
A New TCB Cache to Efficiently Manage TCP Sessions for
Web Servers

 Guangdeng Liao1, Laxmi Bhuyan1, Wei Wu2, Heeyeol Yu3, Steve R. King2
 1

University of California, Riverside, USA
 2

Intel Corporation
 3

Cisco Systems, Inc

 {gliao, bhuyan}@cs.ucr.edu {wei.a.wu, steven.r.king}@intel.com heeyu@cisco.com

ABSTRACT

TCP/IP, the most commonly used network protocol, consumes a

significant portion of time in Internet servers. While a wide

spectrum of studies has been done to reduce its processing

overhead such as TOE and Direct Cache Access, most of them did

studies solely from the per-packet perspective and concentrated on

the packet memory access overhead. They ignored per-session

data TCP Control Block (TCB), which poses a challenge in web

servers with a large volume of concurrent sessions.

In this paper, we start with challenge studies and show that the

TCB data should be efficiently managed. We propose a new TCB

cache addressed by session identifiers to address the challenge.

We carefully design the TCB cache along two important axes:

cache indexing and cache replacement policies. First, we study the

performance of various hash functions and propose a new

indexing scheme for the TCB cache by employing two Universal

hash functions. We analyze session identifiers and choose some

important bits as indexing bits to reduce hashing hardware

complexity. Second, by leveraging characteristics of web sessions,

we design a speculative cache replacement policy, which can

effectively work on the TCB cache with two cache banks.

Experimental results show that the new cache efficiently manages

the per-session data. When it is used in TOEs or integrated into

CPUs to manage the per-session data, TCP/IP processing time is

significantly reduced, thus saving web server response time.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network

communication.

General Terms

Design, Performance.

Keywords

TCB, Cache, TOE, Web Servers, Hash Functions.

1. INTRODUCTION
TCP/IP over Ethernet is the most dominant communication

protocol in commercial servers such as web server, e-commerce,

database, storage over IP, etc. Existing research [3, 10, 11, 14, 17,

18, 20, 32] has shown that TCP/IP packet processing, especially

in the receive side, consumes a significant portion of time in those

servers. Specifically, it was found that the TCP/IP processing

overhead in high performance web servers such as Flash web

servers can reach up to 80% of the time [14], and the processing

in the receive side over 10 Gigabit Ethernet network (10GbE)

easily saturates two cores of an Intel Xeon Quad-core processor

[17]. Hence, it is important to optimize TCP/IP packet processing

so that Internet servers can ultimately provide better web service.

A wide spectrum of architectural research has been conducted for

TCP/IP to optimize its processing performance [3, 6, 9, 10, 11, 17,

21, 22, 29]. They fall into two categories: Offloading protocol

stack into NICs like TCP Offload Engine (TOE) [6, 9, 22, 29] and

pushing NICs closer to CPUs such as Direct Cache Access (DCA)

or integrated NICs [3, 10, 11, 17]. TOE offloads the whole

protocol stack to eliminate the processing overhead. In contrast to

TOEs, Intel proposed DCA to route network data into CPU

caches for eliminating the packet memory access overhead [9].

Without modifying the TCP/IP protocol stack, Binkert et al. [3]

integrated a simplified NIC into CPUs to naturally implement

DCA and to eliminate long latency access to device registers.

However, previous studies were conducted from the per-packet

perspective and focused on the packet memory access overhead.

They paid no attention to per-session data TCP Control Block

(TCB). TCB is a per-session data structure of 512 bytes that

TCP/IP uses to store its TCP session states and is accessed on the

TCP critical path [4, 9, 14, 24]. A large number of sessions and

web session behavior in web servers complicate the management

of TCBs and introduce challenges: 1) in TOEs, TCB is accessed

in the critical path and protocol processing stalls until the data is

ready [9]. Hence, TCP/IP processing performance heavily relies

on how fast TCB is accessed. Typically, TOEs put a CPU-like

dedicated cache associated with modular indexing and the Least-

Recently-Used replacement policy (LRU) to manage the per-

session data. Unfortunately, thousands of concurrent web sessions

substantially increase cache design complexity and those

conventional cache designs are inefficient; 2) besides TOEs, the

TCB access overhead is also significant in web servers while

running the protocol stack on CPUs [14]. That is because a large

number of web sessions enlarge the working set size and incurs

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ANCS‟10, October 25-26, 2010, La Jolla, CA, USA.
Copyright (c) 2010 ACM 978-1-4503-0379-8/10/10…$10.00

cache pollution, and long intervals between two page requests (or

user thinking time) in the same session increase the reuse distance

of the per-session data deteriorating cache pollution. The above

challenges motivate us to design a new dedicated TCB cache to

manage the per-session data.

In this paper, we design a new TCB cache with extensive

consideration of web session characteristics. The proposed TCB

cache is addressed by the session identifier, contained in the

header of the incoming web request. To provide high cache

performance, we design the cache along two important axes:

cache indexing and cache replacement policies. We observe that

the traditional modular hash is not a perfect fit for the TCB cache

due to its uneven cache accesses. Prior studies on CPU caches

[13, 25, 31] have demonstrated that XOR-based hash and Prime-

based hash can reduce cache conflict misses for SPEC CPU

benchmark applications. Motivated by these studies, we evaluate

the performance of various hash functions and propose a new

cache indexing scheme for the TCB cache by employing multiple

Universal hash functions [5]. In hash literature, multiple

Universal hash functions have been analyzed and confirmed that

they can lead to a more even distribution of load across hash

buckets [5]. Our studies reveal that two cache banks based on

Universal hash functions for a TCB cache perform well. Since all

session identifiers share the same destination port and IP address

for a web server, we reduce a session identifier from a 4-tuple of

96 bits (src IP, src port, dst IP, dst port) to a 2-tuple of 48 bits (src

IP, src port). To further reduce hashing hardware complexity, we

do a bit-by-bit analysis and choose 16 important bits as indexing

bits for the TCB cache. Using the tailored indexing bits reduces

the hashing hardware complexity by a factor of 3 while retaining

the same cache performance.

