
A Flexible Accelerator for Layer 7 Networking Applications
Gokhan Memik and William H. Mangione-Smith

Department of Electrical Engineering
University of California, Los Angeles

{memik, billms}@ee.ucla.edu

ABSTRACT
In this paper, we present a flexible accelerator designed for
networking applications. The accelerator can be utilized
efficiently by a variety of Network Processor designs. Most
Network Processors employ hardware accelerators for
implementing key tasks. New applications require new tasks, such
as pattern matching, to be performed on the packets in real-time.
Using our proposed accelerator, we have implemented several
such tasks and measured their performance. Specifically, the
accelerator achieves 25-fold improvement on the performance of
pattern matching, and 10-fold improvement for tree lookup, over
optimized software solutions. Since the accelerator is used for
different tasks, the hardware requirements are small compared to
an accelerator group that implements the same set of tasks. We
also present accurate analytic models to estimate the execution
time of these networking tasks.
Categories and Subject Descriptors
B.2.4 [Arithmetic and logic structures]: High-Speed Arithmetic,
Cost/Performance.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Application-Specific Processor, Networking Applications,
Network Processor, Accelerator, Table Lookup, Pattern Matching.

1. INTRODUCTION
Traditionally, the processing elements in networks are either
ASICs or variations of general-purpose processors. Both schemes
have their advantages and shortcomings. ASICs generally provide
better performance, but they have higher manufacturing costs and
lack the flexibility of programmable processors. If there is a
change in the protocol or application, it is hard to implement the
change in the design. General-purpose processors, on the other
hand, are not optimized for networking applications and hence do
not provide satisfactory performance for many networking
applications.
Network Processors (NPUs) are a new type of processor
optimized for networking applications that combine the
advantages of ASIC and general-purpose processors. By utilizing
specially designed hardware, these designs achieve performance
comparable to ASIC. Since they are software programmable, they

have the flexibility comparable to general-purpose processors.
Soon after their introduction [2, 10], the NPU market became one
of the fastest growing segments of the microprocessor industry.
Currently there are more than 30 companies with a variety of
NPU designs [8].
New networking applications coupled with the higher link speeds
demand new and more complex tasks to be performed efficiently
in the processing elements. A significant portion of these new
applications search or modify Layer 7 application payload
information in the packet that was not accessed by the traditional
network processing elements. In this paper, we present design
details of an accelerator used to implement key networking
operations such as tree lookup and pattern matching. These
operations are expected to be in demand in the near future by
applications that must access and modify Layer 7 payloads. For
example, pattern matching is performed by several classification
engines to categorize packets for security, QoS, or similar
purposes.
Accelerators have been widely used by traditional routers and
NPUs. However, due to their proprietary nature, design details of
these accelerators have not been publicly discussed. We provide
design details of such an accelerator and provide a thorough study
of the performance of the accelerator. Specifically, we
• present a novel accelerator design and discuss the effect of

the applications on our design decisions,
• discuss specialized algorithms used to implement different

tasks on the accelerator,
• present analytical models to estimate the execution times of

these algorithms,
• compare the performance of the accelerator against software

solutions.
Currently implemented accelerators in the NPUs are designed for
a single task. For example, each protocol processor in IBM
PowerNP [6] has eight separate coprocessors for tasks such as
accessing tree data structures and calculating CRCs. Our proposed
accelerator can efficiently implement several different tasks.
Hence, it reduces the chip area required to implement a set of
accelerators.
The next section summarizes the related work. In Section 3, we
explain the networking applications and present how frequently
the accelerator can be used by these applications. In Section 4, we
explain the accelerator design and the algorithms implemented in
detail. Section 5 presents experimental results. We conclude the
paper with Section 6, which summarizes the paper.

