
Software Techniques to Improve Virtualized I/O
Performance on Multi-Core Systems

Guangdeng Liao1, Danhua Guo1, Laxmi Bhuyan1, Steve R King2
1Department of Computer Science and Engineering

 University of California, Riverside
 {gliao, dguo, bhuyan}@cs.ucr.edu

 2Communication Technology Lab, Intel Corporation

 steven.r.king@intel.com

ABSTRACT
Virtualization technology is now widely deployed on high
performance networks such as 10-Gigabit Ethernet (10GE).
It offers useful features like functional isolation,
manageability and live migration. Unfortunately, the
overhead of network I/O virtualization significantly
degrades the performance of network-intensive applications.
Two major factors of loss in I/O performance result from
the extra driver domain to process I/O requests and the
extra scheduler inside the virtual machine monitor (VMM)
for scheduling domains.

In this paper we first examine the negative effect of
virtualization in multi-core platforms with 10GE
networking. We study virtualization overhead and develop
two optimizations for the VMM scheduler to improve I/O
performance. The first solution uses cache-aware
scheduling to reduce inter-domain communication cost. The
second solution steals scheduler credits to favor I/O VCPUs
in the driver domain. We also propose two optimizations to
improve packet processing in the driver domain. First we
re-design a simple bridge for more efficient switching of
packets. Second we develop a patch to make transmit (TX)
queue length in the driver domain configurable and
adaptable to 10GE networks. Using all the above
techniques, our experiments show that virtualized I/O
bandwidth can be increased by 96%. Our optimizations also
improve the efficiency by saving 36% in core utilization per
gigabit. All the optimizations are based on pure software
approaches and do not hinder live migration. We believe
that the findings from our study will be useful to guide
future VMM development.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Scheduling

General Terms
Measurement, Performance, Design, Experiments.

Keywords
Virtualization, VMM Scheduler, 10GE, Xen, Multi-Core.

1. INTRODUCTION
Virtualization technology is experiencing a surge of interest
from both academia and industry for functional isolation,
manageability and live migration on volume servers. In
such environments, the virtual machine monitor (VMM)
virtualizes not only the machine's computing resources but
also network facilities. Multiple operating systems running
concurrently in different virtual machines (VM) enjoy the
illusion of ownership of network resources. As more and
more network-active servers are consolidated, we see a
migration toward high performance networks in the
virtualized endpoint server.

Although traditional Ethernet based network architectures
such as Gigabit Ethernet lag in performance as compared to
other high performance networks (e.g., InfiniBand [17],
Quadrics [27], Myrinet [3]), they continue to be the most
widely used network architecture nowadays. This trend is
mainly attributed to the low component cost and backward
compatibility with the existing Ethernet infrastructure [9].
As of 2006, Gigabit Ethernet-based clusters make up 176
(or 35.2%) of the top-500 supercomputers [30]. Thus, as
performance pressure on the consolidated network grows,
we strongly believe that industry will quickly migrate to
10GE networks to accommodate the increasing workload.

Unfortunately, the overhead of network I/O virtualization
can significantly affect the performance of network
intensive applications [22, 23, 24], especially under high
speed networks. We conduct experiments on an Intel
machine with two quad-core processors and 10GE
networking to evaluate the virtualization impact on server
networking performance. Our machine used Xen [2] as the
VMM. In our experiments, a guest domain (DomU) only
achieves 2.3Gbps bandwidth, compared to 5.5Gbps in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ANCS’08, November 6-7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011.$5.00

161

Linux, while consuming many more CPU cycles. Some
researches [6, 25] are trying to allow domains to directly
access hardware to improve bandwidth. These approaches
take advantage of new Ethernet NIC features like multiple
TX/RX queues. However, the direct access approach
inhibits live migration and portability, which are the two
major incentives for virtualization in high end servers [2, 5,
8]. Therefore, accelerating virtualized I/O processing in a
hardware independent manner becomes an important
problem.

We show that two major factors of loss in virtualized I/O
performance result from the extra driver domain to process
I/O requests and the extra scheduler inside the virtual
machine monitor for scheduling domains. The VMM must
schedule Dom0 and DomU instantly and in the correct
order, otherwise increased latency from scheduling delay
degrades bandwidth [7]. In this paper we conduct
experiments to study the impact of the VMM scheduler and
Dom0 on a multi-core platform with 10GE networking. We
then develop two optimizations for the default VMM
scheduler: cache-aware scheduler and a credit-stealing
policy. Since the VMM directly copies all received packets
from Dom0 to DomU in the contemporary I/O split model,
our cache-aware scheduler attempts to schedule the DomU
on the core, which shares last level cache with the core
Dom0 currently residing in. This approach provides DomU
with improved cache locality when accessing the packets,
and substantially reduces inter-domain communication cost.
The credit-stealing policy is a technique for the VMM
scheduler to favor VCPUs in Dom0 that intensively process
received packets (called as I/O VCPUs). In this technique,
the VMM dynamically steals some credits for I/O VCPUs
from other idle Dom0’s VCPUs instead of fairly allocating
credits among all of them. With this optimization, we
increase the likelihood that the I/O VCPUs are running
while receiving the NIC interrupt requests, thus accelerating
packet processing.