Although multiple cache banks can achieve an even cache access

distribution, they make it difficult to implement cache

replacement policies in hardware [13, 25, 26, 27, 31] and sacrifice

the effectiveness. In this paper, we design a speculative cache

replacement policy to resolve the above issues by leveraging web

session characteristics. Each session in web servers exhibits an

ON/OFF model, where the periods during the file transfer and the

idle times are referred to as the ON period and the OFF period,

respectively [2, 8]. During the ON period, the corresponding TCB

is frequently accessed, whereas no TCB access occurs during the

OFF period. ON and OFF periods interleave in each session. In

the speculative replacement policy, we predict TCB blocks with

the ON/OFF status and aim at keeping ON cache lines as long as

possible. In addition, we propose migrating the replaced ON cache

lines to another cache set with OFF cache lines based on auxiliary

Universal hashing. We perform a detailed hardware design to

show that the above policy can be implemented at a reasonable

hardware cost and outperform existing cache replacement policies

on multiple cache banks [13, 31].

In order to evaluate cache designs, we developed a trace-driven

cache simulator and experimented with four real web server

traces: Boston University trace (BU), NASA-HTTP (NASA),

ClarkNet-HTTP (Clarknet), Saskatchewan-HTTP (Sak).

Simulation results show that the new TCB cache achieves much

lower miss ratios than the original TCB cache. When it is used in

TOEs or integrated into CPUs to manage the per-session TCB

data, we can significantly reduce TCP/IP processing time, thus

saving web server response time.

The remainder of this paper is organized as follows. The next

section describes our preliminary studies to motivate the research.

The designs of the new TCB cache architecture are elaborated in

Section 3 and experimental results are presented in Section 4.

Finally we discuss related work and conclude the paper in Section
5 and 6, respectively.

2. PRELIMINARY STUDIES

2.1 TCB Challenges
A wide spectrum of optimizations has been done for TCP/IP to

improve its processing performance. They fall into two categories:

offloading the protocol stack into NICs (TOE) [6, 9, 22, 29] or

pushing NICs closer to CPUs while keeping protocol processing

on CPUs [3, 10, 18, 21] such as DCA or integrated NIC etc. In

this subsection, we study challenges on these two schemes from a

large number of sessions in web servers to motivate our research.

2.1.1 Challenge in TOEs
Intel presented its 10Gbps TOE's detailed designs in [9] and the

major function units are illustrated in Figure 1a. Input sequencer

analyzes an incoming packet and extracts the 4-tuple session

identifier from the packet header. The packet is stored into

memory sitting on-board or connected externally for future

transfer to applications. The session to which the packet belongs

is looked up and the session data is loaded into internal working

registers used by the execution unit. Then, the execution unit,

controlled by instructions from the instruction ROM, performs the

central part of the protocol processing using the session data. The

complete micro-program implemented to perform TCP inbound

processing consists of ~300 lines of code. The TCP fast path

processing for in-order packets in a session takes 116 instructions

and the slow path processing with complex out-of-order control

have ~300 instructions. In most of the cases, incoming packets

are in-order and thus belong to the fast path.

Figure 1a. Function units in TOEs

Figure 1b. Processing time with a TCB miss

In TOEs, TCB is accessed before protocol processing and the

processing stalls until the data is ready. The data is returned from

the TCB cache with a cache hit, otherwise, it is fetched from the

memory. It was reported in [9] that 51.2 ns is required for in-order

packet protocol processing in a 10Gbps TOE. With a TCB cache

miss, Figure 1b shows the overall packet processing time, where

we assume that memory access latency is 50 ns and each cache

miss incurs only one memory access (TCBs are typically

organized by a hash table in the memory and the TCB entry is

found by traversing a linked list in each hash table bucket [4]. A

TCB cache miss incurs both the linked-list traversal and data

accesses, thus causing more than one memory accesses). Fig.1b

reveals that TCB access takes more than 50% percent of the

overall processing time and much higher if we consider several

memory accesses for a cache miss. With a cache hit, the TCB

access latency can be substantially reduced to 6.4 ns [9]. Hence,

the packet processing performance heavily relies on how fast TCB

is accessed. Currently, the TCB cache is implemented as a

traditional cache associated with modular indexing and LRU.

However, as the number of sessions increase in web servers, these

simple cache designs without considering web session

characteristics cannot efficiently keep session data. A more

efficient TCB cache is required to provide high cache

performance.

2.1.2 Challenge in protocol processing on CPUs
In addition to TOEs, a large number of sessions also pose a

challenge when the TCP/IP protocol stack is running on CPUs

[14]. We establish a server-client environment, where the client

opens the specific number of TCP sessions and sends 1KB

requests across all of the sessions in a round-robin way to the

server. Both the server and client are Intel machines with 2.67

GHz Intel Quad-core processors. Intel performance counters are

used to instrument Linux in-kernel network stack and measure the

execution time of individual kernel functions or groups of kernel

functions. The lives of processing a request with one session and

4K sessions are shown in Figure 2a and 2b, respectively with a

timeline scale of 500 CPU cycles per unit. The horizontal dashed

line separates the kernel and user space, and only kernel functions

are considered. Note that the figures only show functions in the

TCP critical path and do not consist of functions in the non-

critical path such as buffer allocation, de-allocation and

scheduling etc.

Figure 2a. Life of packet (single session)

Figure 2b. Life of packet (4K sessions)

The received request processing starts from the interrupt handler

e1000_intr in the device driver. After the interrupt handler, the

request is delivered up to the IP layer (ip_rcv) and the TCP layer

(tcp_rcv). Then, the network stack performs TCB lookups to find

the destination TCB's address and does per-session processing

according to TCB data, both of which we refer to as TCB

processing in figures. Finally, the request is copied to user

applications by using the skb_copy_bits function. The timing

analysis shows that the TCB processing overhead increases

rapidly with a large number of sessions, and becomes significant

along with other two overheads in the TCP critical path: the driver

and data copy. Since existing research [3, 10, 21] effectively

reduces those two overheads, it becomes important to address the

remaining TCB processing challenge. Our analysis shows that

TCB lookups and access mainly contribute to the overhead of

TCB processing. Web servers with a large number of sessions

increase the chance that TCB data is polluted in caches, and

degrade TCB lookup performance as well because traversing the

linked list in a bucket is prone to incurring cache misses [14].

