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ABSTRACT 

TCP/IP, the most commonly used network protocol, consumes a 

significant portion of time in Internet servers. While a wide 

spectrum of studies has been done to reduce its processing 

overhead such as TOE and Direct Cache Access, most of them did 

studies solely from the per-packet perspective and concentrated on 

the packet memory access overhead. They ignored per-session 

data TCP Control Block (TCB), which poses a challenge in web 

servers with a large volume of concurrent sessions.  

In this paper, we start with challenge studies and show that the 

TCB data should be efficiently managed. We propose a new TCB 

cache addressed by session identifiers to address the challenge. 

We carefully design the TCB cache along two important axes: 

cache indexing and cache replacement policies. First, we study the 

performance of various hash functions and propose a new 

indexing scheme for the TCB cache by employing two Universal 

hash functions. We analyze session identifiers and choose some 

important bits as indexing bits to reduce hashing hardware 

complexity. Second, by leveraging characteristics of web sessions, 

we design a speculative cache replacement policy, which can 

effectively work on the TCB cache with two cache banks. 

Experimental results show that the new cache efficiently manages 

the per-session data. When it is used in TOEs or integrated into 

CPUs to manage the per-session data, TCP/IP processing time is 

significantly reduced, thus saving web server response time.   

Categories and Subject Descriptors 

C.2.1 [Network Architecture and Design]: Network 

communication.  

General Terms 

Design,  Performance.  

Keywords 

TCB, Cache, TOE, Web Servers, Hash Functions.   

 

1. INTRODUCTION 
TCP/IP over Ethernet is the most dominant communication 

protocol in commercial servers such as web server, e-commerce, 

database, storage over IP, etc.  Existing research [3, 10, 11, 14, 17, 

18, 20, 32] has shown that TCP/IP packet processing, especially 

in the receive side, consumes a significant portion of time in those 

servers. Specifically, it was found that the TCP/IP processing 

overhead in high performance web servers such as Flash web 

servers can reach up to 80% of the time [14], and the processing 

in the receive side over 10 Gigabit Ethernet network (10GbE) 

easily saturates two cores of an Intel Xeon Quad-core processor 

[17]. Hence, it is important to optimize TCP/IP packet processing 

so that Internet servers can ultimately provide better web service.  

A wide spectrum of architectural research has been conducted for 

TCP/IP to optimize its processing performance [3, 6, 9, 10, 11, 17, 

21, 22, 29].  They fall into two categories: Offloading protocol 

stack into NICs like TCP Offload Engine (TOE) [6, 9, 22, 29] and  

pushing NICs closer to CPUs such as Direct Cache Access (DCA) 

or integrated NICs [3, 10, 11, 17]. TOE offloads the whole 

protocol stack to eliminate the processing overhead. In contrast to 

TOEs,  Intel proposed  DCA to route network data into CPU 

caches for eliminating the packet memory access overhead [9]. 

Without modifying the TCP/IP protocol stack, Binkert et al. [3] 

integrated a simplified NIC into CPUs to naturally implement 

DCA and to eliminate long latency access to device registers.   

However, previous studies were conducted from the per-packet 

perspective and focused on the packet memory access overhead. 

They paid no attention to per-session data TCP Control Block 

(TCB). TCB is a per-session data structure of 512 bytes that 

TCP/IP uses to store its TCP session states and is accessed on the 

TCP critical path [4, 9, 14, 24]. A large number of sessions and 

web session behavior in web servers complicate the management 

of TCBs and introduce challenges: 1) in TOEs, TCB is accessed 

in the critical path and protocol processing stalls until the data is 

ready [9]. Hence, TCP/IP processing performance heavily relies 

on how fast TCB is accessed. Typically, TOEs put a CPU-like 

dedicated cache associated with modular indexing and the Least-

Recently-Used replacement policy (LRU) to manage the per-

session data. Unfortunately, thousands of concurrent web sessions 

substantially increase cache design complexity and those 

conventional cache designs are inefficient; 2) besides TOEs, the 

TCB access overhead is also significant in web servers while 

running the protocol stack on CPUs [14]. That is because a large 

number of web sessions enlarge the working set size and incurs 
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cache pollution, and long intervals between two page requests (or 

user thinking time) in the same session increase the reuse distance 

of the per-session data deteriorating cache pollution.  The above 

challenges motivate us to design a new dedicated TCB cache to 

manage the per-session data.  

In this paper, we design a new TCB cache with extensive 

consideration of web session characteristics. The proposed TCB 

cache is addressed by the session identifier, contained in the 

header of the incoming web request. To provide high cache 

performance, we design the cache along two important axes: 

cache indexing and cache replacement policies. We observe that 

the traditional modular hash is not a perfect fit for the TCB cache 

due to its uneven cache accesses. Prior studies on CPU caches 

[13, 25, 31] have demonstrated that XOR-based hash and Prime-

based hash can reduce cache conflict misses for SPEC CPU 

benchmark applications. Motivated by these studies, we evaluate 

the performance of various hash functions and propose a new 

cache indexing scheme for the TCB cache by employing multiple 

Universal hash functions [5]. In hash literature, multiple 

Universal hash functions have been analyzed and confirmed that 

they can lead to a more even distribution of load across hash 

buckets [5]. Our studies reveal that two cache banks based on 

Universal hash functions for a TCB cache perform well. Since all 

session identifiers share the same destination port and IP address 

for a web server, we reduce a session identifier from a 4-tuple of 

96 bits (src IP, src port, dst IP, dst port) to a 2-tuple of 48 bits (src 

IP, src port). To further reduce hashing hardware complexity, we 

do a bit-by-bit analysis and choose 16 important bits as indexing 

bits for the TCB cache. Using the tailored indexing bits reduces 

the hashing hardware complexity by a factor of 3 while retaining 

the same cache performance.  