Besides improving the VMM scheduler, we also identify
packet processing overhead in Dom0 by instrumenting the
source code at the component level. Our profiling shows
that packet switching is one of the main bottlenecks. Thus
we design a simplified bridge which retains the same
user/kernel interface as the original bridge but reduces
switch processing time by 10X for each packet.
Additionally, in our experiments, we notice some losses of
data within TCP streams resulting in TCP retransmissions.
Our deeper investigation reveals that the retransmissions
result from queue overflow in the network backend driver
connecting the bridge to the DomU. Hence, we develop a
patch to make backend queue length configurable and
adaptable to 10GE networks.

A combination of all the above techniques can substantially
improve the capability of virtualized systems to process
high speed network traffic. Our experimental results reveal

that the new virtualized I/O can achieve 4.5 Gbps
corresponding to an increase of 96%. Additionally, we find
that the efficiency for packet processing improves with a
savings of 36% in core utilization per gigabit. Since all our
optimizations are software based, they do not inhibit live
migration and portability of virtual machines. Although we
designed our techniques under 10GE network, they are also
applicable to a low-end network like 1GE network.

The remainder of this paper is organized as follows. The
background necessary to understand our work is described
in section 2. Section 3 presents our experimental setup.
Virtualization performance with a 10GE network is
illustrated in section 4. The two optimizations of the VMM
scheduler on multi-core architectures are described in
section 5, followed by the two optimizations for Dom0 in
section 6. Section 7 combines all techniques and presents
the results. Finally section 8 presents the related work
followed by our conclusion and future work in section 9.

2. BACKGROUND
2.1 Virtualization
Virtualization is a broad term that refers to the abstraction
of physical computer resources. A typical virtualized
platform consists of a software virtual machine monitor that
“virtualizes/abstracts” the physical resource of the platform
and provides a simulated environment that appears to the
operating system as hardware. The most recent
virtualization solutions are based on either total
virtualization or para-virtualization. This total virtualization
[28] demands relatively complex implementation of
hypervisor which depends on techniques like ring
compression and binary patching to enable this environment.
This complexity and performance overhead in the
hypervisor can be reduced by making the host hardware and
the guest operating system aware of virtualization. The first
type is referred to as hardware-assisted virtualization.
Recently processor vendors like Intel and AMD are adding
hardware support for virtualization [1, 14, 16] which
reduces the burden on the hypervisor by providing the
virtualization and isolation hooks in the hardware.
While hardware supported virtualization makes the
hardware aware of virtualization, para-virtualization makes
the guest OS aware of virtualization. Xen [2, 5, 8] is the
most popular open source para-virtualized virtual machine
monitor based on Linux. In this paper, we focus on the
para-virtualized system Xen. It does not require changes to
the application binary interface (ABI), and hence no
modifications are required to guest applications. In
particular, Xen exposes a hypercall mechanism that virtual
machines must use to perform privileged operations, an
event notification mechanism to deliver virtual interrupts
and other notifications to virtual machines, and a shared
memory based device channel for transferring I/O messages
among virtual machines. While the OS must be ported to

162

this virtual machine interface, this approach leads to better
performance than the approach based on pure virtualization.

2.2 Xen I/O Virtualization
The Xen I/O architecture has evolved from Hypervisor
contained device drivers (Direct I/O) to a Split I/O [5, 8].
The primary goal of the Split I/O architecture is to provide
isolation from misbehaved device drivers. Virtual machines
in Xen usually don’t have direct access to hardware. Each
device driver is expected to run in a driver domain (Dom0),
which hosts a backend driver to serve access requests from
guest domains (DomU). The network architecture used in
Xen is shown in Figure 1.

 Figure 1. Xen I/O Split

Xen provides each DomU with a number of virtual network
interfaces called Front-ends (FE), which are used by the
DomU for all its network communications. Corresponding
to each FE in a DomU, a backend Interface (BE) is created
in the Dom0, which acts as the proxy for that FE. The FE
and BE are connected to each other over an I/O channel.
The recent I/O channel implements both data copy and page
flip mode in receiving side with data copy as the default
setting. However, during transmitting packets, only page
flip mode is supported. Once inter-domain packet
movements get finished, the virtual interrupt is sent to
notify the target DomU of the packet. BE for each DomU is
bridged with the real NIC driver in Dom0 by Linux Bridge
module [20]. It functions as an internal crossover Ethernet
bridge to switch the received packets to the corresponding
attached ports through their MAC addresses. Finally real
NIC driver in Dom0 directly access NIC to transmit or
receive packets through external network. Compared to
Linux, there are two extra queues introduced by Dom0. One
of them is between Linux Bridge and BE, the other one is
used to connect FE and BE.

