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ABSTRACT 
Virtualization technology is now widely deployed on high 
performance networks such as 10-Gigabit Ethernet (10GE). 
It offers useful features like functional isolation, 
manageability and live migration. Unfortunately, the 
overhead of network I/O virtualization significantly 
degrades the performance of network-intensive applications. 
Two major factors of loss in I/O performance result from 
the extra driver domain to process I/O requests and the 
extra scheduler inside the virtual machine monitor (VMM) 
for scheduling domains.  

In this paper we first examine the negative effect of 
virtualization in multi-core platforms with 10GE 
networking. We study virtualization overhead and develop 
two optimizations for the VMM scheduler to improve I/O 
performance. The first solution uses cache-aware 
scheduling to reduce inter-domain communication cost. The 
second solution steals scheduler credits to favor I/O VCPUs 
in the driver domain. We also propose two optimizations to 
improve packet processing in the driver domain. First we 
re-design a simple bridge for more efficient switching of 
packets. Second we develop a patch to make transmit (TX) 
queue length in the driver domain configurable and 
adaptable to 10GE networks. Using all the above 
techniques, our experiments show that virtualized I/O 
bandwidth can be increased by 96%. Our optimizations also 
improve the efficiency by saving 36% in core utilization per 
gigabit. All the optimizations are based on pure software 
approaches and do not hinder live migration. We believe 
that the findings from our study will be useful to guide 
future VMM development.   

Categories and Subject Descriptors 

D.4.1 [Operating Systems]: Process Management—Scheduling 

General Terms 
Measurement, Performance, Design, Experiments. 

Keywords 
Virtualization, VMM Scheduler, 10GE, Xen, Multi-Core. 

1. INTRODUCTION 
Virtualization technology is experiencing a surge of interest 
from both academia and industry for functional isolation, 
manageability and live migration on volume servers. In 
such environments, the virtual machine monitor (VMM) 
virtualizes not only the machine's computing resources but 
also network facilities. Multiple operating systems running 
concurrently in different virtual machines (VM) enjoy the 
illusion of ownership of network resources. As more and 
more network-active servers are consolidated, we see a 
migration toward high performance networks in the 
virtualized endpoint server. 

Although traditional Ethernet based network architectures 
such as Gigabit Ethernet lag in performance as compared to 
other high performance networks (e.g., InfiniBand [17], 
Quadrics [27], Myrinet [3]), they continue to be the most 
widely used network architecture nowadays. This trend is 
mainly attributed to the low component cost and backward 
compatibility with the existing Ethernet infrastructure [9]. 
As of 2006, Gigabit Ethernet-based clusters make up 176 
(or 35.2%) of the top-500 supercomputers [30]. Thus, as 
performance pressure on the consolidated network grows, 
we strongly believe that industry will quickly migrate to 
10GE networks to accommodate the increasing workload. 

Unfortunately, the overhead of network I/O virtualization 
can significantly affect the performance of network 
intensive applications [22, 23, 24], especially under high 
speed networks. We conduct experiments on an Intel 
machine with two quad-core processors and 10GE 
networking to evaluate the virtualization impact on server 
networking performance. Our machine used Xen [2] as the 
VMM. In our experiments, a guest domain (DomU) only 
achieves 2.3Gbps bandwidth, compared to 5.5Gbps in 
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Linux, while consuming many more CPU cycles. Some 
researches [6, 25] are trying to allow domains to directly 
access hardware to improve bandwidth. These approaches 
take advantage of new Ethernet NIC features like multiple 
TX/RX queues. However, the direct access approach 
inhibits live migration and portability, which are the two 
major incentives for virtualization in high end servers [2, 5, 
8]. Therefore, accelerating virtualized I/O processing in a 
hardware independent manner becomes an important 
problem.  

We show that two major factors of loss in virtualized I/O 
performance result from the extra driver domain to process 
I/O requests and the extra scheduler inside the virtual 
machine monitor for scheduling domains. The VMM must 
schedule Dom0 and DomU instantly and in the correct 
order, otherwise increased latency from scheduling delay 
degrades bandwidth [7]. In this paper we conduct 
experiments to study the impact of the VMM scheduler and 
Dom0 on a multi-core platform with 10GE networking.  We 
then develop two optimizations for the default VMM 
scheduler: cache-aware scheduler and a credit-stealing 
policy. Since the VMM directly copies all received packets 
from Dom0 to DomU in the contemporary I/O split model, 
our cache-aware scheduler attempts to schedule the DomU 
on the core, which shares last level cache with the core 
Dom0 currently residing in. This approach provides DomU 
with improved cache locality when accessing the packets, 
and substantially reduces inter-domain communication cost. 
The credit-stealing policy is a technique for the VMM 
scheduler to favor VCPUs in Dom0 that intensively process 
received packets (called as I/O VCPUs). In this technique, 
the VMM dynamically steals some credits for I/O VCPUs 
from other idle Dom0’s VCPUs instead of fairly allocating 
credits among all of them. With this optimization, we 
increase the likelihood that the I/O VCPUs are running 
while receiving the NIC interrupt requests, thus accelerating 
packet processing.  