2.2 Characterization of Web Sessions
In the web domain, a web session is defined as a sequence of

requests made by a single client during its visit to a particular

server [2, 7]. A modern web page includes reference-indexed

embedded files which are typically images or graphs; these files

are required to properly display the web page to the client. Thus, a

typical request for a web page usually results in multiple

consecutive client requests for those embedded items. Extensive

studies on real web traffics have shown that web sessions exhibit

the ON/OFF model [2, 7]. The entire transfer period for the whole

page is referred as ON period, and the time gap between two

requests for two embedded items as Idle when server responses

are transmitted. After the client receives the whole web page, it

usually takes a period of time for the client to read the page before

sending the next page request. This period is referred as the OFF

period. During the ON period, TCB is frequently accessed, but no

access occurs in the OFF period. Thus, keeping or not replacing

cached contents during the ON period is critical, a property that is

used later to design the speculative cache replacement policy.

Figure 3a. Inter-request time frequency in ON

Figure 3b. OFF time frequency (OFF)

We choose four web server traces to study the characteristics of

web sessions: Boston University trace (BU), NASA-HTTP

(NASA), ClarkNet-HTTP (Clarknet), Saskatchewan-HTTP (Sak).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Fr
eq

u
en

cy

Seconds

BU NASA Clarknet Sak

0

0.04

0.08

0.12

0.16

0.2

0 2 4 6 8 16 32 64 128 256 512 1024

Fr
e

q
u

e
n

cy

Seconds

BU NASA Clarknet Sak

We measure both the time between two consecutive requests

during the page transfer (in ON) and the time between two

consecutive ON (OFF time) for all traces. Figures 3a and 3b show

the frequency for the time. We observe that the inter-request time

in the ON period is fairly small compared to the OFF time and is

typically less than 1 second. The above time analysis guides us to

design an efficient cache replacement policy.

2.3 Cache Indexing
Numerous papers [13, 26, 27, 31] have demonstrated that using

alternative cache hashing functions for CPU caches can reduce

cache conflict misses for SPEC CPU benchmarks by achieving a

more uniform cache access distribution. We evaluated the

performance of different hash functions such as traditional

Modulo hashing (Mod), XOR-based hashing (XOR) [26, 27, 31],

Prime Modulo (PMod) [13], Prime Displacement (PDisp) [13]

and CRC [23]. We also studied multiple hashing schemes (each

cache bank has a separate hash function), such as two Prime

Displacement Hashing (2-Pdisp) [13], two XOR-based hashing

(2-XOR) [26, 27], four Prime Displacement hashing (4-Pdisp),

four XOR hashing (4-XOR) [26, 27]. For multiple hashing

schemes, we use the cache replacement policy ENRU (Enhanced

Not Recently Used) as used in [13]. The results are shown in the

next section where we present the new TCB cache organization

based on the Universal hash function and show its superiority

over all others for the four web server traces.

3. A NEW TCB CACHE
In this section, we elaborate TCB cache designs considering web

session characteristics. The cache organization is described in

Subsection 3.1 and the bit selection is explained in Subsection 3.2.

In Subsection 3.3, we illustrate the Lifetime array used by the new

cache replacement policy, which is presented in Subsection 3.4.

3.1 Cache Organization
A cache organization is primarily defined depending on how a set

is indexed. Our aim is to distribute the mapping uniformly that

can ensure simultaneous occupancy of a large number of sessions

being connected to the web server at a time. Universal hash

functions are known to generate an even distribution of workload

over the hash buckets and are relatively easy for hardware

implementation [25]. We present the TCB cache miss ratios of

four web server traces with various hash functions in Figure 4,

where all cache miss ratios are normalized to the miss ratio of

modulo mapping (Mod). We observe the following: 1) both Mod

and XOR are not good fit for TCB cache; 2) PMod and PDisp are

not as good as Universal and CRC; 3) having two hash functions

obtains better performance than single hash function. It was

observed in [13] that PMod and PDisp hash functions are better

than Mod and XOR for SPEC CPU benchmarks. As we can see,

they are also better for web server traces, but not as good as the

proposed Universal hash functions. Among all of the hashing

schemes, 2-Universal achieves the best performance. It may be

noted that having more than two hash functions degrades

performance because more cache banks split the original LRU set

and sacrifice the effectiveness of the cache replacement policy.

In order to understand the performance gap of various hash

functions, we study probability distribution function (PDF) of

absolute deviation of the number of sessions in cache sets (or |X

minus expected value of X|, where X is the number of sessions in

a cache set) and show result for one trace (Sak) in Figure 5. The

figure points out that multiple hash functions have higher

probability at small values like 50 and thus achieve a more even

cache access distribution. Although other traces studies are not

shown here, they behave similarly.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

NASA Clarknet Sak BU

N
o

rm
al

iz
ed

 t
o

 M
o

d

Mod

XOR

Pmod

Pdisp

Universal

CRC

2-Pdisp

2-XOR

2-Universal

4-Pdisp

4-XOR

4-Universal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 250 300 350 400 450 500

P
ro

b
ab

ili
ty

Mod

XOR

Pmod

Pdisp

Universal

CRC

2-Pdisp

2-XOR

2-Universal

4-Pdisp

4-XOR

4-Universal

Figure 4. Performance of cache hash functions

Figure 5. PDF of absolute deviation of #sessions in cache set

= = = =... ...

Match SignalsMatch logic

Hit Miss

Index 1

Index 2

<SIP, SPort>

MUX

Output

TCB

Data ArrayTag Array LifeTime

Array

Replacement Unit

Write_Enable

For cache ways

48bits

H
as

h
 2

H
as

h
1

Bit

Selection

16bits

Left Right

H
as

h
 3

H
as

h
4

Index 3

Index 4

Figure 6 illustrates the hardware design of the TCB cache, which

is addressed by session identifiers using Universal hash functions.

The TCB cache has tag arrays and data arrays as traditional CPU

caches, but it adds a new Lifetime array to track the cache line's

ON/OFF status, which is used by the hardware replacement unit.