2.3 VMM Scheduler
The Xen functions as an abstraction layer of the real
physical devices. As a result, scheduling in virtualization is
based on Virtual CPUs (VCPU) because Physical CPUs
(PCPU) are transparent to domains. Each domain can be

arbitrarily allocated with multiple VCPUs. Besides the
default credit scheduler, Xen also keeps its legacy scheduler
Simple Earliest Deadline First (SEDF) [19]. SEDF
provides weighted CPU sharing in an intuitive way and uses
real-time algorithms to ensure real time guarantees.
However, it lacks global load-balancing on multiprocessors
and is becoming obsolete. In this paper we focus on the
default credit scheduler [4], a proportional fair share CPU
scheduler built to achieve load balance on SMP hosts. Its
overall objective is to allocate the processor resources fairly.
The scheduler organizes a local run queue of online
runnable VCPUs for each PCPU and always picks a
workload (VCPU) from the head of the queue to run. This
queue is sorted by VCPU priority. A VCPU’s priority can
be one of three values: OVER, UNDER and BOOST.
OVER, UNDER represent whether or not this VCPU has
used up its fair share of CPU resource in the ongoing
accounting period. The BOOST state provides a mechanism
for domains to achieve low I/O response latency. All the
VCPUs in BOOST state are placed in front of those in
UNDER state in the runqueue, while those with OVER state
are kept in the tail portion. Based on the predefined weight,
each domain is initially allocated a corresponding credit
which is fairly shared among all the VCPUs that are
affinitized to the domain. As a VCPU runs, it consumes
credits. Every so often, a system-wide accounting thread re-
computes how many credits each active domain has earned
and bumps the credits.
When it comes to multi-core architecture, there are a few
twists while the scheduler functions. First of all, when there
is not a VCPU of priority UNDER on a PCPU’s local run
queue, the scheduler will search other PCPUs for one. This
load balancing ensures each domain receives its fair share
of PCPU resources system-wide. Before a PCPU goes idle,
the scheduler will look on other PCPUs to find any runable
VCPU. This guarantees that no PCPU idles when there is
runnable work in the system. Secondly, VCPU migration
might happen based on priority difference for event
notification. Whenever an event is notified to a target
VCPU while it is idle, the scheduler tickles the designated
PCPU and re-evaluates to see if the target VCPU preempts
the current running VCPU. If there are at least two runnable
VCPUs in that PCPU, the scheduler would migrate some of
them to the idlers in the system to achieve load balance.
Last but not the least, the scheduler checks the state of the
current running VCPU during each timer interrupt and
redistributes the PCPU if necessary. The running VCPU
will be migrated to the online neighbor PCPU with the most
idling neighbors PCPU. This policy distributes work across
distinct sockets first and then distinct cores in the same
socket.

163

3. EXPERIMENTAL TESTBED
Our experimental testbed consists of two Intel Clovertown
machines which function as a system under test (SUT) and
a stressor respectively. Each of them is a two-processor (or
socket) platform based on the quad-core Intel Xeon
processor 5300 series with 8 MB of L2 cache per processor
[13]. Its CPU layout is illustrated in Figure 2. As we can see
from the figure, each processor has two 4MB shared L2
caches. It is equipped with 16GB DRAM and 1333 MHz
system bus. The SUT and stressor are hosted by Xen 3.1.3
and Vanilla Linux kernel respectively. Xen is configured
with data copy mode and the credit scheduler is at default
mode. To conduct virtualization experiments in 10GE
network, we connect two machines via two Intel® PRO/10
GbE SR Server Adapters [12]. They connect to hosts
through PCI-Express x8, a 16+16 Gigabit/s full-duplex I/O
fabric that is fast enough to keep up with the 10+10
Gigabit/s full-duplex network port. Since the virtualized
system has not supported TCP/IP offloading engine (TOE)
and Jumbo Frames yet, all the experiments in this paper are
conducted without TOE support and with an MTU of 1500
Bytes. We retain the default settings in network adapter’s
driver without specific performance tuning on interrupt
coalescing, write combing etc. All protocol and system
relevant settings are at default.

Figure 2. Intel Xeon Clovertown Machine
In all the experiments, Iperf [11] is selected as the micro-
benchmark. The micro-benchmark allows us to quickly and
easily identify the performance benefits of our
optimizations. We run the experiments with eight parallel
connections (the number of cores in our SUT) for various
message sizes for measuring network bandwidth and the
corresponding core utilization (The core utilization can
reach up to 800% in our systems corresponding to two
quad-core processors). In virtualized environment, the
number of VCPUs in Dom0 is set to 8 (the number of cores
in our SUT) and only one DomU is used for our
experiments. The VMM scheduler is configured as credit
scheduler by default, unless otherwise stated.

4. BASELINE ANALYSIS ON 10GE
In this section, we first conduct experiments by creating one
DomU to evaluate the performance of baseline virtualized

I/O in the SUT and then investigate the impact from Dom0
and VMM schedulers on virtualized I/O bandwidth.

4.1 Virtualization Performance Overhead
We conduct experiments with the default settings to study
the virtualized I/O overhead under 10GE network. The
result is illustrated in Figure 3, where bars and lines
represent the bandwidth and core utilization respectively.
The results of Dom0 is measured by running Iperf on a
driver domain with a guest domain idling. The results of
DomU are collected by running Iperf on a guest domain.
The core utilization of DomU in the figure represents the
sum of driver and guest domain’s utilizations.