Besides improving the VMM scheduler, we also identify 
packet processing overhead in Dom0 by instrumenting the 
source code at the component level. Our profiling shows 
that packet switching is one of the main bottlenecks. Thus 
we design a simplified bridge which retains the same 
user/kernel interface as the original bridge but reduces 
switch processing time by 10X for each packet.  
Additionally, in our experiments, we notice some losses of 
data within TCP streams resulting in TCP retransmissions. 
Our deeper investigation reveals that the retransmissions 
result from queue overflow in the network backend driver 
connecting the bridge to the DomU. Hence, we develop a 
patch to make backend queue length configurable and 
adaptable to 10GE networks.  

A combination of all the above techniques can substantially 
improve the capability of virtualized systems to process 
high speed network traffic. Our experimental results reveal 

that the new virtualized I/O can achieve 4.5 Gbps 
corresponding to an increase of 96%. Additionally, we find 
that the efficiency for packet processing improves with a 
savings of 36% in core utilization per gigabit. Since all our 
optimizations are software based, they do not inhibit live 
migration and portability of virtual machines. Although we 
designed our techniques under 10GE network, they are also 
applicable to a low-end network like 1GE network.  

The remainder of this paper is organized as follows. The 
background necessary to understand our work is described 
in section 2. Section 3 presents our experimental setup. 
Virtualization performance with a 10GE network is 
illustrated in section 4. The two optimizations of the VMM 
scheduler on multi-core architectures are described in 
section 5, followed by the two optimizations for Dom0 in 
section 6. Section 7 combines all techniques and presents 
the results. Finally section 8 presents the related work 
followed by our conclusion and future work in section 9. 

2. BACKGROUND 
2.1 Virtualization 
Virtualization is a broad term that refers to the abstraction 
of physical computer resources. A typical virtualized 
platform consists of a software virtual machine monitor that 
“virtualizes/abstracts” the physical resource of the platform 
and provides a simulated environment that appears to the 
operating system as hardware. The most recent 
virtualization solutions are based on either total 
virtualization or para-virtualization. This total virtualization 
[28] demands relatively complex implementation of 
hypervisor which depends on techniques like ring 
compression and binary patching to enable this environment. 
This complexity and performance overhead in the 
hypervisor can be reduced by making the host hardware and 
the guest operating system aware of virtualization. The first 
type is referred to as hardware-assisted virtualization. 
Recently processor vendors like Intel and AMD are adding 
hardware support for virtualization [1, 14, 16] which 
reduces the burden on the hypervisor by providing the 
virtualization and isolation hooks in the hardware.  
While hardware supported virtualization makes the 
hardware aware of virtualization, para-virtualization makes 
the guest OS aware of virtualization. Xen [2, 5, 8] is the 
most popular open source para-virtualized virtual machine 
monitor based on Linux.  In this paper, we focus on the 
para-virtualized system Xen.  It does not require changes to 
the application binary interface (ABI), and hence no 
modifications are required to guest applications. In 
particular, Xen exposes a hypercall mechanism that virtual 
machines must use to perform privileged operations, an 
event notification mechanism to deliver virtual interrupts 
and other notifications to virtual machines, and a shared 
memory based device channel for transferring I/O messages 
among virtual machines. While the OS must be ported to 
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this virtual machine interface, this approach leads to better 
performance than the approach based on pure virtualization.  

2.2 Xen I/O Virtualization 
The Xen I/O architecture has evolved from Hypervisor 
contained device drivers (Direct I/O) to a Split I/O [5, 8]. 
The primary goal of the Split I/O architecture is to provide 
isolation from misbehaved device drivers. Virtual machines 
in Xen usually don’t have direct access to hardware. Each 
device driver is expected to run in a driver domain (Dom0), 
which hosts a backend driver to serve access requests from 
guest domains (DomU). The network architecture used in 
Xen is shown in Figure 1. 