2. RELATED WORK
There is a wide variety of Network Processor design
methodologies, which can be grouped into three major categories:
VLIW-based processors, Simultaneous Multithreaded (SMT)

41.3
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00.
646

processors, and single-chip multiprocessor systems. Crowley et
al. [5] evaluate different design methodologies (a VLIW, an SMT,
a single-chip multiprocessor, a fine-grain multiprocessor) for
NPUs. Nie et al., on the other hand, discuss a RISC-based
Network Processor that has hardware support for thread switching
and bit-wise data manipulation [11].
Vendors such as Clearwater [4] implement smart memory
management units for bulk packet data transfers. Wuytack et al.
discuss a memory-oriented synthesis methodology and uses
embedded network applications as an example [15].
Several NPU vendors implement accelerators to enhance the
performance of the processor. Although the design details of these
accelerators have not been disclosed, it emphasizes the
importance of accelerators in Network Processors. Design details
of ClearSpeed Table Lookup Engine are also not discussed, but
the performance of the engine is presented for different key sizes
used for tree lookup [3]. In IBM PowerNP [6] two processors
share eight different accelerators such as checksum calculator that
calculates and verifies frame; control access bus controller that
controls access to data structures; string copier that accelerates
data movement between coprocessors and the shared memory
pool; tree search engine that performs analysis through tree
searches; and semaphore manager that assists in controlling
access to shared resources. C-port’s C-5 employs six accelerators
for up to 15 processing cores [2]. The accelerators perform tasks
such as buffer and queue management and tree lookup. The table
lookup engines in both PowerNP and C-5 are based on hashing
techniques.

3. NETWORKING APPLICATIONS
Network Processors are special-purpose architectures designed for
networking applications. Hence, we need to understand the
networking applications in detail to be able to judge the
implications of design decisions for these processors. For this
study, we have examined several applications from the NetBench
[9] suite. NetBench is designed for NPUs and contains ten
applications listed in Table 1. CRC performs the 32-bit cyclic
redundancy checking. DH, MD5, and SSL are security
applications. DH implements the Diffie-Hellmann public key
encryption/decryption algorithm. MD5 is the message digest
algorithm version 5, which generates secure signatures for
packets. SSL implements the secure sockets layer, which first
performs RSA and DSA authentication and then uses the blowfish
and 3DES encryption/decryption algorithms. DRR is the deficit-
round-robin scheduling algorithm used to achieve fair share of the
available bandwidth between the connections going through the
switch or router. Ipchains is a common firewall application used
to filter malicious packets from a network. Nat implements the
network address translation application used by several service
providers to increase the utilization of the available IP addresses.
Route implements the IPv4 routing. Tl is the table lookup routine
implemented as a radix-tree search and URL implements the
URL-based switching, which performs intelligent switching
according to the contents of the packet.
Table 1 also presents the fraction of the execution cycles spent in
functions that can be accelerated by the proposed accelerator
(accel), the remaining cycles executed excluding the memory
stalls (rest), and the number of instructions executed per packet
processed (inst/packet). To find the execution fraction that can be
accelerated, we have performed a thorough analysis of the

applications with the provided input sets. We have examined each
function in the applications and decided whether the function (or
a sub-task in it) can be implemented using the accelerator
proposed in this work. Then we have measured the fraction of the
execution that is spent in these functions. The fraction of the
execution time that can utilize the proposed accelerator varied
from 0% (for CRC) to 81.2% (for URL) with an arithmetic mean
of 37.2%.
Table 1. Application information: Input parameters used for
applications (input), the portions of the executed instructions that can
be accelerated (accel), remaining execution in the applications
excluding memory stalls (rest), and number of instructions executed
per packet (inst/packet)1.

App. Input Accel
[%]

Rest [%] Inst/packet
[K]

CRC 50000 0 98.6 23.9

DH 20 27.3 71.4 1217001

DRR 128 50000 32.4 55.7 6.1

Ipchains 9 64 1000 37.1 53.9 7.4

MD5 50000 44.5 49.5 20.4

Nat 128 50000 33.4 57.7 2.1

Route 128 50000 35.1 49.5 1.8

SSL 1 34.7 62.6 4080001

Tl 128 50000 46.1 37.4 1.2

URL 128 50000 81.2 12.6 17.1

4. ACCELERATOR DESIGN
In this section, we explain the design details of the accelerator and
present novel algorithms that utilize it.
Figure 1 shows the overall accelerator design. The design of the
unit resembles a barrel shifter. In a traditional barrel shifter, each
module selects either the shifted input bit or the unshifted input
bit to perform the conditional shifting operation. In our design,
however, the input to each module is a byte and all control signals
affect complete bytes. In addition, modules are capable of
performing some logical operations on their input values.
Specifically, the module is selected to perform one of the
following functions on their input signals:

- output = left input (shift right)
- output = right input (pass without shift)
- output = (left input AND right input)
- output = (left input OR right input)
- output = (left input XNOR right input)
- output = (left input BYTE-WISE-OR right input)
- output = (left input BYTE-WISE-AND right input)

The utility of each these operations will be examined during the
discussion of the applications in the following subsections. AND,
OR, and XNOR are bit-wise operations, performing the logical
operation on the corresponding bits of the two input signals.

1 For DH this column corresponds to instructions per key generation
and for SSL it corresponds to instructions for performing all
supported key generations and performing encryptions on the packet.

647

Buffer (n bytes)

C
om

m
on

 v
al

ue
 (4

 b
yt

es
)

Byte-wise-or results 0xFF if one of its inputs is equal to 0xFF,
0x0 otherwise. Similarly, byte-wise-and results 0xFF if both of
its inputs are equal to 0xFF, 0x0 otherwise. Figure 2 illustrates
the design of the modules in the accelerator. All modules are
equivalent. The leftmost AND gates in the figure are 8-bit AND
gates taking all their input either from left input or from right
input byte and performing the AND operation on these bits.
Hence, they output 1 if the corresponding input equals to 0xFF.
The outputs of these gates are connected to 2-bit and and or
gates. The results of these 2-bit logic gates are rippled to form 8-
bit inputs to the multiplexer. Hence, the signals on their output are
0xFF or 0x00.
The accelerator uses a common value register and a wide buffer
(n bytes) to store the packet information. The common value is 4
bytes wide. We have selected this size, because it is an efficient
width for many tasks. For example, this size is equal to the size of
an IP address in IPv4. Hence, many address related tasks (lookup,
match, etc.) can be efficiently performed. We have performed
several simulations with different widths (n) of the accelerator.
The results for the simulations with the accelerator widths ranging
from 64 to 512 bytes are given in Section 5. Using the selection
bits, the operations on each level is selected. Using these selection
bits and appropriate setting of the common value and the buffer, a
wide variety of tasks can be accomplished by the accelerator.
The accelerator also uses an encoder, which is embedded in the
third level of the modules. It has (n / 4) inputs chosen one bit from
every four modules starting with the fourth leftmost module as
shown in Figure 1. This encoder gives the index of the leftmost
input that is high.
For illustrative purposes, the accelerator in Figure 1 is drawn 16-
byte wide. In our design, however, we have selected the unit to be
128-byte wide, which gives a good performance / cost ratio. The
results are explained in Section 5. This architecture directly
supports the extraction of any 4-bytes from the input buffer
without requiring that they be contiguous. This function is very
useful for traditional packet analysis operations.

We have implemented an RTL level description of the accelerator
in VHDL and synthesized it using Synopsis design compiler [11].
We have used a library representing a .25µ technology. The
accelerator with 128-byte buffer required 115K transistors and
has a total delay of 6.65 ns.
In the following subsections, we describe algorithms to
implement key emerging tasks for networking applications and
present analytical models to estimate the execution time of these
tasks.

8

8

7-to-1 bytewise
multiplexer

3-
bi

t s
el

ec
t

8-
bi

t l
ef

t a
nd

 ri
gh

t i
np

ut
s

8-bit output

1

1

Figure 2. Block diagram of the modules

4.1 Pattern Matching
One of the common tasks in the networking applications is pattern
matching. For example, in URL-based switching, a known pattern
is searched in the payload to decide the type of the HTML request
encoded in the packet. Similarly, several security applications
search for known patterns in the payload to detect malicious
packets [12].