With Default Credit Scheduler

0

1

2

3

4

5

6

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

B
an

d
w

id
th

 (
G

b
p
s)

0%

50%

100%

150%

200%

250%

300%

C
o
re

 U
ti
l

Linux Dom0 DomU Linux Dom0 DomU

Figure 3. Bandwidth & Core Utilization

From the figure, some key observations are made as follows:
1) virtualized I/O (or DomU) can not achieve the same
bandwidth as Linux even with higher core utilization.
According to our results, virtualized networking suffers
about 65% bandwidth degradation. We obtained only 2.3
Gbps of application bandwidth but 2X consumption of the
core utilization compared to the non-virtualized case, 2)
different from DomU, Dom0 can achieve the same
bandwidth as Linux although with significantly higher core
utilization than DomU. It is mainly because Dom0 directly
manages hardware and network processing in Dom0
performs in a similar way to Linux. These observations
point out that the current I/O split model mainly contributes
to the performance loss and is not efficient enough to
process packets. It obtains much lower bandwidth but with
significantly higher core utilization than Linux. Since
virtualization introduces an extra Dom0 to process packets
and an extra VMM scheduler for scheduling domains, they
are two major factors of I/O performance loss.

4.2 Domain’s CPU Overhead
The overhead of Dom0 is unclear but critical for system
designers to understand the behavior of processing packets.
We study the breakdown of CPU overheads between Dom0
and DomU in virtualized I/O processing with various

164

message sizes, which are illustrated in Figure 4. Based on
the figure, Dom0 consumes significantly more CPU cycles
than DomU where network applications reside, especially
for receiving small messages. It motivates us to optimize
the overhead incurred in Dom0.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

C
o
r
e

U
t
i
l

Dom0 DomU

Figure 4. CPU Overhead Distribution

4.3 Impact of VMM Scheduler

0

0.5

1

1.5

2

2.5

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

B
an

d
w

id
th

 (
G

b
p

s)

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

C
o

re
 U

ti
l

Sedf Credit Sedf's Core Util Credit's Core Util

Figure 5. Impact of VMM Schedulers

Virtualized system introduces an extra scheduler inside the
VMM for scheduling different domains. However, there is
no single and easy method for quantifying the impact of
VMM schedulers on network performance. Since Xen is a
unique virtualized system to provide multiple VMM
schedulers like SEDF and the default credit scheduler, we
carry out a comparative evaluation of them on multi-core
platforms to project VMM scheduler’s impact. The
experimental results including bandwidth and core
utilization are illustrated in Figure 5. It shows that SEDF
can not utilize the multiple cores and only achieves 1.1Gbps
bandwidth, mainly because it lacks global load-balancing
on multi-core platforms. This explains why SEDF has been
replaced by credit scheduler and is becoming obsolete on
multi-core platforms [4]. The credit scheduler performs
better than SEDF in Fig. 5, but still is unable to get high

bandwidth for I/O intensive applications. All of them point
out that the VMM scheduler can drastically impact the
performance of I/O intensive applications running on
domains, and motivate us to revisit its design and possible
optimization.

5. OPTIMIZATIONS OF SCHEDULER
The default credit scheduler, a proportional fair share CPU
scheduler, is designed for load-balancing workloads on
multi-core platforms. However, it is unaware of core
topology in multi-core systems, where some of cores are
sharing a last level cache while others are sitting in different
sockets. It blindly migrates the VCPU running on PCPU
with high workloads to PCPU with lightweight workloads.
Moreover, the number of VCPUs in Dom0 is configured to
the same number of PCPUs, and each VCPU is assigned
with the same credit even though some of them are idling.
All of these behaviors significantly degrade virtualized
network performance. In this section, we develop two
optimizations: a cache-aware scheduler for reducing inter-
domain communication cost and credit-stealing for favoring
I/O VCPU in Dom0. In order to compare the efficiency of
packet processing across our optimizations, the metric of
core utilization is normalized to per gigabit in the following
sections.

5.1 Cache-Aware Scheduler
To make the best use of the resources and to make inter-
core communication efficient, cores in a physical package
share some of the resources. Our SUT has two CPU cores
sharing the L2 cache which is called Intel Advanced Smart
Cache [13], as shown in Figure 2. Each processor has four
cores in a physical package with two last level (L2) caches.
Each L2 cache is shared by two cores. Further, as more
logic gets integrated into the processor package, more
resources will be shared by the cores on the die. The current
credit scheduler in virtual machine monitor is designed for
SMP load balance, but is not cache-aware and can not co-
schedule the two VCPUs with data sharing on the two cores
sharing L2 cache (a.k.a. cache domain). Since Dom0 is
designed for serving I/O requests to de-multiplex packets
and move packets to designated DomU (I/O DomU), there
is intense data sharing between Dom0 and I/O DomU,
especially when the data copy mode is configured. Co-
scheduling Dom0 and I/O DomU in the cache domain will
give I/O DomU a free ride to access the data in the cache
and then result in more efficient inter-domain
communication.