  Figure 1. Xen I/O Split 

Xen provides each DomU with a number of virtual network 
interfaces called Front-ends (FE), which are used by the 
DomU for all its network communications. Corresponding 
to each FE in a DomU, a backend Interface (BE) is created 
in the Dom0, which acts as the proxy for that FE. The FE 
and BE are connected to each other over an I/O channel. 
The recent I/O channel implements both data copy and page 
flip mode in receiving side with data copy as the default 
setting. However, during transmitting packets, only page 
flip mode is supported. Once inter-domain packet 
movements get finished, the virtual interrupt is sent to 
notify the target DomU of the packet. BE for each DomU is 
bridged with the real NIC driver in Dom0 by Linux Bridge 
module [20]. It functions as an internal crossover Ethernet 
bridge to switch the received packets to the corresponding 
attached ports through their MAC addresses. Finally real 
NIC driver in Dom0 directly access NIC to transmit or 
receive packets through external network.  Compared to 
Linux, there are two extra queues introduced by Dom0. One 
of them is between Linux Bridge and BE, the other one is 
used to connect FE and BE. 

2.3 VMM Scheduler  
The Xen functions as an abstraction layer of the real 
physical devices. As a result, scheduling in virtualization is 
based on Virtual CPUs (VCPU) because Physical CPUs 
(PCPU) are transparent to domains. Each domain can be 

arbitrarily allocated with multiple VCPUs. Besides the 
default credit scheduler, Xen also keeps its legacy scheduler 
Simple Earliest Deadline First (SEDF) [19].  SEDF 
provides weighted CPU sharing in an intuitive way and uses 
real-time algorithms to ensure real time guarantees. 
However, it lacks global load-balancing on multiprocessors 
and is becoming obsolete. In this paper we focus on the 
default credit scheduler [4], a proportional fair share CPU 
scheduler built to achieve load balance on SMP hosts. Its 
overall objective is to allocate the processor resources fairly. 
The scheduler organizes a local run queue of online 
runnable VCPUs for each PCPU and always picks a 
workload (VCPU) from the head of the queue to run. This 
queue is sorted by VCPU priority. A VCPU’s priority can 
be one of three values: OVER, UNDER and BOOST. 
OVER, UNDER represent whether or not this VCPU has 
used up its fair share of CPU resource in the ongoing 
accounting period. The BOOST state provides a mechanism 
for domains to achieve low I/O response latency. All the 
VCPUs in BOOST state are placed in front of those in 
UNDER state in the runqueue, while those with OVER state 
are kept in the tail portion. Based on the predefined weight, 
each domain is initially allocated a corresponding credit 
which is fairly shared among all the VCPUs that are 
affinitized to the domain. As a VCPU runs, it consumes 
credits. Every so often, a system-wide accounting thread re-
computes how many credits each active domain has earned 
and bumps the credits.  
When it comes to multi-core architecture, there are a few 
twists while the scheduler functions.  First of all, when there 
is not a VCPU of priority UNDER on a PCPU’s local run 
queue, the scheduler will search other PCPUs for one. This 
load balancing ensures each domain receives its fair share 
of PCPU resources system-wide. Before a PCPU goes idle, 
the scheduler will look on other PCPUs to find any runable 
VCPU. This guarantees that no PCPU idles when there is 
runnable work in the system. Secondly, VCPU migration 
might happen based on priority difference for event 
notification. Whenever an event is notified to a target 
VCPU while it is idle, the scheduler tickles the designated 
PCPU and re-evaluates to see if the target VCPU preempts 
the current running VCPU. If there are at least two runnable 
VCPUs in that PCPU, the scheduler would migrate some of 
them to the idlers in the system to achieve load balance. 
Last but not the least, the scheduler checks the state of the 
current running VCPU during each timer interrupt and 
redistributes the PCPU if necessary.  The running VCPU 
will be migrated to the online neighbor PCPU with the most 
idling neighbors PCPU. This policy distributes work across 
distinct sockets first and then distinct cores in the same 
socket. 
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3. EXPERIMENTAL TESTBED  
Our experimental testbed consists of two Intel Clovertown 
machines which function as a system under test (SUT) and 
a stressor respectively. Each of them is a two-processor (or 
socket) platform based on the quad-core Intel Xeon 
processor 5300 series with 8 MB of L2 cache per processor 
[13]. Its CPU layout is illustrated in Figure 2. As we can see 
from the figure, each processor has two 4MB shared L2 
caches. It is equipped with 16GB DRAM and 1333 MHz 
system bus. The SUT and stressor are hosted by Xen 3.1.3 
and Vanilla Linux kernel respectively. Xen is configured 
with data copy mode and the credit scheduler is at default 
mode. To conduct virtualization experiments in 10GE 
network, we connect two machines via two Intel® PRO/10 
GbE SR Server Adapters [12]. They connect to hosts 
through PCI-Express x8, a 16+16 Gigabit/s full-duplex I/O 
fabric that is fast enough to keep up with the 10+10 
Gigabit/s full-duplex network port. Since the virtualized 
system has not supported TCP/IP offloading engine (TOE) 
and Jumbo Frames yet, all the experiments in this paper are 
conducted without TOE support and with an MTU of 1500 
Bytes. We retain the default settings in network adapter’s 
driver without specific performance tuning on interrupt 
coalescing, write combing etc. All protocol and system 
relevant settings are at default.  