Se
le

ct
io

n
bi

ts
 (3

 b
its

 a
t

ea
ch

 le
ve

l)

Figure 1. Accelerator design (the figure is plotted 16-
bytes wide for illustrative purposes)

Output (32 bits)

Encoder

648

Consider an example, in which we are searching for the pattern
‘.jpg’ in the payload. The pseudo-code in Figure 3 illustrates the
pattern-matching algorithm. We first load the common value with
the ‘.jpg’ value and load the payload into the buffer. Then, we
configure the accelerator to perform ‘xnor’ in the highest level,
‘and’ in the next two levels and ‘byte-wise-or’ in the following
levels. If there is no match in the payload, the ‘xnor’ results will
not be equal to 0xFF and this will in turn make the output equal
to zero. If the payload contains ‘.jpg’ and the first character (‘.’) is
aligned with the first character of the common value (‘.’), then
there will be four consecutive 0xFF values at the end of the first
level (‘xnor’) and at least one 0xFF after the third level (‘and’).
Hence, the result will not be equal to zero. Note that, to guarantee
whether there is a match or not, we have to perform the operation
with different alignments. This is achieved by rotating the
common value. After four iterations, if there is not a match, we
can conclude that the payload section examined does not contain
the pattern. Note that the pattern matching code contains two
unique instructions: load-buffer and op. ‘load-buffer r, add’
results in loading r bytes from address add into the accelerator
input buffer. ‘Op r1, r2, r3’ activates the accelerator with the
selection bits stored in r2 and the common value stored in r3. The
result of the operation is written to r1.
 load $2,ACCELERATOR_WIDTH

load $3,’.jpg’
load-buffer $2,payload

 load $4,0x2db6da93 #conf.
 op $2,$3,$4
 branch-not-equal $2,$0,$match
 rotote-right $3,$3,8
 op $2,$3,$4
 branch-not-equal $2,$0,$match
 rotote-right $3,$3,8
 op $2,$3,$4
 branch-not-equal $2,$0,$match
 rotote-right $3,$3,8
 op $2,$3,$4
 branch-not-equal $2,$0,$match
 #no match

Figure 3. Code for pattern matching

If the pattern of interest is larger than four bytes, we first divide it
into four byte sub-patterns. Then each sub-pattern is searched in
the buffer. If all sub-patterns are found, we return the buffer to the
processor to be examined for the whole pattern. If one of the sub-
patterns is not matched, we indicate a mismatch to the processor.
Note that, if the pattern of interest is smaller than four bytes, we
can use the accelerator directly by modifying the selection bits.
We have developed an analytical model to estimate the execution
time of the pattern matching algorithm. The number of cycles
required can be estimated using:

#cycles = haystack / n * (Mem(max(n, haystack)) + exec)
Equation 1. Cycles required for pattern matching

In Equation 1 haystack corresponds to the size of the buffer that is
searched, Mem (x) corresponds to the number of cycles spent in
reading x amount of data from memory and exec is number of
cycles required by the accelerator when the buffer data is
available. For example, assuming a delay of 4 cycles for the
accelerator, exec equals to 26 (1 cycle for setting common value,
1 cycle for setting the select bits and 24 cycles to produce the
results, because we have to perform 4 iterations each lasting for 6
cycles). In Section 5.2, we compare the estimations for the model

against simulation numbers and show that the model estimates the
number of execution cycles within 22% in worst case.
We have performed several simulations to see the performance
effect of the accelerator. The accelerator is able to improve the
performance by as much as 25 times over a software solution. The
experiments and the results are explained in Section 5.3.

4.2 Tree Lookup
Most networking applications contain significant amount of table
lookup operations. For example, in traditional IP routing, routing
tables must be traversed to decide what rules to apply on the
packet. An efficient method for implementing these tables is in
the form of trees. Particularly, radix-tree lookup is commonly
used in several UNIX systems and routing architectures [14].