Implementation:
In order to co-schedule Dom0 and I/O DomU, the first step
is to identify them in the VMM. Currently we identify them
by counting how often I/O events of boosting VCPUs are
triggered during each time slice. If the number of triggers
exceeds a threshold (default 150), both the boosting and the

165

boosted VCPUs are considered as I/O VCPUs (in receive
side, boosting VCPU is I/O VCPU in Dom0). Note that our
extension of the scheduler is only based on VCPUs with
intense I/O operations, and doesn't sacrifice the system-
wide load-balance on multi-core platforms. After the
identification of I/O VCPUs, the VMM scheduler always
intelligently schedules boosting and boosted VCPUs to the
cores sharing same L2 cache.

In default credit scheduler, when an event is notified to a
target VCPU while it is idle, it is awaken with the state of
BOOST. Then other idle PCPUs and PCPU hosting the
VCPU are tickled to re-evaluate where the VCPU will be
running. In cache-aware scheduler, instead of tickling all
idle PCPUs, boosted VCPU is inserted into the runqueue of
PCPU sharing L2 cache with the PCPU currently hosting
boosting VCPU. An example is shown in Figure 6. The left
side in the figure is the original system state where boosting
VCPU and one running VCPU are sitting in the same cache
domain and boosted VCPU is running on the core 4. Cache-
aware scheduler will automatically migrate boosted VCPU
into the same cache domain as boosting VCPU to take
advantage of shared cache. The running VCPU is
preempted into the core 4 for securing the system level load
balance. The system state after migration is shown in the
right side of the figure.

Figure 6. An Example of Cache-Aware Scheduler

Additionally, VCPU migration in current scheduler also
occurs when a VCPU remains BOOST for a while and
some PCPUs are idle. It chooses the target PCPU with the
largest number of idle neighbors in its grouping. This
option will distribute workload across distinct packages
first and result in maximum resource utilization since there
is no shared resource contention. However, virtualized I/O
processing with data sharing between Dom0 and I/O DomU
will suffer heavy inter-package communication penalty
from this mechanism. Cache-aware scheduler dynamically
migrates the boosted VCPU and boosting VCPU to the
same cache domain when this migration is triggered.

Although our technique might preempt the running VCPU
on the PCPU, the preempted VCPU could be migrated into
other PCPUs to sustain system-level workload balance on
multi-core platforms.

Experiments:

We conducted experiments to study the benefits of our
cache-aware scheduler over the default version in terms of
both bandwidth and core utilization per gigabit as a
function of message sizes. The result is depicted in Figure 7,
where “Default” represents the conventional credit
scheduler and “Opt A” is for our cache-aware scheduler.
Our extended scheduler increases the bandwidth by 13%,
and also saves 11% in core utilization per gigabit when
message size is greater than 1 KBytes. With smaller
messages, a slightly higher bandwidth is achieved with
lower core utilization. The results reveal that our cache-
aware scheduler reduces the overhead of inter-domain
communication in virtualized packet processing.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

B
an

dw
id

th
 (G

bp
s)

50%

70%

90%

110%

130%

150%

170%

C
or

e
U

til
 P

er
 G

bp
s

Default Opt A Default Opt A

Figure 7. Cache-Aware Scheduler

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 6 8

#VCPU (Dom0)

B
an

d
w

id
th

 (
G

b
p

s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

C
o

re
 U

ti
l

P
er

 G
b

p
s

Def Opt A Def Opt A

Figure 8. Impact of the Number of VCPUs in Dom0

We also study the impact of the number of VCPUs in Dom0
on virtualized network bandwidth with and without cache-
aware scheduler in Figure 8. The 64 KBytes message is
used in our experiments. The figure shows that both the
schedulers perform better with less VCPUs in Dom0. It is
also observed that our cache-aware scheduler increases the
bandwidth by 35% with the savings of 21% in core
utilization per gigabit when the number of VCPUs is 1.
However, the benefits over default scheduler reduce as the

166

number of VCPUs increases from 1 to 8. All of the above
observations point out that the number of VCPUs in Dom0
affects I/O’s behavior and has a greater negative impact
with cache-aware scheduler.

5.2 Credit-Stealing for I/O VCPU in Dom0
The number of VCPUs in Dom0 is configured by default as
the number of cores in the platform. In credit scheduler, all
VCPUs affiliated to the same domain are allocated fairly
with the same credit. However, all of the interrupts from
NIC are usually directly directed to a specific VCPU to
improve the cache locality of interrupt processing in a non-
virtualized environment. This credit allocation mechanism
results in performance degradation in virtualized
environment mainly because more VCPUs in Dom0 lead to
less shared credit for each VCPU. I/O VCPU can not be
allocated with sufficient computing resources to satisfy
packet processing. We propose to dynamically and
temporarily steal some credits from other idle VCPUs to
favor I/O VCPUs during each time slice while I/O VCPUs
are busy with processing packets. The principle to steal
credits is formalized in the following equation:

))_(*2/()_(VCPUsIONumVCPUsIdleCreditSteal =

where Steal means the stolen credit for each I/O VCPU,
)_(VCPUsIdleCredit is for the credit of all idle VCPUS.