As observed in Fig. 4, two Universal hash functions (hash1 and

hash2) being employed by two cache banks give the best miss

ratio. Hence, we use two cache banks in Fig. 6, each consisting of

a 4-way set associative cache. We also add two auxiliary

Universal hash functions (hash3 and hash4) to be used by our

cache replacement policy to migrate ON cache lines (see

subsection 3.4). We do a bit-by-bit analysis of session identifiers

and select 16 important bits as indexing bits to reduce Universal

hashing hardware complexity. The selection process of the

particular bits is described in the subsection 3.2. In order to access

a session state, CPUs extract a 2-tuple from a packet header and

issue an operation to the cache. The cache first locates the two

cache sets corresponding to the two hashes (hash1 and hash2) of

the 16 bits and then does the tag check with the 2-tuple in parallel.

If the operation is hit in the cache, the session state is operated;

otherwise, the cache uses auxiliary functions hash3 and hash4 to

lookup the cache again. If not found, the hardware replacement

unit is triggered to select a cache line for the new data. Since only

a portion of a 2-tuple is used for hashing, the tag in each cache

line is a full-fledged 2-tuple. We also include 4 bytes TCB

memory address in tag arrays to make the TCB cache interact

with the memory. Although TCB is a 512 bytes data structure,

only a portion of data in each TCB is frequently accessed during

processing packets [4, 14, 30, 32]. We use the full system

simulator Simics [19] to study the frequency of access in Linux to

TCB data and find that only ~64 bytes are frequently accessed.

This is because most of the packets belong to the TCP fast path,

requiring much fewer than the entire TCB data of 512 bytes. The

similar observation have been made in TOEs that storing 64 bytes

information for each session is sufficient to implement the

offloaded processing tasks [9]. Therefore, we use a cache line of

64 bytes to keep those states.

3.2 Indexing Bit Selection
The two Universal hash functions in the TCB cache are from a

function class called , which has amenable hardware

implementation [25]. Each hash function in is a linear

transformation that maps a w-bit binary string

to an r-bit binary string .

Each bit of is calculated as:

where denotes AND, and denotes XOR circuits,

respectively. In the TCB cache, means the bits of a hash input

and is the bits of the cache index. Since hash functions in are

the same except the parameter , each hash function can be

configured from a generic chip by providing different parameters.

Figure 7a. Average bit value of IP address

Figure 7b. Average bit value of port

Hashing latency and hardware complexity increase rapidly with

increase in the input bits. We study bit distribution of session

identifiers of web traces with the goal to reduce the number of

input bits. We measure the average values of the bits distributed in

IP address and port number and show them in Figure 7a and 7b

(the first bit is the MSB). The best indexing bits (or important

bits) should be those with an average value of 0.5; meaning that

they are set 50% of the time over a large series of session

TT QAB

waaaA21
rbbbB ...21

 1

1

0

1,11,10,1

1,11,10,1

1,01,00,0

1

1

0

...

...

............

...

...

...

wwrrr

w

w

r a

a

a

qqq

qqq

qqq

b

b

b

)).....(()(2211 iwwiii qaqaqab ,,...,2,1 ri

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

A
ve

ra
ge

 b
it

 v
al

u
e

Bit position

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 b
it

 v
al

u
e

Bit position

Figure 6. TCB Cache Architecture

identifiers. We notice that bits in IP address have similar

importance but 8 least significant bits in port number are more

important than other bits. That is mainly because ports start from

1024 (ports <1024 are assigned for system services) and are

typically allocated within a limited range of 256, but IP address is

distributed more randomly. Given these observations, we choose 8

bits from port and 8 bits from IP address as indexing bits, as

shown in Figure 8. Experimental results in Section 4 show that

tailored index bits can achieve the same performance as 48 bits 2-

tuple.

Circuit implementation of calculating an output bit is illustrated in

Figure 9 and each bit calculation is performed in parallel. The

implementation needs 5 gate delays at most (1 gate delay in AND

circuits and 4 gate delays in XOR circuits). Each gate only takes

~10 picoseconds with Intel 60nm fabrication technology [12] and

thus 5 gate delays can be easily implemented within a single CPU

cycle (1000 picoseconds per cycle for 1GhZ CPU).

Figure 8. Bit selection

Figure 9. Circuit implementation

3.3 Lifetime Array
The Lifetime array is used to track the cache line's ON/OFF status

and its structure is shown in Figure 10. In the Lifetime array, we

maintain one 3-bit life counter for each TCB cache line to track

the ON/OFF status. The most significant bit (MSB) of each 3-bit

counter indicates ON or OFF. When MSB equals to 1 (111 to

100), it means ON, and 0 (011 to 000) means OFF. The counter is

always initialized to the max value "111", and counted down

every 1/4 second. After 1 second, the status switches to OFF, as

the counter becomes "011". We choose 1 second as the threshold

because according to the observation in Section 2.2, it is highly

likely that web sessions are in OFF if they have not been touched

for 1 second. The system countdown signal is triggered by a clock

divider which basically counts the clock cycles and asserts a „1‟

by every N cycles. For example, let the system clock frequency

(FREQ) be 2GHz and the ON period (T) 1 second. In order to get

an 8Hz output, the N would be FREQ*T/4 = 500M cycles.

1 1 1 1 0 0 0 0 0 1 0 1

-1 -1 -1 -1

MUX

'111'

MUX MUX MUX

Regular Write

Or

Refresh Write

Lifetime Array

MSB

1=ON 0=Off

Bit Adder

‘0’ ‘1’‘1’

Number of ON

‘110’ ‘011’ ‘000’ ‘100’'111' '111' '111'

‘1’

Index from

hash()Clock

divider

System

Clock
Refresh

Signal

N = FREQ * T/4

M
U

X

Refresh

Counter

 Figure 10. Lifetime array structure

There are two kinds of operations for the Lifetime array:

Regular read/write cycle: it happens at every TCB write. The

corresponding life counter will be initialized to “111”. Due to the

possibility of cache replacement, we need to read out the original

ON/OFF bits (MSBs of each counter) before the write. As in

regular caches, we perform a read access in the first half cycle,

and a write in the second half cycle. The read will collect the four

ON/OFF bits, and sum them up through a bit-adder. The total

number of ON will be sent to the hardware replacement unit.