In radix-tree lo
leaves. Each nod
of the address (t
is traversed, oth
(the selection of
dependant). An
tree, if the third
return leaf node
The radix-tree a
“on” locations
resultant leaf no
will be reached
searched addres
the tree to find
process is given
to left and a ma
have a 0 at the
positions. For o
buffer values: 0
processing must
network route
applications the
traditional routi
network, which
void
setup_bufs (
{
 if (tree->
 {
 bufs[o
 order+
 return
 }

setup_bufs
>position)
setup_bufs

}
Figure 5. C code

3

649
off
Figure 4. A rad

okup, the tree is
e has a specified

he bit at the positi
erwise, the looku
 right or left for
example tree is gi
bit of the searched
 2. Otherwise, the
lgorithm for the a
used to reach a
de of the lookup.
if and only if bo
s are equal to on
the correct buffer
 in Figure 5. The
sk value for each
 on positions to r
ur example tree,
xFFFFFFB7, 0x
 be performed w
(hence the tree)
 tree is mostly

ng it changes if th
occurs infrequent

struct tree *t

type == leaf)

rder] = masks;
+;
;

 (tree->right
);
 (tree->left,

 for preparation of
tree l

L2

L1
on
6
off
ix-tree exa

 traversed
offset or p
on) is set,
p continu
the active
ven in Fig
 address

 sixth bit w
ccelerato
 leaf uni
 For exam
th the thir
e. Our alg
 setting fo
 leaf node
leaf node
each the
this will r
FFFFFFF7
henever th
. Since i
 stable
ere is a t

ly) the ove

ree, un

, masks

 masks);

 the buffer
ookup
on
mple

 from the root to the
osition. If the position
 then the right sub-tree
es on the left sub-tree
 bit is implementation
ure 4. For the example
is zero, the lookup will
ill be examined.

r uses the fact that the
quely determines the
ple, leaf 0 in Figure 4
d and sixth bits of the
orithm first examines
r the accelerator. This
s are sorted from right
is found. These masks
leaf and 1 at all other
esult in the following
, 0xFFFFFFFF. This
ere is a change in the
n several networking
(for example, in the
opology change in the
rhead is small.

signed int masks)

^ (1 << tree-

 value for the for radix-

L0

After the buffer values are set, the common value in the
accelerator is set as the address from the packet. The highest level
is set to perform ‘or’ and the following two levels perform ‘byte-
wise-and’. If there is a 0xFF value at the result of the third level,
the index of the module will determine the result of the lookup
operation. This index will be equal to the output of the encoder.
This value is later used for retrieving the leaf information from
the array of leaf nodes.
If the required buffer size exceeds the width of the accelerator, an
indirect addressing is used. The first accelerator operation
identifies the buffer to be retrieved, for which the accelerator
gives the index of the resultant leaf node.
We have developed an analytical model to estimate the number of
execution cycles for a tree lookup:
#cycles = log(n/4)leaves * (Mem(avg.) + exec)

Equation 2. Cycles required for table lookup
In Equation 2 leaves correspond to the number of leaf nodes,
Mem (avg.) corresponds to the number of cycles spent in reading
data from memory and exec is number of cycles required by the
accelerator when the buffer data is available. For example,
assuming the delay of the accelerator is 4 cycles, exec equals to 7
(1 cycle for setting common value, 1 cycle for setting the select
bits and 4 cycles to produce the results and 1 cycle for reading the
encoder value). In Section 5.2, we compare the estimations for the
model against simulation numbers and show that the model
estimates the number of execution cycles within 3% in worst case.
We have performed several simulations to measure the
effectiveness of the accelerator for tree-lookup. The accelerator is
able to improve the performance of software solution by as much
as 12-times. The detailed results are explained in Section 5.3.