)_(VCPUsIONum represents the number of I/O VCPUs. It
shows that each idle VCPU’s credit is dynamically cut in
half to favor I/O VCPUs to eliminate their burden while
working with intensive NIC interrupt requests. Since our
policy steals credits from idle VCPUs, it does not hurt the
overall system performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 6 8

#VCPU (Dom0)

B
an

d
w

id
th

 (
G

b
p

s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

C
o

re
 U

ti
l

P
er

 G
b

p
s

Def Opt A Opt A+B Def Opt A Opt A+B

Figure 9. Credit-Stealing for I/O VCPU in Dom0

Experiments:
We used the 64 KBytes messages to study the network
bandwidth achieved by credit-stealing along the number of
VCPUs in Dom0. The experimental results are shown in

Figure 9. Similar to our previous figures, the normalized
core utilization is also illustrated by lines. “Def” represents
the default credit scheduler and “Opt A” is for our extended
cache-aware scheduler. “Opt A+B” is the combinational
scheduler with both two optimizations. As seen from the
figure, the policy for stealing credit further improves the
network performance by 18% and saves 5% in core
utilization per gigabit when the number of VCPUs is greater
than 4. Without any knowledge from users or administrators,
it will dynamically adapt to favor I/O processing while
receiving intensive I/O requests and then lead to a higher
bandwidth by wasting less computing resources. With the
combination of cache-aware scheduler, our extended
scheduler increases performance by 31% and saves 15% in
core utilization per gigabit with 8 VCPUs.

Since our two optimizations are software extensions of the
VMM scheduler, they are generic to improve network
performance in a hardware independent manner, and are
applicable to both 1GE and 10GE network.

6. OPTIMIZATONS IN DOM0
This section is to study the overhead incurred in Dom0 with
10GE network. In order to analyze the component level
overhead along packet processing, we develop our own tool
based on Intel Performance Counter [15]. We instrument
the VMM and Dom0 along with the path to record the
current time-stamp and retired instructions at major points.
Our experiment indicates that Linux Bridge and I/O channel
are two major bottlenecks during packet processing.

Table 1. Overhead of Important Components

As shown in Table 1, Linux Bridge executes 4K instructions
and consumes about 11K cycles to switch one packet. It is
mainly because Linux Bridge must comply with the
Netfilter interface which is used to integrate filter rules to
filter received/transmitted packets. The I/O Channel using
data copy model is another big overhead. It is mainly
contributed to the expensive entry/exit to the VMM and the
real packet copy between domains. All of them are
mandatory in the current I/O model. We also notice that
there are some packet losses within TCP streams resulting
in TCP retransmissions. In subsection 6.1, we design a
simplified bridge to improve packet switching, followed by
the configurable TX queue length of backend (BE) engine
(Fig. 1) for ameliorating packet retransmissions in
subsection 6.2.

167

6.1 Packet-Switching Optimization
Linux Bridge is a way to connect two Ethernet segments
together in a protocol independent way. Packets are
forwarded based on Ethernet address, rather than IP address
(like a router). The Linux bridge code implements a subset
of the ANSI/IEEE 802.1d standard. The code for bridging
has been integrated into 2.4 and 2.6 kernel series [20]. In
order to simplify the VMM design, Xen takes advantage of
the existing Linux Bridge component in Linux Kernel to
serve as an arbitrator/multiplexer/de-multiplexer. Linux
Bridge is used to switch packets to designated ports.
Although this approach can greatly simplify the
virtualization design, it adds extra high overhead while
switching packets.

Fortunately, our function level profiling of Linux Bridge
indicates that pure packet switching function requires only
600 cycles, and Jhash algorithm [18] used for multiplexing
packets by hashing MAC addresses only consumes 120
cycles. It motivates us to design a simplified bridge tailored
for packet switching in virtualized environment. However,
it must retain the same user/kernel interface as original
bridge so that the user space bridge utility still works in
virtualization environment. Since bridge utilities in user
space are being used by domain management tool residing
in Dom0 to create/destroy BE, the new bridge should
comply with the original user/kernel interface to avoid
interference with the current workable system. The new
design is required to keep bridge as simple as possible with
respect to packet switching’s performance and scalability.

Figure 10. Linux Bridge Vs Our Tailored Bridge

Packet processing path of both Linux Bridge and our
tailored bridge are shown in Figure 10. It shows that we
bypass most of the functions introduced by Netfilter
interface and re-implement the internal interfaces to
minimize extra function costs except the bridge itself. The
Jhash algorithm is still adopted in our design. Our prototype
is implemented as a new feature of Linux Bridge to take

advantage of its existence in mainstream kernel. We study
its packet switching overhead and find that executed
instructions are reduced from 4K to 700, and the switching
packet cycles are reduced significantly by 10X from 11K to
1.2K.

We also evaluate our bridge by running the whole session
Iperf to study its impact on bandwidth and core utilization,
which is shown in Figure 11. “Opt C” in the figure is for
our simplified bridge. It is observed that our simple bridge
prototype can increase the bandwidth by 7% and save 10%
in core utilization per gigabit when message size is greater
than 1 KBytes. With small messages, a slightly higher
bandwidth can be achieved by our bridge with the savings
of 13% in core utilization per gigabit. All the results reveal
that our simple bridge is a helpful software approach to
optimize I/O processing. Similar to the two optimizations
for the VMM scheduler, our simplified bridge is also a
generic approach and is applicable to both 1GE and 10GE
network.