Refresh write cycle: Similar to a DRAM memory refresh, which

prevents the leakage of DRAM cells, we also perform a whole

array scan once every 1/4 second. The difference is that, after

reading the current value, we do not write the same value back,

instead, it is reduced by 1 and is then written back. The only

exception is “000”, but 000-1=111, and thus we retain the value

when the counter is zero. The refresh performance or power

overhead is negligible, as hundreds of cycle vs 500 million cycles.

3.4 Speculative Cache Replacement Policy
Although multiple cache banks can reduce conflict misses, they

make it difficult to implement cache replacement policies like

LRU at reasonable cost and force using pseudo-LRU s [13, 26, 27,

31]. Topham et al. [31] presented a way to implement an

affordable LRU for multiple cache banks by adding a timestamp

to each cache line. Every time a cache line is accessed its

timestamp is updated with the access sequence. When a miss

occurs, the line with the least timestamp is replaced. They showed

that an 8-bit timestamp achieves comparable performance for

SPEC95 floating point benchmarks. However, we find that more

than 24 bits are needed in the TCB cache in order to achieve good

performance. What is more, more cache banks split LRU sets and

sacrifice the effectiveness of LRU.

Hash_1() Left Bank Hash_2()Right Bank

T1

T2

T3

T4

T5

T2

T1, T3

T4, T5

 # of On

T1: (3,2) Right

T2: (3,1) Right

T3: (3,3) Left

T4: (4,3) Right

T5: (4,4) Left

 T3 Migrated to Right

Hash_3() Hash_4()

T1

T2

T4

T3àT5
T3

T3

T3

Figure 11. Speculative replacement policy

(0:23) (24:31)

SIP

(8:15)(0:7)

SPort

N-universal Hash

Index

SIP<24:31> Sport<8:15>

We design a speculative cache replacement policy by harnessing

the ON/OFF model to address the above issues. Since a web

session in the ON mode will be accessed very frequently, the

policy aims to keep ON cache lines as long as possible as follows.

1) when a cache miss occurs, the policy selects a cache bank with

fewer ON cache lines in two corresponding cache sets indexed by

hash1 and hash2, in case of a tie, we choose the left cache bank

for simplicity. It load balances ON cache lines among cache banks

and increases the occupancy ratio of ON cache lines in the cache.

We notice from in-depth studies that LRU is unaware of ON

cache lines and may result in imbalance of ON cache lines among

cache banks, and thus incurs unnecessary eviction of ON cache

lines. 2) Inside each cache bank, if an OFF line is in the LRU

position, we replace it for new data, otherwise, we check ON

cache lines to find a migratable cache line (an ON cache line is

referred to as migratable if there are OFF cache lines in its

corresponding cache sets). A migratable cache line is randomly

chosen and migrated to its corresponding cache set to keep ON

cache lines in the cache as long as possible. The proposed scheme

has some similarity with the hash-rehash scheme proposed long

time back for direct-mapped cache, but our scheme uses different

hash functions, multiple banks, migrates only selected replaced

data. To increase the chance that we can find a migratable cache

line, we introduce two auxiliary Universal hash functions (hash3

and hash4) to index the replaced ON cache line and migrate it to

an OFF cache line if found. If an OFF cache line is not found

during the auxiliary hash, the replaced cache line is discarded.

Like lookup case, auxiliary hash hash3 and hash4 are

simultaneously carried out for replacement. While sequential

auxiliary hashing (or pipeline hashing) restricts cache access by

hash1 and hash2, we notice that most of cache hits occur in the

first hashing (hash1 and hash2) and the penalty is more than

overcome due to increased cache hits. The sensitivity and

performance impacts of our new policy are described later in

Section 4.

Figure 11 illustrates one example of the speculative cache

replacement policy. Suppose there are some ON TCBs in the TCB

cache, which are colored but unlabeled. Given an access

sequence of TCBs T1, T2, T3, T4, T5, the policy places T1, T2,

T4 in the right cache bank and T3 in the left cache bank. When T5

comes, neither of two corresponding cachet sets in two cache

banks has OFF cache lines and T3 is replaced. Since T3 is still in

the ON mode, our policy gives T3 one more chance to stay in the

cache by using two auxiliary hash functions, therefore T3 is

migrated to the right bank for future accesses.

4. PERFORMANCE EVALUATION

4.1 Evaluation Methodology
We developed a trace-driven cache simulator to evaluate TCB

cache designs. Four web server traces: Boston University trace

(BU), NASA-HTTP (NASA), ClarkNet-HTTP (Clarknet),

Saskatchewan-HTTP (Sak) are chosen for experiments because

they are frequently used in network and architecture research.

These traces contain all HTTP requests to the corresponding web

servers during data collection periods.

In experiments, we denote the TCB cache in TOEs employing

both LRU and modular hash as TCB (Mod). Since implementing

LRU with two hash functions is complex, we evaluate a pseudo-

LRU cache replacement policy ENRU for multiple cache banks

similar to [13, 31]. We refer to the TCB cache with the pseudo-

LRU and 2-Universal as TCB (2-hash). Finally, we evaluate the

proposed TCB cache with 2-Universal and the speculative cache

replacement policy and denote it as TCB (spec). Since our cache

also implements a migration policy, we include the TCB cache

without the migration scheme to understand the migration benefits

and denote it as TCB(no-migrate). We test 1000 different

Universal hash functions by randomly generating 1000

parameters and observe that they have similar performance within

a range of 2.5%. We select the best hash parameters.