Although multiple cache banks can achieve an even cache access 

distribution, they make it difficult to implement cache 

replacement policies in hardware [13, 25, 26, 27, 31] and sacrifice 

the effectiveness. In this paper, we design a speculative cache 

replacement policy to resolve the above issues by leveraging web 

session characteristics. Each session in web servers exhibits an 

ON/OFF model, where the periods during the file transfer and the 

idle times are referred to as the ON period and the OFF period, 

respectively [2, 8]. During the ON period, the corresponding TCB 

is frequently accessed, whereas no TCB access occurs during the 

OFF period. ON and OFF periods interleave in each session. In 

the speculative replacement policy, we predict TCB blocks with 

the ON/OFF status and aim at keeping ON cache lines as long as 

possible. In addition, we propose migrating the replaced ON cache 

lines to another cache set with OFF cache lines based on auxiliary 

Universal hashing. We perform a detailed hardware design to 

show that the above policy can be implemented at a reasonable 

hardware cost and outperform existing cache replacement policies 

on multiple cache banks [13, 31]. 

In order to evaluate cache designs, we developed a trace-driven 

cache simulator and experimented with four real web server 

traces: Boston University trace (BU), NASA-HTTP (NASA), 

ClarkNet-HTTP (Clarknet), Saskatchewan-HTTP (Sak). 

Simulation results show that the new TCB cache achieves much 

lower miss ratios than the original TCB cache. When it is used in 

TOEs or integrated into CPUs to manage the per-session TCB 

data, we can significantly reduce TCP/IP processing time, thus 

saving web server response time.  

The remainder of this paper is organized as follows. The next 

section describes our preliminary studies to motivate the research. 

The designs of the new TCB cache architecture are elaborated in 

Section 3 and experimental results are presented in Section 4. 

Finally we discuss related work and conclude the paper in Section 
5 and 6, respectively. 

2. PRELIMINARY STUDIES 

2.1 TCB Challenges 
A wide spectrum of optimizations has been done for TCP/IP to 

improve its processing performance. They fall into two categories: 

offloading the protocol stack into NICs (TOE) [6, 9, 22, 29] or 

pushing NICs closer to CPUs while keeping protocol processing 

on CPUs [3, 10, 18, 21] such as DCA or integrated NIC etc. In 

this subsection, we study challenges on these two schemes from a 

large number of sessions in web servers to motivate our research.   

2.1.1 Challenge in TOEs 
Intel presented its 10Gbps TOE's detailed designs in [9] and the 

major function units are illustrated in Figure 1a.  Input sequencer 

analyzes an incoming packet and extracts the 4-tuple session 

identifier from the packet header. The packet is stored into 

memory sitting on-board or connected externally for future 

transfer to applications. The session to which the packet belongs 

is looked up and the session data is loaded into internal working 

registers used by the execution unit. Then, the execution unit, 

controlled by instructions from the instruction ROM, performs the 

central part of the protocol processing using the session data. The 

complete micro-program implemented to perform TCP inbound 

processing consists of ~300 lines of code. The TCP fast path 

processing for in-order packets in a session takes 116 instructions 

and the slow path processing with complex out-of-order control 

have ~300 instructions.  In most of the cases, incoming packets 

are in-order and thus belong to the fast path.  

 
Figure 1a. Function units in TOEs 

 
Figure 1b. Processing time with a TCB miss 

In TOEs, TCB is accessed before protocol processing and the 

processing stalls until the data is ready. The data is returned from 

the TCB cache with a cache hit, otherwise, it is fetched from the 

memory. It was reported in [9] that 51.2 ns is required for in-order 

packet protocol processing in a 10Gbps TOE. With a TCB cache 

miss, Figure 1b shows the overall packet processing time, where 



we assume that memory access latency is 50 ns and each cache 

miss incurs only one memory access (TCBs are typically 

organized by a hash table in the memory and the TCB entry is 

found by traversing a linked list in each hash table bucket [4]. A 

TCB cache miss incurs both the linked-list traversal and data 

accesses, thus causing more than one memory accesses). Fig.1b 

reveals that TCB access takes more than 50% percent of the 

overall processing time and much higher if we consider several 

memory accesses for a cache miss. With a cache hit, the TCB 

access latency can be substantially reduced to 6.4 ns [9].  Hence, 

the packet processing performance heavily relies on how fast TCB 

is accessed. Currently, the TCB cache is implemented as a 

traditional cache associated with modular indexing and LRU. 