 

Figure 2.  Intel Xeon Clovertown Machine  
In all the experiments, Iperf [11] is selected as the micro-
benchmark. The micro-benchmark allows us to quickly and 
easily identify the performance benefits of our 
optimizations. We run the experiments with eight parallel 
connections (the number of cores in our SUT) for various 
message sizes for measuring network bandwidth and the 
corresponding core utilization (The core utilization can 
reach up to 800% in our systems corresponding to two 
quad-core processors). In virtualized environment, the 
number of VCPUs in Dom0 is set to 8 (the number of cores 
in our SUT) and only one DomU is used for our 
experiments. The VMM scheduler is configured as credit 
scheduler by default, unless otherwise stated.  

4. BASELINE ANALYSIS ON 10GE 
In this section, we first conduct experiments by creating one 
DomU to evaluate the performance of baseline virtualized 

I/O in the SUT and then investigate the impact from Dom0 
and VMM schedulers on virtualized I/O bandwidth. 

4.1 Virtualization Performance Overhead 
We conduct experiments with the default settings to study 
the virtualized I/O overhead under 10GE network. The 
result is illustrated in Figure 3, where bars and lines 
represent the bandwidth and core utilization respectively. 
The results of Dom0 is measured by running Iperf on a 
driver domain with a guest domain idling. The results of 
DomU are collected by running Iperf on a guest domain. 
The core utilization of DomU in the figure represents the 
sum of driver and guest domain’s utilizations.  

With Default Credit Scheduler
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Figure 3.  Bandwidth & Core Utilization  

From the figure, some key observations are made as follows: 
1) virtualized I/O (or DomU) can not achieve the same 
bandwidth as Linux even with higher core utilization. 
According to our results, virtualized networking suffers 
about 65% bandwidth degradation. We obtained only 2.3 
Gbps of application bandwidth but 2X consumption of the 
core utilization compared to the non-virtualized case, 2) 
different from DomU, Dom0 can achieve the same 
bandwidth as Linux although with significantly higher core 
utilization than DomU. It is mainly because Dom0 directly 
manages hardware and network processing in Dom0 
performs in a similar way to Linux. These observations 
point out that the current I/O split model mainly contributes 
to the performance loss and is not efficient enough to 
process packets. It obtains much lower bandwidth but with 
significantly higher core utilization than Linux. Since 
virtualization introduces an extra Dom0 to process packets 
and an extra VMM scheduler for scheduling domains, they 
are two major factors of I/O performance loss.  

4.2 Domain’s CPU Overhead 
The overhead of Dom0 is unclear but critical for system 
designers to understand the behavior of processing packets. 
We study the breakdown of CPU overheads between Dom0 
and DomU in virtualized I/O processing with various 
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message sizes, which are illustrated in Figure 4.  Based on 
the figure, Dom0 consumes significantly more CPU cycles 
than DomU where network applications reside, especially 
for receiving small messages. It motivates us to optimize 
the overhead incurred in Dom0. 
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Figure 4. CPU Overhead Distribution 

4.3 Impact of VMM Scheduler 
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Figure 5.  Impact of VMM Schedulers 

Virtualized system introduces an extra scheduler inside the 
VMM for scheduling different domains. However, there is 
no single and easy method for quantifying the impact of 
VMM schedulers on network performance. Since Xen is a 
unique virtualized system to provide multiple VMM 
schedulers like SEDF and the default credit scheduler, we 
carry out a comparative evaluation of them on multi-core 
platforms to project VMM scheduler’s impact. The 
experimental results including bandwidth and core 
utilization are illustrated in Figure 5. It shows that SEDF 
can not utilize the multiple cores and only achieves 1.1Gbps 
bandwidth, mainly because it lacks global load-balancing 
on multi-core platforms. This explains why SEDF has been 
replaced by credit scheduler and is becoming obsolete on 
multi-core platforms [4]. The credit scheduler performs 
better than SEDF in Fig. 5, but still is unable to get high 

bandwidth for I/O intensive applications. All of them point 
out that the VMM scheduler can drastically impact the 
performance of I/O intensive applications running on 
domains, and motivate us to revisit its design and possible 
optimization. 