In addition, we study the performance benefits of using the new

TCB cache in TOEs or integrating the cache into CPUs. We

calculate the TCB access overhead (per packet miss ratio *

memory latency) and incorporate it into the protocol processing

time in [9] to study the performance impacts of the new TCB

cache on TOEs. Furthermore, we use the full system simulator

Simics by enhancing it with the detailed cache, I/O timing models

and modeling of the effects of network DMA to understand the

benefits of integrating the TCB cache into CPUs. Note that the

integrated cache sits in parallel with L2 cache. Two networked

systems (client and server) running Linux 2.6.16 are simulated. In

the client, the replay tool opens multiple sessions to the apache

server to simulate multiple clients and then generates requests

from the web traces while keeping the same behavior inside each

session. Since accesses to heap data structures among tcp_v4_rcv

and tcp_rcv_established functions are for TCB items [4], we refer

to those accesses as TCB accesses. We replace cache misses due

to TCB accesses with cache misses of our TCB cache from our

trace-driven cache simulator to approximate the performance

benefits of integrating the TCB cache into CPUs. All caches in

experiments have the same cache line size of 64 bytes with

detailed simulator parameters listed in Table 1.

Table 1. System Parameters

Processor Two cores, 3GHz, in-order, single-issue

ICache/DCache 32 KB 2-way, 2-cycle hit latency

L2 Cache 4M, 8-way split, 10 cycles hit latency

Memory 300 cycles

I/O register 800 cycles

TCB Cache 32KB, 10 cycles hit latency

NIC LRO, 64 packets/interrupt

4.2 TCB Cache Performance
We study the performance of various cache configurations for all

traces by comparing their cache miss ratios in Figure 12. We use

TCB (Mod) as a baseline to understand the benefits of our

optimizations. We observe that the baseline TCB (Mod) has a

56% miss ratio per packet with the BU trace. TCB (2-hash)

reduces the miss ratio to 37% by achieving a more uniform cache

access distribution. TCB (no-migrate) obtains a 32% miss ratio

by load-balancing ON TCBs among cache banks. With

speculative cache replacement policy, TCB (spec) achieves a

smaller miss ratio of 28%, corresponding to 50% reduction

compared to the baseline. Other three traces exhibit similar

behavior. The NASA trace has a 50% miss ratio when it is run on

the baseline system. Miss ratios are lowered to 33%, 28% and

26% when we run the trace on TCB(2-hash), TCB(no-migrate)

and TCB (spec). Similarly, cache miss ratios for the Sak trace are

69% TCB (Mod), 55% TCB (2-hash) and 51% TCB(no-migrate).

TCB (spec) obtains a smaller miss ratio of 44%, corresponding to

37% relative reduction compared to TCB(Mod). When we come

to the Clarknet trace, the miss ratios are 42% for TCB (Mod),

31% for TCB (2-hash) and 25% for TCB (no-migrate). TCB

(spec) further reduces the miss ratio to 22% and achieves 47%

cache miss reduction compared to the baseline. All above results

verify the effectiveness of our cache indexing scheme and the

speculative replacement policy.

Figure 12. Per packet cache miss ratio

4.3 Impact of Bit Selection
To reduce the hardware complexity of Universal hash, 16

representative bits (IP<24-31> and Port<8-15>) are chosen for the

TCB cache, as shown in Figure 8. In this subsection, we study

TCB cache performance and justify the design of our 16-bit hash.

We compare 16-bit hash with full-fledged 48-bit hash and other

possible bit lengths hash. Since Port<0-7> is not as important as

other bits of 2-tuple, we only consider all other 40 bits (organized

as in Figure 8) for possible bit lengths. We present the cache miss

ratio comparison in Figure 13, where n-bit represents a hash with

the input of n least significant bits of the 40 bits and all miss ratios

are normalized to the miss ratio of 48-bit hash. The figure shows

that 8-bit hash degrades the performance but 16-bit hash is able to

achieve the same cache performance as 48-bit hash while

requiring the least hardware complexity. 16-bit hash lowers the

hardware complexity, which allows the Universal hash to be

feasibly deployed on on-chip caches requiring low hash latency

and low power consumption. Circuit implementation shows that

one output bit calculation in 48-bit Universal hash needs one 48-

bit XOR logic and 48 AND logics, corresponding to 7 gate delays

and 95 CMOS gates (47 gates in the XOR logic and 48 gates for

AND logics). However, 16-bit Universal hash only uses one 16-

bit XOR logic and 16 AND logics for calculating one output bit,

corresponding to 5 gate delays and 31 CMOS gates (15 gates in

the XOR logic and 16 gates for AND logics).

Figure 13. TCB performance of n-bit hash

4.4 Exploration of Cache Design Space
We also explore cache design space along three axes: cache

replacement policies, cache size, set-associativity. We include

three alternative replacement policies and denote them as TCB

(RR), TCB (16), TCB (Access). TCB (RR) is the policy which

chooses a cache bank for the new data in a round robin way. TCB

(16) is the implementation of LRU with a 16-bit timestamp in

each cache line. TCB (Access) selects the cache bank with less

cache access to the two corresponding cache sets when a miss

occurs. In Figure 14, all miss ratios are normalized to the miss

ratio of the speculative replacement policy. We observe that TCB

(16) has the similar miss ratios to TCB (RR) and TCB (Access)

while it needs higher storage, and TCB(spec) achieves the lowest

miss ratios for all four traces and only needs three extra bits for

each cache line.

Figure 14. Performance impact of replacement policies

In addition, we present the TCB (spec) miss ratios over various

cache sizes normalized over a 32KB cache, as shown in Figure

15. The figure shows that both 32KB and 64KB TCB cache sizes

achieve good cache performance. When the cache size is reduced

to 16KB and 8KB, the cache performance is dramatically

degraded because of capacity misses. This study points out that

32KB is a suitable TCB cache size for web servers with thousands

of concurrent sessions. We also evaluate the performance impacts

of set-associativity of each cache bank on TCB(spec) as shown in

Figure 16. We observe that both 4-way and 8-way achieve good

cache performance over all four traces.