However, as the number of sessions increase in web servers, these 

simple cache designs without considering web session 

characteristics cannot efficiently keep session data. A more 

efficient TCB cache is required to provide high cache 

performance.    

2.1.2 Challenge in protocol processing on CPUs 
In addition to TOEs, a large number of sessions also pose a 

challenge when the TCP/IP protocol stack is running on CPUs 

[14]. We establish a server-client environment, where the client 

opens the specific number of TCP sessions and sends 1KB 

requests across all of the sessions in a round-robin way to the 

server. Both the server and client are Intel machines with 2.67 

GHz Intel Quad-core processors. Intel performance counters are 

used to instrument Linux in-kernel network stack and measure the 

execution time of individual kernel functions or groups of kernel 

functions. The lives of processing a request with one session and 

4K sessions are shown in Figure 2a and 2b, respectively with a 

timeline scale of 500 CPU cycles per unit. The horizontal dashed 

line separates the kernel and user space, and only kernel functions 

are considered.  Note that the figures only show functions in the 

TCP critical path and do not consist of functions in the non-

critical path such as buffer allocation, de-allocation and 

scheduling etc.  

 
Figure 2a. Life of  packet (single session) 

     
Figure 2b. Life of  packet (4K sessions) 

The received request processing starts from the interrupt handler 

e1000_intr in the device driver. After the interrupt handler, the 

request is delivered up to the IP layer (ip_rcv) and the TCP layer 

(tcp_rcv). Then, the network stack performs TCB lookups to find 

the destination TCB's address and does per-session processing 

according to TCB data, both of which we refer to as TCB 

processing in figures. Finally, the request is copied to user 

applications by using the skb_copy_bits function. The timing 

analysis shows that the TCB processing overhead increases 

rapidly with a large number of sessions, and becomes significant 

along with other two overheads in the TCP critical path: the driver 

and data copy. Since existing research [3, 10, 21] effectively 

reduces those two overheads, it becomes important to address the 

remaining TCB processing challenge. Our analysis shows that 

TCB lookups and access mainly contribute to the overhead of 

TCB processing.  Web servers with a large number of sessions 

increase the chance that TCB data is polluted in caches, and 

degrade TCB lookup performance as well because traversing the 

linked list in a bucket is prone to incurring cache misses [14]. 

2.2 Characterization of Web Sessions 
In the web domain, a web session is defined as a sequence of 

requests made by a single client during its visit to a particular 

server [2, 7]. A modern web page includes reference-indexed 

embedded files which are typically images or graphs; these files 

are required to properly display the web page to the client. Thus, a 

typical request for a web page usually results in multiple 

consecutive client requests for those embedded items. Extensive 

studies on real web traffics have shown that web sessions exhibit 

the ON/OFF model [2, 7]. The entire transfer period for the whole 

page is referred as ON period, and the time gap between two 

requests for two embedded items as Idle when server responses 

are transmitted. After the client receives the whole web page, it 

usually takes a period of time for the client to read the page before 

sending the next page request. This period is referred as the OFF 

period. During the ON period, TCB is frequently accessed, but no 

access occurs in the OFF period. Thus, keeping or not replacing 

cached contents during the ON period is critical, a property that is 

used later to design the speculative cache replacement policy.    

Figure 3a. Inter-request time frequency in ON 

 
Figure 3b. OFF time frequency (OFF) 

We choose four web server traces to study the characteristics of 

web sessions: Boston University trace (BU), NASA-HTTP 

(NASA), ClarkNet-HTTP (Clarknet), Saskatchewan-HTTP (Sak). 
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We measure both the time between two consecutive requests 

during the page transfer (in ON) and the time between two 

consecutive ON (OFF time) for all traces. Figures 3a and 3b show 

the frequency for the time. We observe that the inter-request time 

in the ON period is fairly small compared to the OFF time and is 

typically less than 1 second. The above time analysis guides us to 

design an efficient cache replacement policy. 

2.3 Cache Indexing 
Numerous papers [13, 26, 27, 31] have demonstrated that using 

alternative cache hashing functions for CPU caches can reduce 

cache conflict misses for SPEC CPU benchmarks by achieving a 

more uniform cache access distribution. We evaluated the 

performance of different hash functions such as traditional 

Modulo hashing (Mod), XOR-based hashing (XOR) [26, 27, 31], 

Prime Modulo (PMod) [13], Prime Displacement  (PDisp) [13] 

and CRC [23]. We also studied multiple hashing schemes (each 

cache bank has a separate hash function), such as two Prime 

Displacement Hashing (2-Pdisp) [13], two XOR-based hashing 

(2-XOR) [26, 27], four Prime Displacement hashing (4-Pdisp), 

four XOR hashing (4-XOR) [26, 27]. For multiple hashing 

schemes, we use the cache replacement policy ENRU (Enhanced 

Not Recently Used) as used in [13]. The results are shown in the 

next section where we present the new TCB cache organization 

based on the Universal hash function and show its superiority 

over all others for the four web server traces. 

3. A NEW TCB CACHE 
In this section, we elaborate TCB cache designs considering web 

session characteristics. The cache organization is described in 

Subsection 3.1 and the bit selection is explained in Subsection 3.2. 

