University.
[10] F. Ercal, J. Ramanujam and P. Sadayappan, “Task Allocation

onto a Hypercube by Recursive Mincut Bipartitioning”, in
Journal of Parallel and Distributed Computing pp.35-44, Vol. 10,
No. 1, 1990.

[11] H.H. Yang and D.F. Wong, “Efficient Network Flow Based
Min-cut Balanced Partitioning” in Proc. of the 1994 IEEE/ACM
international conference on Computer-aided design pp.50-55,
1994.

[12] A.V. Goldberg and R.E. Tarjan, “A New Approach to the
Maximum Flow Problem” in Proc. 18th ACM STO, pp.136-146,
1986.

[13] B.W. Kernighan and S. Lin, “An efficient Heuristic Procedure
for Partitioning Graphs,” Bell Syst. Tech. J., pp. 291-308, Vol. 49,
No. 2, 1970.

[14] R. Ramaswamy and T. Wolf. “PacketBench: A Tool for
Workload Characterization of Network Processing,” WWC-6,
pp.42-50, 2003.

[15] G. Memik, W.H. Mangione-Smith and W.D. Hu “NetBench: A
Benchmarking Suite for Network Processor,” ICCAD, pp.39-,
2001.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein, “Introduction to Algorithms,” MIT Press, 2001.