Figure 15. Performance impact of cache size

Figure 16. Performance impact of set-associativity

20%

30%

40%

50%

60%

70%

80%

BU NASA SAK Clarknet

P
e

r
p

ac
ke

t
ca

ch
e

m
is

s
ra

ti
o

Mod TCB(2-hash) TCB(no-migrate) TCB(spec)

0.9

0.95

1

1.05

1.1

Sak nasa clark BU

N
o

rm
al

iz
ed

 t
o

 4
8

b
it

8-bit 16-bit 24-bit 32-bit 40-bit 48-bit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BU NASA Sak Clarknet

N
o

rm
al

iz
ed

 t
o

 o
u

r
p

o
lic

y

TCB(RR) TCB(16) TCB(Access) TCB(spec)

0.20

0.70

1.20

1.70

2.20

2.70

3.20

BU NASA Sak Clarknet

N
o

rm
al

iz
ed

 t
o

 3
2K

B

8K 16K 32K 64K

0

0.4

0.8

1.2

1.6

2

BU NASA Sak Clarknet

P
e

r
p

ac
ke

t
m

is
se

s

1-way 2-way 4-way 8-way

4.5 Using the New TCB cache
Our research resolves the issue of per-session data and is

supplementary to existing approaches. First, the TCB cache can

be applied to TOEs to replace the traditional TCB cache. Second,

with the support of the TCB cache, DCA or Integrated NIC

architectures are able to address the per-session data access

challenge while running TCP/IP on CPUs.

We show the performance impacts of using the new TCB cache in

TOEs on packet processing time in Figure 17. The results are

normalized to the original TOE using the simple TCB cache. Our

result projects that the new cache can reduce TCP/IP processing

time by more than 20%. The reduced processing time will save

web server response time. In addition, we also evaluate the

performance benefits of integrating the TCB cache into CPUs in

Figure 18 and 19. We use the optimization DCA delivering

packets into L2 cache as the baseline configuration and denote it

as orig. We normalize results to the baseline system. In the

original system, frequently accessed TCB items are distributed

across multiple cache lines and hence several cache misses could

occur for one packet. Also, traversing linked lists due to TCB

lookups is prone to incurring cache misses, deteriorating cache

performance. By providing high cache hit ratios and avoiding

linked list traversal with cache hits, the new TCB cache reduces

TCP/IP request processing time by up to 23% and saves up to 5%

web server response time.

Figure 17. TCP/IP receiving time in TOEs

Figure 18. TCP/IP receiving time

Figure 19. Web server response time

4.6 Discussion of Using the New TCB Cache
Since TOEs already use a dedicated TCB cache to accelerate

accessing TCB, it is straightforward for TOEs to leverage a new

TCB cache. Without extra hardware support, the new cache can

be easily adopted to replace the traditional cache. In contrast to

TOEs designed for network processing, integrating the new TCB

cache into general purpose CPUs running the TCP/IP stack

requires extensive architecture and system supports: 1) ISA needs

to be extended to include cache Read/Write/flush instructions; 2)

OS needs to use these new hardware instructions to access and

manage the new cache, thus incurring troublesome

instrumentation work. Hence, as of now, we believe that the new

TCB cache is more suited for TOEs customized for network

processing. However, when integrating NICs into CPUs like [3,

18] becomes popular in future, it is feasible for NICs or CPUs to

leverage the new TCB cache.

5. RELATED WORK

5.1 Architectural Support for TCP/IP
It is well documented that Internet servers spend a significant

portion of time processing packets [14, 18, 20, 32]. A wide

spectrum of research has been done from the architectural

perspective to resolve the overhead issue [3, 6, 9, 10, 15, 16, 21,

22, 28, 29, 32]. The essence of these studies has aimed at reducing

the communication cost of CPUs and NICs. TOEs [6, 9, 22, 29]

accelerate the protocol processing in NICs and improve

performance by freeing up CPU cycles and reducing PCI traffics.

Kim et al. [15, 16] offloaded some connections to TOEs for

balancing CPUs and NICs. In contrast to TOEs, Binkert et al. [3]

integrated a simplified NIC to reduce the communication cost by

implementing zero-copy and reducing access latency to NIC

registers. Intel proposed DCA to route network data into processor

caches to reduce the packet access overhead [10, 11, 17].

While all of the aforementioned approaches can improve the

processing performance, they ignored the per-session data.

Typically, TOEs put a dedicated cache to manage per-session

TCB data for providing fast access. However, the TCB cache is a

traditional cache without any optimization. It is insufficient to

manage a large number of web sessions and becomes a major

bottleneck for packet processing. In addition, a large number of

sessions also increase the per-session data access overhead while

running TCP/IP on CPUs. Kim et al. [14] first showed that a large

number of web sessions dramatically degrade TCP/IP

performance because the working set size of session data

structures grows in proportion to the number of sessions, simply

increasing the L2 cache size would have limited benefits.

5.2 Cache Designs
There have been a large volume of studies done on CPU caches to

reduce conflict misses by using alternative cache indexing

functions [13, 26, 27, 31]. Seznec [26, 27] designed a skewed

two-way set-associative CPU cache, where two different XOR-

based hash functions are used for indexing the distinct cache

bank, and showed its performance superiority over modular hash.

By envisioning the benefits of XOR-based hash, Topham et al.

[31] evaluated the performance of XOR-based hash for a number

of different cache organizations and concluded that XOR-based

hash is a promising indexing scheme to most cache organizations.

Kharbutli et al. [13] studied the pathological behavior of various

hash functions and applied two prime-based hash functions to L2

caches. Our paper extensively studies the performance of various

0.50

0.70

0.90

1.10

BU NASA SAK Clarknet

N
o

rm
al

iz
ed

 t
o

 T
O

E

TOE TOE+TCB(spec)

0.5

0.6

0.7

0.8

0.9

1

1.1

BU NASA Sak Clarknet

N
o

rm
al

iz
ed

 t
o

 o
ri

g

Orig TCB(spec)

0.92

0.94

0.96

0.98

1

1.02

BU NASA Sak Clarknet

N
o

rm
al

iz
e

d
 t

o
 o

ri
g

Orig TCB(spec)

hash functions and employs multiple Universal hash functions as

TCB cache indexing. Result shows that Universal hash functions

are more promising than any existing hash functions used in CPU

caches. In order to deploy Universal hash on caches, we carefully

study the bit distribution of session identifiers and tailor index

keys. To couple with the new cache indexing, we design a

speculative cache replacement policy by harnessing the ON/OFF

model. Although the migration scheme is similar to the hash-

rehash scheme proposed for direct-mapped caches [1], it employs

Universal hash for rehashing cache lines and only migrates ON

cache lines to OFF cache lines, avoiding eviction of valuable data.