0

0.5

1

1.5

2

2.5

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

B
an

d
w

id
th

 (
G

b
p

s)

50%

70%

90%

110%

130%

150%

170%

C
o

re
 U

ti
l

P
er

 G
b

p
s

Default Opt C Default Opt C

Figure 11. Simple Bridge Optimization

6.2 Configurable TX Queue Length of BE
Since TCP is a network protocol providing reliable in-order
delivery of a stream of bytes, frequent data loss incurring
packet retransmissions would result in the significant
performance degradation. It is important to understand the
TCP behavior while processing packets in virtualized
environment. In our experiments, we notice that there are
some losses of data within TCP streams, resulting in TCP
retransmissions and therefore creating gaps during data
transfer. We study the data loss by a detailed analysis with
the tool tcpdump [31] and observe some transmission gaps
of greater than 60 ms caused by TCP retransmissions that
do not happen in Linux.

By looking into the source code for packet processing, we
found that two extra queues are introduced in virtualized
I/O: an outgoing queue of BE to queue frames from Linux
Bridge and a RX queue in FE of DomU to host received
packets from BE. The maximum number of frames that can
be queued on the BE’s outgoing queue is statically fixed to

168

32 (It is the trade-off point between bandwidth and latency.
A longer queue introduces a higher processing latency and
hence might offset the gains of bandwidth from the longer
queue). Although this value works well under 1GE network,
a 10X in network speed needs a larger queue to avoid
packets being dropped. We develop a patch to make this
parameter configurable during run-time to users and study
its impact on bandwidth. The result is illustrated in Figure
12 when the queue length is varied value from 32 to 512.
We notice that 128 is the best value under 10GE network. It
achieves 3.3Gbps bandwidth and saves the corresponding
core utilization. Compared to the default system, the
technique increases bandwidth by 43% and saves 5% in
core utilization per gigabit. Additionally, we also study the
impact of RX queue’s length in FE and find that the current
value 256 works well and does not trigger any data loss.

0

0.5

1

1.5

2

2.5

3

3.5

32(Default) 64 128 256 512

TX Buffer Length

B
an

d
w

id
th

 (
G

b
p

s)

68%

70%

72%

74%

76%

78%

80%

C
o

re
 U

ti
l

P
er

 G
b

p
s

BW

Core Util

Figure 12. Configruable TX Queue Len

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Message Size (Bytes)

B
an

d
w

id
th

 (
G

b
p

s)

30%

50%

70%

90%

110%

130%

150%

170%

C
o

re
 U

ti
l

P
er

 G
b

p
s

Default All Optimizations Default All Optimizations

Figure 13. Combination of All Techniques

7. COMBINATION OF OPTIMIZATIONS
Two extensions for the VMM scheduler and two
optimizations for Dom0 were proposed and evaluated by
individually in the previous sections. This section evaluates
the combined effect of all the above optimizations in terms
of network bandwidth and core utilization per gigabit. We
incorporate all the optimizations into virtualized system and

compare the results with the default system for varied
message sizes, which is illustrated in Figure 13. The bars
represent the bandwidth and the lines represent the core
utilization per gigabit. It is observed that our combined
techniques can increase the network bandwidth by 96% to
4.5 Gbps, and also save 36% in core utilization per gigabit
when the message size is greater than 1 KBytes. With small
messages, a slightly higher bandwidth is achieved but 20%
core utilization is saved. In our experiment, we also
observed that the total core utilization consumed by Dom0
is reduced from 105% to 84% by using all the optimizations.

8. RELATED WORK
With the advent of multi-core architecture and high-speed
networks such as 10GE, G.N et al. [26] studied the network
stack’s interaction with applications in multi-core
environments. However, they just focused on some high
performance network stacks and did not investigate the
virtualized I/O with a multi-core server under 10GE
network. With respect to virtualization overhead analysis,
several previous papers [22, 23, 24] measured the impact of
virtualization overhead on micro or macro benchmark, but
they did not consider the impact of the VMM scheduler,
which deteriorates on 10GE network. D.O et al. [7] studied
the relationship between the VMM scheduler and I/O
performance. However, they focused on the fairness of I/O
performance with 1GE network and lacked of the
consideration of the VMM scheduler on mainstream multi-
core systems where behaves significantly different from
uni-core systems.

Since some useful features from virtualization including
ease of management, functional isolation and live migration
can be very beneficial to the manageability of high
performance applications: Liu et al. [21] adopted
virtualization technology for HPC and allowed each domain
to directly access the high performance network. However,
they targeted to the high performance network InfiniBand
rather than the Gigabit Ethernet Network. In Ethernet
Network, some researches including NetXen [25] and
Crossbow [6] are trying to address the performance issues
by taking advantage of the new Ethernet NIC features like
multiple TX/RX queues to allow domains to directly access
the hardware. However, they are designed to work with the
new 10GE network adapters and hence inhibit the features
of portability and live migration, which are the two major
incentives for deploying virtualization in high end servers.
Similarly, hardware-assisted direct I/O technology [16] is
proposed for full virtualized system to allow guest OS to
directly access PCI devices. However, it also heavily relies
on hardware and full virtualization itself has much higher
overhead than para-virtualized system. Software support is
also far immature. Receive Side Scaling [29], a technique in
NIC for mapping each connection to a specific core instead
of being processed by random idlers to improve network

169

processing scalability, can not also be directly applied to
virtualized environment due to an extra mapping of virtual
CPU to physical CPU. Our software optimizations work in
a hardware independent manner and are applicable to both
1GE and 10GE network.