5. OPTIMIZATIONS OF SCHEDULER 
The default credit scheduler, a proportional fair share CPU 
scheduler, is designed for load-balancing workloads on 
multi-core platforms. However, it is unaware of core 
topology in multi-core systems, where some of cores are 
sharing a last level cache while others are sitting in different 
sockets. It blindly migrates the VCPU running on PCPU 
with high workloads to PCPU with lightweight workloads. 
Moreover, the number of VCPUs in Dom0 is configured to 
the same number of PCPUs, and each VCPU is assigned 
with the same credit even though some of them are idling. 
All of these behaviors significantly degrade virtualized 
network performance. In this section, we develop two 
optimizations: a cache-aware scheduler for reducing inter-
domain communication cost and credit-stealing for favoring 
I/O VCPU in Dom0. In order to compare the efficiency of 
packet processing across our optimizations, the metric of 
core utilization is normalized to per gigabit in the following 
sections.  

5.1 Cache-Aware Scheduler 
To make the best use of the resources and to make inter-
core communication efficient, cores in a physical package 
share some of the resources. Our SUT has two CPU cores 
sharing the L2 cache which is called Intel Advanced Smart 
Cache [13], as shown in Figure 2. Each processor has four 
cores in a physical package with two last level (L2) caches. 
Each L2 cache is shared by two cores. Further, as more 
logic gets integrated into the processor package, more 
resources will be shared by the cores on the die. The current 
credit scheduler in virtual machine monitor is designed for 
SMP load balance, but is not cache-aware and can not co-
schedule the two VCPUs with data sharing on the two cores 
sharing L2 cache (a.k.a. cache domain). Since Dom0 is 
designed for serving I/O requests to de-multiplex packets 
and move packets to designated DomU (I/O DomU), there 
is intense data sharing between Dom0 and I/O DomU, 
especially when the data copy mode is configured. Co-
scheduling Dom0 and I/O DomU in the cache domain will 
give I/O DomU a free ride to access the data in the cache 
and then result in more efficient inter-domain 
communication.  

Implementation: 
In order to co-schedule Dom0 and I/O DomU, the first step 
is to identify them in the VMM. Currently we identify them 
by counting how often I/O events of boosting VCPUs are 
triggered during each time slice. If the number of triggers 
exceeds a threshold (default 150), both the boosting and the 

165



boosted VCPUs are considered as I/O VCPUs (in receive 
side, boosting VCPU is I/O VCPU in Dom0). Note that our 
extension of the scheduler is only based on VCPUs with 
intense I/O operations, and doesn't sacrifice the system-
wide load-balance on multi-core platforms. After the 
identification of I/O VCPUs, the VMM scheduler always 
intelligently schedules boosting and boosted VCPUs to the 
cores sharing same L2 cache.  

In default credit scheduler, when an event is notified to a 
target VCPU while it is idle, it is awaken with the state of 
BOOST. Then other idle PCPUs and PCPU hosting the 
VCPU are tickled to re-evaluate where the VCPU will be 
running. In cache-aware scheduler, instead of tickling all 
idle PCPUs, boosted VCPU is inserted into the runqueue of 
PCPU sharing L2 cache with the PCPU currently hosting 
boosting VCPU. An example is shown in Figure 6. The left 
side in the figure is the original system state where boosting 
VCPU and one running VCPU are sitting in the same cache 
domain and boosted VCPU is running on the core 4. Cache-
aware scheduler will automatically migrate boosted VCPU 
into the same cache domain as boosting VCPU to take 
advantage of shared cache. The running VCPU is 
preempted into the core 4 for securing the system level load 
balance. The system state after migration is shown in the 
right side of the figure.  

 
Figure 6. An Example of Cache-Aware Scheduler 

Additionally, VCPU migration in current scheduler also 
occurs when a VCPU remains BOOST for a while and 
some PCPUs are idle. It chooses the target PCPU with the 
largest number of idle neighbors in its grouping. This 
option will distribute workload across distinct packages 
first and result in maximum resource utilization since there 
is no shared resource contention. However, virtualized I/O 
processing with data sharing between Dom0 and I/O DomU 
will suffer heavy inter-package communication penalty 
from this mechanism. Cache-aware scheduler dynamically 
migrates the boosted VCPU and boosting VCPU to the 
same cache domain when this migration is triggered.  

Although our technique might preempt the running VCPU 
on the PCPU, the preempted VCPU could be migrated into 
other PCPUs to sustain system-level workload balance on 
multi-core platforms. 