6. Conclusion
In this paper, we conducted detailed TCP/IP studies from the per-

session perspective and proposed a new TCB cache to efficiently

manage per-session TCB data in web servers. The dedicated cache

is designed to be addressed by a specified subset of session

identifiers. To provide high TCB cache performance, we

extensively study performance of various hash functions and

employ a new Universal hash based cache indexing scheme with

two independent cache banks. Some important bits are carefully

selected as hash keys to reduce hashing hardware complexity. To

further enhance the performance, we harness the ON/OFF model

of web sessions to design a speculative cache replacement policy

and employ migrating the replaced ON blocks to OFF region of

the cache. Simulation results show that the new TCB cache can

efficiently manages per-session data. By envisioning the benefits,

using the new TCB cache in TOEs or even integrating it into

CPUs can significantly reduce TCP receiving time and web server

response time.

7. ACKNOWLEDGMENTS
The research was supported by NSF grants CCF-0811834,

NEDG-0832108, CSR-0912850, and a grant from Intel

Corporation. We would like to thank Prof Scott Rixner from Rice

University for shepherding the paper. We also wish to thank the

anonymous referees for their valuable feedback on this paper.

8. REFERENCES
[1] A. Agarwal, J. Hennessy, M. Horowitz, Cache Performance

of Operating Systems and Multiprogramming, ACM

Transactions on Computer Systems, Nov. 1998.

[2] P. Barford, M. Crovella, Generating Representative Web

Workloads for Network and Server Performance Evaluation.

In Measurement and Modeling of Computer Systems, 1998.

[3] N. L. Binkert, A. G. Saidi, S. K. Reinhardt, Integrated

Network Interfaces for High-Bandwidth TCP/IP. ASPLOS

2006.

[4] D. P. Bovet, M. Cesati, Understanding the Linux Kernel,

Third Edition, O' Reilly Media.

[5] J. Carter, M. Wegman, Universal Classes of Hash Functions.

Journal of Computer and System Sciences, 1979.

[6] Chelsio Communications. http://www.chelsio.com/.

[7] K. Claffy, Internet Workload Characterization. Ph.D. thesis,

UC San Diego, June 1994.

[8] C. A. Cunha, A. Bestavros, M. E. Crovella, Characteristics of

WWW Client-based Traces. Boston University Department

of Computer Science, Technical Report TR-95-010, 1995.

[9] Y. Hoskote, B. A. Bloechel, G. E. Dermer et al., A TCP

Offload Accelerator for 10Gb/s Ethernet in 90-nm CMOS,

IEEE Journal of Solid-State Circuits, Vol 38. No.11, 2003.

[10] R. Huggahalli, R. Iyer, S. Tetrick, Direct Cache Access for

High Bandwidth Network I/O. ISCA, 2005.

[11] A. Kumar, R. Huggahalli, Impact of Cache Coherence

Protocols on the Processing of Network Traffic. MICRO,

2007.

[12] Intel Technology Journal, 130nm Logic Technology

Featuring 60nm Transistors. Low-K Dielectrics and Cu

Interconnects.

[13] M. Kharbutli, K. Irwin, Y.Solihin, J. Lee, Using Prime

Numbers for Cache Indexing to Eliminate Conflict Misses,

HPCA 2004.

[14] H. Kim, S. Rixner, Performance Characterization of the

FreeBSD Network Stack. CS Technical Report TR05-450,

Rice University, 2005.

[15] H. Kim, S. Rixner, TCP Offload through Connection

Handoff, Eurosys, 2006.

[16] H. Kim, S. Rixner, Connection Handoff Policies for TCP

Offload Network Interfaces, OSDI, 2006.

[17] A. Kumar, R. Huggahalli, S. Makineni, Characterization of

Direct Cache Access on Multi-core Systems and 10GbE.

HPCA, 2009.

[18] G. Liao, L. Bhuyan, Performance Measurement of an

Integrated NIC Architecture with 10GbE. HotI 09, USA.

[19] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgen,

G. Hallberg et al., Simics: A Full System Simulation

Platform. IEEE Computer, February 2002.

[20] S. Makineni, R. Iyer, Architectural Characterization of

TCP/IP Packet Processing on the Pentium M

Microprocessor. HPCA, 2004.

[21] S. S. Mukherjee, B. Falsafi, M. D. Hill, D. A. Wood. A

Coherent Network Interfaces for Fine-Grain Communication.

ISCA 1996.

[22] Q. Nhon T, P. Ramesh, F. Jean Marc, US Patent 7,406,087,

Systems and Methods for Accelerating TCP/IP Data Stream

Processing.

[23] W. W. Peterson, D.T. Brown, Cyclic Codes for Error

Detection. In Proceedings of the IRE, January 1961.

[24] F. Pong, Fast and Robust TCP Session Lookup by Digest

Hash. ICPADS, 2006.

[25] M. Ramakrishna, E. Fu, E. Bahcekapili, Efficient Hardware

Hashing Functions for High Performance Computers. IEEE

Trans on Computers, 1997.

[26] A. Seznec. A Case for Two-way Skewed Associative

Caches. ISCA 1993.

[27] A. Seznec. A New Case for Skewed-associativity. IRISA

Technical Report #1114, 1997.

[28] L. Shalev, V. Makhervaks, Z. Machulsky et al., Loosely

Coupled TCP Acceleration Architecture, HOTI 2006.

[29] C. C. Sharp, US Patent 7,287,092, Generating A hash for A

TCP/IP Offload Device.

[30] R. Stevens, TCP/IP Illustrated Volume 1, Addison-Wesley

Professional.

[31] N. Topham, A. Gonzalez, J. Gonzalez. Eliminating Cache

Conflict Misses through XOR-based Placement Functions.

ISC 1997.

[32] L. Zhao, R. Illikkal, S. Makineni et al., TCP/IP Cache

Characterization in Commercial Server Workloads. CAECW-

7, 2004.

http://www.cs.rice.edu/CS/Architecture/docs/kim-tr05.pdf
http://www.cs.rice.edu/CS/Architecture/docs/kim-tr05.pdf