In Subsection 3.3, we illustrate the Lifetime array used by the new 

cache replacement policy, which is presented in Subsection 3.4.  

3.1 Cache Organization 
A cache organization is primarily defined depending on how a set 

is indexed. Our aim is to distribute the mapping uniformly that 

can ensure simultaneous occupancy of a large number of sessions 

being connected to the web server at a time. Universal hash 

functions are known to generate an even distribution of workload 

over the hash buckets and are relatively easy for hardware 

implementation [25]. We present the TCB cache miss ratios of 

four web server traces with various hash functions in Figure 4, 

where all cache miss ratios are normalized to the miss ratio of 

modulo mapping (Mod). We observe the following: 1) both Mod 

and XOR are not good fit for TCB cache; 2) PMod and PDisp are 

not as good as Universal and CRC; 3) having two hash functions 

obtains better performance than single hash function. It was 

observed in [13] that PMod and PDisp hash functions are better 

than Mod and XOR for SPEC CPU benchmarks. As we can see, 

they are also better for web server traces, but not as good as the 

proposed Universal hash functions. Among all of the hashing 

schemes, 2-Universal achieves the best performance. It may be 

noted that having more than two hash functions degrades 

performance because more cache banks split the original LRU set 

and sacrifice the effectiveness of the cache replacement policy. 

In order to understand the performance gap of various hash 

functions, we study probability distribution function (PDF) of 

absolute deviation of the number of sessions in cache sets (or |X 

minus expected value of X|, where X is the number of sessions in 

a cache set) and show result for one trace (Sak) in Figure 5. The 

figure points out that multiple hash functions have higher 

probability at small values like 50 and thus achieve a more even 

cache access distribution.  Although other traces studies are not 

shown here, they behave similarly. 
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Figure 5. PDF of absolute deviation of #sessions in cache set 
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Figure 6 illustrates the hardware design of the TCB cache, which 

is addressed by session identifiers using Universal hash functions. 

The TCB cache has tag arrays and data arrays as traditional CPU 

caches, but it adds a new Lifetime array to track the cache line's 

ON/OFF status, which is used by the hardware replacement unit. 

As observed in Fig. 4, two Universal hash functions (hash1 and 

hash2) being employed by two cache banks give the best miss 

ratio. Hence, we use two cache banks in Fig. 6, each consisting of 

a 4-way set associative cache. We also add two auxiliary 

Universal hash functions (hash3 and hash4) to be used by our 

cache replacement policy to migrate ON cache lines (see 

subsection 3.4). We do a bit-by-bit analysis of session identifiers 

and select 16 important bits as indexing bits to reduce Universal 

hashing hardware complexity. The selection process of the 

particular bits is described in the subsection 3.2. In order to access 

a session state, CPUs extract a 2-tuple from a packet header and 

issue an operation to the cache. The cache first locates the two 

cache sets corresponding to the two hashes (hash1 and hash2) of 

the 16 bits and then does the tag check with the 2-tuple in parallel. 

If the operation is hit in the cache, the session state is operated; 

otherwise, the cache uses auxiliary functions hash3 and hash4 to 

lookup the cache again. If not found, the hardware replacement 

unit is triggered to select a cache line for the new data. Since only 

a portion of a 2-tuple is used for hashing, the tag in each cache 

line is a full-fledged 2-tuple. We also include 4 bytes TCB 

memory address in tag arrays to make the TCB cache interact 

with the memory. Although TCB is a 512 bytes data structure, 

only a portion of data in each TCB is frequently accessed during 

processing packets [4, 14, 30, 32]. We use the full system 

simulator Simics [19] to study the frequency of access in Linux to 

TCB data and find that only ~64 bytes are frequently accessed. 

This is because most of the packets belong to the TCP fast path, 

requiring much fewer than the entire TCB data of 512 bytes.  The 

similar observation have been made in TOEs that storing 64 bytes 

information for each session is sufficient to implement the 

offloaded processing tasks [9]. Therefore, we use a cache line of 

64 bytes to keep those states. 

3.2 Indexing Bit Selection 
The two Universal hash functions in the TCB cache are from a 

function class called   , which has amenable hardware 

implementation [25]. Each hash function in    is a linear 

transformation that maps a w-bit binary string 

to an r-bit binary string .  

 

Each bit of   is calculated as:  

 
where denotes AND, and denotes XOR circuits, 

respectively.  In the TCB cache,   means the bits of a hash input 

and   is the bits of the cache index. Since hash functions in    are 

the same except the parameter  , each hash function can be 

configured from a generic chip by providing different parameters.  

 
Figure 7a. Average bit value of IP address 

 
Figure 7b. Average bit value of port 

Hashing latency and hardware complexity increase rapidly with 

increase in the input bits. We study bit distribution of session 

identifiers of web traces with the goal to reduce the number of 

input bits. We measure the average values of the bits distributed in 

IP address and port number and show them in Figure 7a and 7b 

(the first bit is the MSB). The best indexing bits (or important 

bits) should be those with an average value of 0.5; meaning that 

they are set 50% of the time over a large series of session 
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Figure 6. TCB Cache Architecture 



identifiers.  We notice that bits in IP address have similar 

importance but 8 least significant bits in port number are more 

important than other bits. That is mainly because ports start from 

1024 (ports <1024 are assigned for system services) and are 

typically allocated within a limited range of 256, but IP address is 

distributed more randomly. Given these observations, we choose 8 

bits from port and 8 bits from IP address as indexing bits, as 

shown in Figure 8. Experimental results in Section 4 show that 

tailored index bits can achieve the same performance as 48 bits 2-

tuple. 