9. CONCLUSION AND FUTURE WORK
This paper analyzes the performance of virtualization in
10GE network with a multi-core server. We found that
virtualization under 10GE network adds significant
performance overhead to network packet processing. We
proposed two optimizations for the scheduler inside the
VMM to eliminate the scheduler’s impact on performance,
based on cache locality and credit stealing. We also
proposed two techniques for Dom0 to accelerate packet
processing by re-designing a simplified bridge tailored for
switching packets and adjusting the queue length of
backend to minimize the data loss. Our combined
optimizations not only dramatically increase bandwidth by
96% but also significantly improve the efficiency with a
savings of 36% in core utilization per gigabit. All the
optimizations work in a hardware independent manner and
are applicable to both 1GE and 10GE network. Using these
optimizations, VMM designers can understand how to
better serve the virtualized I/O processing in multi-core
systems.

In future, we would like to study the impact of architectural
features on virtualized network performance such as Direct
Cache Access (DCA) [10] of directly pushing data into
cache, and exploit some micro-architectural changes to
further optimize packet processing performance for 10GE
network. All the patches for the VMM scheduler, Linux
Bridge and configurable TX queue length are under code
review and will be released to public soon.

10. ACKNOWLEDGEMENTS
This work is supported in part by Intel research grant.

11. REFERENCES
[1] AMD64 Virtualization "Pacifica" Technology, Secure Virtual
Machine Architecture Reference Manual, May 2005.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In 19th SOSP, Oct 2003.
[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro ’95.
[4]Credit scheduler. http://xen.org/files/summit_3/sched.pdf.
[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Machines,
OSDI.
[6] Crossbow. http://opensolaris.org/os/project/crossbow/.

[7] D, Ongaro., A. L, Cox., S, Rixne. 2008. Scheduling I/O in
virtual machine monitors. VEE 2008.
[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. In 1st OASIS, Oct 2004.
[9] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda.
Performance Characterization of a 10-Gigabit Ethernet TOE. HotI,
2005.
[10] Ram Huggahalli, Ravi Iyer, Scott Tetrick. “Direct cache
access for high bandwidth network I/O”, 32nd International
Symposium on Computer Architecture, 2005. ISCA’05
Proceedings.
[11] Iperfbenchmark. http://dast.nlanr.net/Projects/Iperf/.
[12] Intel 10 Gigabit Ethernet Controllers
http://download.intel.com/design/network/prodbrf/317796.pdf.
[13] Intel Core 2 Extreme quad-core processor.
http://www.intel.com/products/processor/core2XE/.
[14] Intel Virtualization Technology Specification for the IA-32
Intel Architecture, April 2005.
[15] Intel Software Developer's Manual Vol.
3B. http://www.intel.com/products/processor/manuals/.
[16] Intel VT-d.
http://www.intel.com/technology/itj/2006/v10i3/2-io/5-platform-
hardware-support.htm.
[17] Infiniband. http://www.infinibandta.org.
[18] Jhash. http://www.burtleburtle.net/bob/hash/doobs.html.
[19] I. M. Leslie, D. Mcauley, R. Black, T. Roscoe, P. T. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and
Implementation of an Operating System to Support Distributed
Multimedia Applications. IEEE .
[20] Linux Bridge. http://bridge.sourceforge.net/.
[21] J. Liu, W. Huang, B. Abali and DK Panda, “High
Performance VMM-Bypass I/O in Virtual Machines”, USENIX
Annual Technical Conference, June 2006.
[22] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W.
Zwaenepoel. Diagnosing Performance overheads in the Xen
Virtual Machine Environment, VEE’05.

[23] A.Menon, J. R. Santos, Y. Turner, and G. Janakiraman,
“Xenoprof - Performance profiling in Xen”.

[24] A. Menon, A. Cox, W. Zwaenepoel, Optimizing Network
Virtualization in Xen, 2006 USENIX Annual Technical
Conference.

[25] Netxen, http://www.netxen.com/index1.html.
[26] G.Narayanaswamy, P.Balaji, W.Feng, An Analysis of 10-
Gigabit Ethernet Protocol Stacks in Multicore Environments in
HotI’07.
[27] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
TheQuadrics Network (QsNet): High-Performance Clustering
Technology.In HotI ’01.
[28] M. Rosemblum and T. Garfinkel. Virtual Machine Monitors:
Current Technology and Future trends. IEEE computer, 38(5): 39-
47, 2005.
[29] Scalable Networking: Eliminating the Receive Processing
Bottleneck. Microsoft WinHEC April 2004.
[30] Top500 supercomputer list. http://www.top500.org.
[31] Tcpdump. http://www.tcpdump.org.

170