Experiments: 

We conducted experiments to study the benefits of our 
cache-aware scheduler over the default version in terms of 
both bandwidth and core utilization per gigabit as a 
function of message sizes. The result is depicted in Figure 7, 
where “Default” represents the conventional credit 
scheduler and “Opt A” is for our cache-aware scheduler. 
Our extended scheduler increases the bandwidth by 13%, 
and also saves 11% in core utilization per gigabit when 
message size is greater than 1 KBytes. With smaller 
messages, a slightly higher bandwidth is achieved with 
lower core utilization. The results reveal that our cache-
aware scheduler reduces the overhead of inter-domain 
communication in virtualized packet processing.  
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Figure 7. Cache-Aware Scheduler 
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Figure 8. Impact of the Number of VCPUs in Dom0 

We also study the impact of the number of VCPUs in Dom0 
on virtualized network bandwidth with and without cache-
aware scheduler in Figure 8. The 64 KBytes message is 
used in our experiments. The figure shows that both the 
schedulers perform better with less VCPUs in Dom0. It is 
also observed that our cache-aware scheduler increases the 
bandwidth by 35% with the savings of 21% in core 
utilization per gigabit when the number of VCPUs is 1. 
However, the benefits over default scheduler reduce as the 
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number of VCPUs increases from 1 to 8. All of the above 
observations point out that the number of VCPUs in Dom0 
affects I/O’s behavior and has a greater negative impact 
with cache-aware scheduler.  

5.2 Credit-Stealing for I/O VCPU in Dom0 
The number of VCPUs in Dom0 is configured by default as 
the number of cores in the platform. In credit scheduler, all 
VCPUs affiliated to the same domain are allocated fairly 
with the same credit. However, all of the interrupts from 
NIC are usually directly directed to a specific VCPU to 
improve the cache locality of interrupt processing in a non-
virtualized environment. This credit allocation mechanism 
results in performance degradation in virtualized 
environment mainly because more VCPUs in Dom0 lead to 
less shared credit for each VCPU. I/O VCPU can not be 
allocated with sufficient computing resources to satisfy 
packet processing. We propose to dynamically and 
temporarily steal some credits from other idle VCPUs to 
favor I/O VCPUs during each time slice while I/O VCPUs 
are busy with processing packets. The principle to steal 
credits is formalized in the following equation: 

))_(*2/()_( VCPUsIONumVCPUsIdleCreditSteal =  

where Steal means the stolen credit for each I/O VCPU, 
)_( VCPUsIdleCredit is for the credit of all idle VCPUS.  

)_( VCPUsIONum  represents the number of I/O VCPUs.  It 
shows that each idle VCPU’s credit is dynamically cut in 
half to favor I/O VCPUs to eliminate their burden while 
working with intensive NIC interrupt requests. Since our 
policy steals credits from idle VCPUs, it does not hurt the 
overall system performance.  
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Figure 9. Credit-Stealing for I/O VCPU in Dom0 

Experiments: 
We used the 64 KBytes messages to study the network 
bandwidth achieved by credit-stealing along the number of 
VCPUs in Dom0. The experimental results are shown in 

Figure 9. Similar to our previous figures, the normalized 
core utilization is also illustrated by lines. “Def” represents 
the default credit scheduler and “Opt A” is for our extended 
cache-aware scheduler. “Opt A+B” is the combinational 
scheduler with both two optimizations. As seen from the 
figure, the policy for stealing credit further improves the 
network performance by 18% and saves 5% in core 
utilization per gigabit when the number of VCPUs is greater 
than 4. Without any knowledge from users or administrators, 
it will dynamically adapt to favor I/O processing while 
receiving intensive I/O requests and then lead to a higher 
bandwidth by wasting less computing resources. With the 
combination of cache-aware scheduler, our extended 
scheduler increases performance by 31% and saves 15% in 
core utilization per gigabit with 8 VCPUs.  

Since our two optimizations are software extensions of the 
VMM scheduler, they are generic to improve network 
performance in a hardware independent manner, and are 
applicable to both 1GE and 10GE network. 

6. OPTIMIZATONS IN DOM0  
This section is to study the overhead incurred in Dom0 with 
10GE network. In order to analyze the component level 
overhead along packet processing, we develop our own tool 
based on Intel Performance Counter [15]. We instrument 
the VMM and Dom0 along with the path to record the 
current time-stamp and retired instructions at major points. 
Our experiment indicates that Linux Bridge and I/O channel 
are two major bottlenecks during packet processing.  