Circuit implementation of calculating an output bit is illustrated in 

Figure 9 and each bit calculation is performed in parallel. The 

implementation needs 5 gate delays at most (1 gate delay in AND 

circuits and 4 gate delays in XOR circuits). Each gate only takes 

~10 picoseconds with Intel 60nm fabrication technology [12] and 

thus 5 gate delays can be easily implemented within a single CPU 

cycle (1000 picoseconds per cycle for 1GhZ CPU). 

 
Figure 8. Bit selection 

Figure 9. Circuit implementation 

3.3 Lifetime Array        
The Lifetime array is used to track the cache line's ON/OFF status 

and its structure is shown in Figure 10. In the Lifetime array, we 

maintain one 3-bit life counter for each TCB cache line to track 

the ON/OFF status. The most significant bit (MSB) of each 3-bit 

counter indicates ON or OFF. When MSB equals to 1 (111 to 

100), it means ON, and 0 (011 to 000) means OFF. The counter is 

always initialized to the max value "111", and counted down 

every 1/4 second. After 1 second, the status switches to OFF, as 

the counter becomes "011".  We choose 1 second as the threshold 

because according to the observation in Section 2.2, it is highly 

likely that web sessions are in OFF if they have not been touched 

for 1 second. The system countdown signal is triggered by a clock 

divider which basically counts the clock cycles and asserts a „1‟ 

by every N cycles. For example, let the system clock frequency 

(FREQ) be 2GHz and the ON period (T) 1 second. In order to get 

an 8Hz output, the N would be FREQ*T/4 = 500M cycles. 
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 Figure 10. Lifetime array structure 

There are two kinds of operations for the Lifetime array:  

Regular read/write cycle: it happens at every TCB write. The 

corresponding life counter will be initialized to “111”. Due to the 

possibility of cache replacement, we need to read out the original 

ON/OFF bits (MSBs of each counter) before the write.  As in 

regular caches, we perform a read access in the first half cycle, 

and a write in the second half cycle. The read will collect the four 

ON/OFF bits, and sum them up through a bit-adder. The total 

number of ON will be sent to the hardware replacement unit. 

Refresh write cycle: Similar to a DRAM memory refresh, which 

prevents the leakage of DRAM cells, we also perform a whole 

array scan once every 1/4 second. The difference is that, after 

reading the current value, we do not write the same value back, 

instead, it is reduced by 1 and is then written back. The only 

exception is “000”, but 000-1=111, and thus we retain the value 

when the counter is zero. The refresh performance or power 

overhead is negligible, as hundreds of cycle vs 500 million cycles.   

3.4 Speculative Cache Replacement Policy 
Although multiple cache banks can reduce conflict misses, they 

make it difficult to implement cache replacement policies like 

LRU at reasonable cost and force using pseudo-LRU s [13, 26, 27, 

31].  Topham et al. [31] presented a way to implement an 

affordable LRU for multiple cache banks by adding a timestamp 

to each cache line. Every time a cache line is accessed its 

timestamp is updated with the access sequence. When a miss 

occurs, the line with the least timestamp is replaced. They showed 

that an 8-bit timestamp achieves comparable performance for 

SPEC95 floating point benchmarks. However, we find that more 

than 24 bits are needed in the TCB cache in order to achieve good 

performance. What is more, more cache banks split LRU sets and 

sacrifice the effectiveness of LRU. 
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Figure 11. Speculative replacement policy 
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We design a speculative cache replacement policy by harnessing 

the ON/OFF model to address the above issues. Since a web 

session in the ON mode will be accessed very frequently, the 

policy aims to keep ON cache lines as long as possible as follows. 

1) when a cache miss occurs, the policy selects a cache bank with 

fewer ON cache lines in two corresponding cache sets indexed by 

hash1 and hash2, in case of a tie, we choose the left cache bank 

for simplicity. It load balances ON cache lines among cache banks 

and increases the occupancy ratio of ON cache lines in the cache. 

We notice from in-depth studies that LRU is unaware of ON 

cache lines and may result in imbalance of ON cache lines among 

cache banks, and thus incurs unnecessary eviction of ON cache 

lines. 2) Inside each cache bank, if an OFF line is in the LRU 

position, we replace it for new data, otherwise, we check ON 

cache lines to find a migratable cache line (an ON cache line is 

referred to as migratable if there are OFF cache lines in its 

corresponding cache sets). A migratable cache line is randomly 

chosen and migrated to its corresponding cache set to keep ON 

cache lines in the cache as long as possible. The proposed scheme 

has some similarity with the hash-rehash scheme proposed long 

time back for direct-mapped cache, but our scheme uses different 

hash functions, multiple banks, migrates only selected replaced 

data. To increase the chance that we can find a migratable cache 

line, we introduce two auxiliary Universal hash functions (hash3 

and hash4) to index the replaced ON cache line and migrate it to 

an OFF cache line if found. If an OFF cache line is not found 

during the auxiliary hash, the replaced cache line is discarded. 

Like lookup case, auxiliary hash hash3 and hash4 are 

simultaneously carried out for replacement. While sequential 

auxiliary hashing (or pipeline hashing) restricts cache access by 

hash1 and hash2, we notice that most of cache hits occur in the 

first hashing (hash1 and hash2) and the penalty is more than 

overcome due to increased cache hits. The sensitivity and 

performance impacts of our new policy are described later in 

Section 4. 

Figure 11 illustrates one example of the speculative cache 

replacement policy. Suppose there are some ON TCBs in the TCB 

cache, which are colored but unlabeled.  Given an access 

sequence of TCBs T1, T2, T3, T4, T5, the policy places T1, T2, 

T4 in the right cache bank and T3 in the left cache bank. When T5 

comes, neither of two corresponding cachet sets in two cache 

banks has OFF cache lines and T3 is replaced. Since T3 is still in 

the ON mode, our policy gives T3 one more chance to stay in the 

cache by using two auxiliary hash functions, therefore T3 is 

migrated to the right bank for future accesses. 

4. PERFORMANCE EVALUATION 

4.1 Evaluation Methodology  
We developed a trace-driven cache simulator to evaluate TCB 

cache designs.  Four web server traces: Boston University trace 

(BU), NASA-HTTP (NASA), ClarkNet-HTTP (Clarknet), 

Saskatchewan-HTTP (Sak) are chosen for experiments because 

they are frequently used in network and architecture research. 

These traces contain all HTTP requests to the corresponding web 

servers during data collection periods.   

In experiments, we denote the TCB cache in TOEs employing 

both LRU and modular hash as TCB (Mod). Since implementing 

LRU with two hash functions is complex, we evaluate a pseudo-

LRU cache replacement policy ENRU for multiple cache banks 

similar to [13, 31]. We refer to the TCB cache with the pseudo-

LRU and 2-Universal as TCB (2-hash). Finally, we evaluate the 

proposed TCB cache with 2-Universal and the speculative cache 

replacement policy and denote it as TCB (spec). Since our cache 

also implements a migration policy, we include the TCB cache 

without the migration scheme to understand the migration benefits 

and denote it as TCB(no-migrate). We test 1000 different 

Universal hash functions by randomly generating 1000 

parameters and observe that they have similar performance within 

a range of 2.5%. We select the best hash parameters.  

In addition, we study the performance benefits of using the new 

TCB cache in TOEs or integrating the cache into CPUs.  We 

calculate the TCB access overhead (per packet miss ratio * 

memory latency) and incorporate it into the protocol processing 

time in [9] to study the performance impacts of the new TCB 

cache on TOEs. Furthermore, we use the full system simulator 

Simics by enhancing it with the detailed cache, I/O timing models 

and modeling of the effects of network DMA to understand the 

benefits of integrating the TCB cache into CPUs. Note that the 

integrated cache sits in parallel with L2 cache.  Two networked 

systems (client and server) running Linux 2.6.16 are simulated.  In 

the client, the replay tool opens multiple sessions to the apache 

server to simulate multiple clients and then generates requests 

from the web traces while keeping the same behavior inside each 

session. Since accesses to heap data structures among tcp_v4_rcv 

and tcp_rcv_established functions are for TCB items [4], we refer 

to those accesses as TCB accesses.  We replace cache misses due 

to TCB accesses with cache misses of our TCB cache from our 

trace-driven cache simulator to approximate the performance 

benefits of integrating the TCB cache into CPUs. All caches in 

experiments have the same cache line size of 64 bytes with 

detailed simulator parameters listed in Table 1. 

Table 1. System Parameters 

Processor Two cores, 3GHz, in-order, single-issue 

ICache/DCache 32 KB 2-way, 2-cycle hit latency 

L2 Cache 4M, 8-way split, 10 cycles hit latency 

Memory 300 cycles 

I/O register 800 cycles 

TCB Cache 32KB, 10 cycles hit latency 

NIC LRO, 64 packets/interrupt  

4.2 TCB Cache Performance 
We study the performance of various cache configurations for all 

traces by comparing their cache miss ratios in Figure 12.  We use 

TCB (Mod) as a baseline to understand the benefits of our 

optimizations.  We observe that the baseline TCB (Mod) has a 

56% miss ratio per packet with the BU trace. TCB (2-hash) 

reduces the miss ratio to 37% by achieving a more uniform cache 

access distribution.  TCB (no-migrate) obtains a 32% miss ratio 

by load-balancing ON TCBs among cache banks. With 

speculative cache replacement policy, TCB (spec) achieves a 

smaller miss ratio of 28%, corresponding to 50%  reduction 

compared to the baseline. Other three traces exhibit similar 

behavior. The NASA trace has a 50% miss ratio when it is run on 

the baseline system. Miss ratios are lowered to 33%, 28% and 

26% when we run the trace on TCB(2-hash), TCB(no-migrate) 

and TCB (spec). Similarly, cache miss ratios for the Sak trace are 

69% TCB (Mod), 55% TCB (2-hash) and 51% TCB(no-migrate). 