 
Table 1. Overhead of Important Components 

As shown in Table 1, Linux Bridge executes 4K instructions 
and consumes about 11K cycles to switch one packet. It is 
mainly because Linux Bridge must comply with the 
Netfilter interface which is used to integrate filter rules to 
filter received/transmitted packets. The I/O Channel using 
data copy model is another big overhead. It is mainly 
contributed to the expensive entry/exit to the VMM and the 
real packet copy between domains. All of them are 
mandatory in the current I/O model. We also notice that 
there are some packet losses within TCP streams resulting 
in TCP retransmissions. In subsection 6.1, we design a 
simplified bridge to improve packet switching, followed by 
the configurable TX queue length of backend (BE) engine 
(Fig. 1) for ameliorating packet retransmissions in 
subsection 6.2.   
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6.1 Packet-Switching Optimization 
Linux Bridge is a way to connect two Ethernet segments 
together in a protocol independent way. Packets are 
forwarded based on Ethernet address, rather than IP address 
(like a router). The Linux bridge code implements a subset 
of the ANSI/IEEE 802.1d standard. The code for bridging 
has been integrated into 2.4 and 2.6 kernel series [20]. In 
order to simplify the VMM design, Xen takes advantage of 
the existing Linux Bridge component in Linux Kernel to 
serve as an arbitrator/multiplexer/de-multiplexer. Linux 
Bridge is used to switch packets to designated ports.  
Although this approach can greatly simplify the 
virtualization design, it adds extra high overhead while 
switching packets.  

Fortunately, our function level profiling of Linux Bridge 
indicates that pure packet switching function requires only 
600 cycles, and Jhash algorithm [18] used for multiplexing 
packets by hashing MAC addresses only consumes 120 
cycles. It motivates us to design a simplified bridge tailored 
for packet switching in virtualized environment. However, 
it must retain the same user/kernel interface as original 
bridge so that the user space bridge utility still works in 
virtualization environment. Since bridge utilities in user 
space are being used by domain management tool residing 
in Dom0 to create/destroy BE, the new bridge should 
comply with the original user/kernel interface to avoid 
interference with the current workable system. The new 
design is required to keep bridge as simple as possible with 
respect to packet switching’s performance and scalability. 

 

Figure 10. Linux Bridge Vs Our Tailored Bridge 

Packet processing path of both Linux Bridge and our 
tailored bridge are shown in Figure 10. It shows that we 
bypass most of the functions introduced by Netfilter 
interface and re-implement the internal interfaces to 
minimize extra function costs except the bridge itself. The 
Jhash algorithm is still adopted in our design. Our prototype 
is implemented as a new feature of Linux Bridge to take 

advantage of its existence in mainstream kernel. We study 
its packet switching overhead and find that executed 
instructions are reduced from 4K to 700, and the switching 
packet cycles are reduced significantly by 10X from 11K to 
1.2K.  

We also evaluate our bridge by running the whole session 
Iperf to study its impact on bandwidth and core utilization, 
which is shown in Figure 11. “Opt C” in the figure is for 
our simplified bridge. It is observed that our simple bridge 
prototype can increase the bandwidth by 7% and save 10% 
in core utilization per gigabit when message size is greater 
than 1 KBytes. With small messages, a slightly higher 
bandwidth can be achieved by our bridge with the savings 
of 13% in core utilization per gigabit. All the results reveal 
that our simple bridge is a helpful software approach to 
optimize I/O processing. Similar to the two optimizations 
for the VMM scheduler, our simplified bridge is also a 
generic approach and is applicable to both 1GE and 10GE 
network.  
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Figure 11. Simple Bridge Optimization 

6.2 Configurable TX Queue Length of BE 
Since TCP is a network protocol providing reliable in-order 
delivery of a stream of bytes, frequent data loss incurring 
packet retransmissions would result in the significant 
performance degradation. It is important to understand the 
TCP behavior while processing packets in virtualized 
environment. In our experiments, we notice that there are 
some losses of data within TCP streams, resulting in TCP 
retransmissions and therefore creating gaps during data 
transfer. We study the data loss by a detailed analysis with 
the tool tcpdump [31] and observe some transmission gaps 
of greater than 60 ms caused by TCP retransmissions that 
do not happen in Linux.  

By looking into the source code for packet processing, we 
found that two extra queues are introduced in virtualized 
I/O: an outgoing queue of BE to queue frames from Linux 
Bridge and a RX queue in FE of DomU to host received 
packets from BE. The maximum number of frames that can 
be queued on the BE’s outgoing queue is statically fixed to 
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32 (It is the trade-off point between bandwidth and latency. 
A longer queue introduces a higher processing latency and 
hence might offset the gains of bandwidth from the longer 
queue). Although this value works well under 1GE network, 
a 10X in network speed needs a larger queue to avoid 
packets being dropped.  We develop a patch to make this 
parameter configurable during run-time to users and study 
its impact on bandwidth. The result is illustrated in Figure 
12 when the queue length is varied value from 32 to 512. 
We notice that 128 is the best value under 10GE network. It 
achieves 3.3Gbps bandwidth and saves the corresponding 
core utilization. Compared to the default system, the 
technique increases bandwidth by 43% and saves 5% in 
core utilization per gigabit. Additionally, we also study the 
impact of RX queue’s length in FE and find that the current 
value 256 works well and does not trigger any data loss.  
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Figure 13. Combination of All Techniques 