TCB (spec) obtains a smaller miss ratio of 44%, corresponding to 

37% relative reduction compared to TCB(Mod). When we come 

to the Clarknet trace, the miss ratios are 42% for TCB (Mod), 

31% for TCB (2-hash) and 25% for TCB (no-migrate). TCB 

(spec) further reduces the miss ratio to 22% and achieves 47% 

cache miss reduction compared to the baseline. All above results 

verify the effectiveness of our cache indexing scheme and the 

speculative replacement policy. 

 
Figure 12. Per packet cache miss ratio 

4.3 Impact of Bit Selection  
To reduce the hardware complexity of Universal hash, 16 

representative bits (IP<24-31> and Port<8-15>) are chosen for the 

TCB cache, as shown in Figure 8. In this subsection, we study 

TCB cache performance and justify the design of our 16-bit hash. 

We compare 16-bit hash with full-fledged 48-bit hash and other 

possible bit lengths hash. Since Port<0-7> is not as important as 

other bits of 2-tuple, we only consider all other 40 bits (organized 

as in Figure 8) for possible bit lengths. We present the cache miss 

ratio comparison in Figure 13, where n-bit represents a hash with 

the input of n least significant bits of the 40 bits and all miss ratios 

are normalized to the miss ratio of 48-bit hash. The figure shows 

that 8-bit hash degrades the performance but 16-bit hash is able to 

achieve the same cache performance as 48-bit hash while 

requiring the least hardware complexity. 16-bit hash lowers the 

hardware complexity, which allows the Universal hash to be 

feasibly deployed on on-chip caches requiring low hash latency 

and low power consumption. Circuit implementation shows that 

one output bit calculation in 48-bit Universal hash needs one 48-

bit XOR logic and 48 AND logics, corresponding to 7 gate delays 

and 95 CMOS gates (47 gates in the XOR logic and 48 gates for 

AND logics).  However, 16-bit Universal hash only uses one 16-

bit XOR logic and 16 AND logics for calculating one output bit, 

corresponding to 5 gate delays and 31 CMOS gates (15 gates in 

the XOR logic and 16 gates for AND logics). 

 
Figure 13. TCB performance of n-bit hash 

4.4 Exploration of Cache Design Space 
We also explore cache design space along three axes: cache 

replacement policies, cache size, set-associativity. We include 

three alternative replacement policies and denote them as TCB 

(RR), TCB (16), TCB (Access).  TCB (RR) is the policy which 

chooses a cache bank for the new data in a round robin way. TCB 

(16) is the implementation of LRU with a 16-bit timestamp in 

each cache line. TCB (Access) selects the cache bank with less 

cache access to the two corresponding cache sets when a miss 

occurs. In Figure 14, all miss ratios are normalized to the miss 

ratio of the speculative replacement policy. We observe that TCB 

(16) has the similar miss ratios to TCB (RR) and TCB (Access) 

while it needs higher storage, and TCB(spec) achieves the lowest 

miss ratios for all four traces and only needs three extra bits for 

each cache line.  

 
Figure 14. Performance impact of replacement policies 

In addition, we present the TCB (spec) miss ratios over various 

cache sizes normalized over a 32KB cache, as shown in Figure 

15. The figure shows that both 32KB and 64KB TCB cache sizes 

achieve good cache performance. When the cache size is reduced 

to 16KB and 8KB, the cache performance is dramatically 

degraded because of capacity misses. This study points out that 

32KB is a suitable TCB cache size for web servers with thousands 

of concurrent sessions. We also evaluate the performance impacts 

of set-associativity of each cache bank on TCB(spec) as shown in 

Figure 16. We observe that both 4-way and 8-way achieve good 

cache performance over all four traces.  

Figure 15. Performance impact of cache size 

 
Figure 16. Performance impact of set-associativity 
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4.5 Using the New TCB cache 
Our research resolves the issue of per-session data and is 

supplementary to existing approaches.  First, the TCB cache can 

be applied to TOEs to replace the traditional TCB cache. Second, 

with the support of the TCB cache, DCA or Integrated NIC 

architectures are able to address the per-session data access 

challenge while running TCP/IP on CPUs.   

We show the performance impacts of using the new TCB cache in 

TOEs on packet processing time in Figure 17. The results are 

normalized to the original TOE using the simple TCB cache. Our 

result projects that the new cache can reduce TCP/IP processing 

time by more than 20%. The reduced processing time will save 

web server response time.  In addition, we also evaluate the 

performance benefits of integrating the TCB cache into CPUs in 

Figure 18 and 19. We use the optimization DCA delivering 

packets into L2 cache as the baseline configuration and denote it 

as orig. We normalize results to the baseline system. In the 

original system, frequently accessed TCB items are distributed 

across multiple cache lines and hence several cache misses could 

occur for one packet. Also, traversing linked lists due to TCB 

lookups is prone to incurring cache misses, deteriorating cache 

performance.  By providing high cache hit ratios and avoiding 

linked list traversal with cache hits, the new TCB cache reduces 

TCP/IP request processing time by up to 23% and saves up to 5% 

web server response time.  

 
Figure 17. TCP/IP receiving time in TOEs 

 
Figure 18. TCP/IP receiving time 

 
Figure 19. Web server response time 

4.6 Discussion of Using the New TCB Cache 
Since TOEs already use a dedicated TCB cache to accelerate 

accessing TCB, it is straightforward for TOEs to leverage a new 

TCB cache.  Without extra hardware support, the new cache can 

be easily adopted to replace the traditional cache. In contrast to 

TOEs designed for network processing, integrating the new TCB 

cache into general purpose CPUs running the TCP/IP stack 

requires extensive architecture and system supports: 1) ISA needs 

to be extended to include cache Read/Write/flush instructions; 2) 

OS needs to use these new hardware instructions to access and 

manage the new cache, thus incurring troublesome 

instrumentation work.  Hence, as of now, we believe that the new 

TCB cache is more suited for TOEs customized for network 

processing.  However, when integrating NICs into CPUs like [3, 

18] becomes popular in future, it is feasible for NICs or CPUs to 

leverage the new TCB cache.   

5. RELATED WORK 

5.1 Architectural Support for TCP/IP 
It is well documented that Internet servers spend a significant 

portion of time processing packets [14, 18, 20, 32]. A wide 

spectrum of research has been done from the architectural 

perspective to resolve the overhead issue [3, 6, 9, 10, 15, 16, 21, 

22, 28, 29, 32]. The essence of these studies has aimed at reducing 

the communication cost of CPUs and NICs. TOEs [6, 9, 22, 29] 

accelerate the protocol processing in NICs and improve 

performance by freeing up CPU cycles and reducing PCI traffics. 

Kim et al. [15, 16] offloaded some connections to TOEs for 

balancing CPUs and NICs. In contrast to TOEs, Binkert et al. [3] 

integrated a simplified NIC to reduce the communication cost by 

implementing zero-copy and reducing access latency to NIC 

registers. Intel proposed DCA to route network data into processor 

caches to reduce the packet access overhead [10, 11, 17]. 

While all of the aforementioned approaches can improve the 

processing performance, they ignored the per-session data. 

Typically, TOEs put a dedicated cache to manage per-session 

TCB data for providing fast access. However, the TCB cache is a 

traditional cache without any optimization. It is insufficient to 

manage a large number of web sessions and becomes a major 

bottleneck for packet processing. In addition, a large number of 

sessions also increase the per-session data access overhead while 

running TCP/IP on CPUs. Kim et al. [14] first showed that a large 

number of web sessions dramatically degrade TCP/IP 

performance because the working set size of session data 

structures grows in proportion to the number of sessions, simply 

increasing the L2 cache size would have limited benefits.  

5.2 Cache Designs 
There have been a large volume of studies done on CPU caches to 

reduce conflict misses by using alternative cache indexing 

functions [13, 26, 27, 31]. Seznec [26, 27] designed a skewed 

two-way set-associative CPU cache, where two different XOR-

based hash functions are used for indexing the distinct cache 

bank, and showed its performance superiority over modular hash. 

By envisioning the benefits of XOR-based hash, Topham et al. 

[31] evaluated the performance of XOR-based hash for a number 

of different cache organizations and concluded that XOR-based 

hash is a promising indexing scheme to most cache organizations. 

Kharbutli et al. [13] studied the pathological behavior of various 

hash functions and applied two prime-based hash functions to L2 

caches. Our paper extensively studies the performance of various 
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hash functions and employs multiple Universal hash functions as 

TCB cache indexing. Result shows that Universal hash functions 

are more promising than any existing hash functions used in CPU 

caches. In order to deploy Universal hash on caches, we carefully 

study the bit distribution of session identifiers and tailor index 

keys. To couple with the new cache indexing, we design a 

speculative cache replacement policy by harnessing the ON/OFF 

model. Although the migration scheme is similar to the hash-

rehash scheme proposed for direct-mapped caches [1], it employs 

Universal hash for rehashing cache lines and only migrates ON 

cache lines to OFF cache lines, avoiding eviction of valuable data.  

6. Conclusion 
In this paper, we conducted detailed TCP/IP studies from the per-

session perspective and proposed a new TCB cache to efficiently 

manage per-session TCB data in web servers. The dedicated cache 

is designed to be addressed by a specified subset of session 

identifiers. To provide high TCB cache performance, we 

extensively study performance of various hash functions and 

employ a new Universal hash based cache indexing scheme with 

two independent cache banks. Some important bits are carefully 

selected as hash keys to reduce hashing hardware complexity. To 

further enhance the performance, we harness the ON/OFF model 

of web sessions to design a speculative cache replacement policy 

and employ migrating the replaced ON blocks to OFF region of 

the cache. Simulation results show that the new TCB cache can 

efficiently manages per-session data. By envisioning the benefits, 

using the new TCB cache in TOEs or even integrating it into 

CPUs can significantly reduce TCP receiving time and web server 

response time.  
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