7. COMBINATION OF OPTIMIZATIONS 
Two extensions for the VMM scheduler and two 
optimizations for Dom0 were proposed and evaluated by 
individually in the previous sections. This section evaluates 
the combined effect of all the above optimizations in terms 
of network bandwidth and core utilization per gigabit. We 
incorporate all the optimizations into virtualized system and 

compare the results with the default system for varied 
message sizes, which is illustrated in Figure 13. The bars 
represent the bandwidth and the lines represent the core 
utilization per gigabit. It is observed that our combined 
techniques can increase the network bandwidth by 96% to 
4.5 Gbps, and also save 36% in core utilization per gigabit 
when the message size is greater than 1 KBytes. With small 
messages, a slightly higher bandwidth is achieved but 20% 
core utilization is saved. In our experiment, we also 
observed that the total core utilization consumed by Dom0 
is reduced from 105% to 84% by using all the optimizations. 

8. RELATED WORK  
With the advent of multi-core architecture and high-speed 
networks such as 10GE, G.N et al. [26] studied the network 
stack’s interaction with applications in multi-core 
environments. However, they just focused on some high 
performance network stacks and did not investigate the 
virtualized I/O with a multi-core server under 10GE 
network. With respect to virtualization overhead analysis, 
several previous papers [22, 23, 24] measured the impact of 
virtualization overhead on micro or macro benchmark, but 
they did not consider the impact of the VMM scheduler, 
which deteriorates on 10GE network. D.O et al. [7] studied 
the relationship between the VMM scheduler and I/O 
performance. However, they focused on the fairness of I/O 
performance with 1GE network and lacked of the 
consideration of the VMM scheduler on mainstream multi-
core systems where behaves significantly different from 
uni-core systems. 

Since some useful features from virtualization including 
ease of management, functional isolation and live migration 
can be very beneficial to the manageability of high 
performance applications: Liu et al. [21] adopted 
virtualization technology for HPC and allowed each domain 
to directly access the high performance network. However, 
they targeted to the high performance network InfiniBand 
rather than the Gigabit Ethernet Network. In Ethernet 
Network, some researches including NetXen [25] and 
Crossbow [6] are trying to address the performance issues 
by taking advantage of the new Ethernet NIC features like 
multiple TX/RX queues to allow domains to directly access 
the hardware.  However, they are designed to work with the 
new 10GE network adapters and hence inhibit the features 
of portability and live migration, which are the two major 
incentives for deploying virtualization in high end servers.  
Similarly, hardware-assisted direct I/O technology [16] is 
proposed for full virtualized system to allow guest OS to 
directly access PCI devices. However, it also heavily relies 
on hardware and full virtualization itself has much higher 
overhead than para-virtualized system. Software support is 
also far immature. Receive Side Scaling [29], a technique in 
NIC for mapping each connection to a specific core instead 
of being processed by random idlers to improve network 
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processing scalability, can not also be directly applied to 
virtualized environment due to an extra mapping of virtual 
CPU to physical CPU. Our software optimizations work in 
a hardware independent manner and are applicable to both 
1GE and 10GE network. 

9. CONCLUSION AND FUTURE WORK 
This paper analyzes the performance of virtualization in 
10GE network with a multi-core server. We found that 
virtualization under 10GE network adds significant 
performance overhead to network packet processing. We 
proposed two optimizations for the scheduler inside the 
VMM to eliminate the scheduler’s impact on performance, 
based on cache locality and credit stealing. We also 
proposed two techniques for Dom0 to accelerate packet 
processing by re-designing a simplified bridge tailored for 
switching packets and adjusting the queue length of 
backend to minimize the data loss. Our combined 
optimizations not only dramatically increase bandwidth by 
96% but also significantly improve the efficiency with a 
savings of 36% in core utilization per gigabit. All the 
optimizations work in a hardware independent manner and 
are applicable to both 1GE and 10GE network.  Using these 
optimizations, VMM designers can understand how to 
better serve the virtualized I/O processing in multi-core 
systems. 

In future, we would like to study the impact of architectural 
features on virtualized network performance such as Direct 
Cache Access (DCA) [10] of directly pushing data into 
cache, and exploit some micro-architectural changes to 
further optimize packet processing performance for 10GE 
network. All the patches for the VMM scheduler, Linux 
Bridge and configurable TX queue length are under code 
review and will be released to public soon.  
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