4.3 Security
Many encryption/decryption algorithms use permutation to find
unique signatures for a packet or to change the original packet
payload. For example, the MD5 algorithm use the permutations
listed in Figure 6. Such permutations can be directly mapped into
the accelerator. For example, to implement ‘F’ from Figure 6, the
buffer is loaded with x, y, ~x, and z series. Then, in the first two
levels the buffer values are forwarded. In the third level, ‘and’
and in the fourth level ‘or’ operation is performed. The results at
this stage are propagated one by one to the output register to get
the desired section from the series.
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

Figure 6. MD5 code segment for permutations

5. EXPERIMENTS
5.1 Experimental Setup
In the simulations performed, the programmable core is an out-of-
order execution processor much like Alpha 21264 [7]. We have
modified the SimpleScalar [1] simulator by implementing the
accelerator as a function unit in the processor. Three different
accelerator widths are studied: 64 bytes, 128 bytes and 512 bytes.
The delay for the 64 and 128-byte accelerators is set to 4 cycles
and the delay for the 512-byte accelerator is set to 5 cycles. The
simulated core has 32 KB of separate L1 data and instruction
caches and a 512 KB unified L2 cache. The latencies for L1 and
L2 caches are set to 1 and 10 cycles, respectively.

5.2 Validating Analytical Models
In Sections 4.1 and 4.2, we have presented analytical models to
estimate the execution latency for pattern matching and tree
lookup algorithms. In this section, we compare the estimations
made using these models and simulation values from the
SimpleScalar simulator.
Figure 7 summarizes the estimations for the pattern matching
task. The worst estimation is made for 512-byte wide accelerator
for the haystack size of 640 bytes, for which the error is 21.85%.

10

100

1000

10000

10 20 40 80 160 320 640 1200

Haystack Size[bytes]

N
um

be
r

of
 c

yc
le

s

64-byte 64-byte estimation
128-byte 128-byte estimation
512-byte 512-byte estimation

Figure 7. Estimations for pattern matching

10

100

4 8 16 32 64 128 256 512 1024

Number of leaves

N
um

be
r

of
 c

yc
le

s

64-byte 64-byte estimation
128-byte 128-byte estimation
512-byte 512-byte estimation

Figure 8. Estimations for tree lookup

The results for tree lookup are summarized in Figure 8. In all the
configurations, the analytical model for tree lookup almost
exactly matches the simulation numbers. The largest error is 2.6%
for lookup in a tree with 1024 rules with 512-byte wide
accelerator.

5.3 Performance Simulations
The simulated applications in this section are kernels that perform
the radix-tree lookup and pattern matching tasks. Our goal in
these simulations is to measure the performance of the accelerator
for different input parameters.
Figure 9 summarizes the results for pattern matching. The
improvement achieved by the accelerator increases with the
increased string size. For large strings, the accelerator achieves up
to 25-fold improvements (e.g., the accelerator with 512-byte
width achieves 24.2-fold improvement for 1200-byte haystack).

650

The results for tree lookup are summarized in Figure 10. As the
table size is increased the improvement of the accelerator
increases. However, the speed-up is non-monotonic. It can be
seen that these jumps exactly occur when the buffer is not large
enough to hold all the leaves. At these sizes, the accelerator has to
perform multiple accesses, creating the saw tooth pattern
observed in the results. In addition, the overall trend in the
improvement for 64-byte wide accelerator is downward, whereas
it is upwards for the 512-byte wide accelerator and is almost
constant for the 128-byte design.

70

75

80

85

90

95

100

10 20 40 80 160 320 640 1200

Haystack Size [bytes]

Im
pr

ov
em

en
t [

%
]

512-byte wide 128 byte wide 64-byte wide

Figure 9. Improvement by accelerator for pattern matching

70

75

80

85

90

95

100

4 8 16 32 64 128 256 512 1024

Table Size [leaves]

Im
pr

ov
em

en
t [

%
]

512-byte wide 128 byte wide 64-byte wide

Figure 10. Improvement by accelerator for tree lookup

We have also performed simulations to measure the effectiveness
of the accelerator for security applications. We have modified the
MD5Transform routine (including the Decode sub-routine) to
utilize the function unit. The accelerator was able to increase the
performance of MD5Transform by 58.54%.

6. CONCLUSIONS
New networking applications coupled with the higher link speeds
demand new and more complex tasks to be performed efficiently
in the processing elements. A significant portion of these
applications searches or modifies Layer 7 information in the
packet that was not accessed by the traditional network processing
elements. Hence, implementing accelerators for such tasks is a
necessity to achieve high performance. In this paper, we have
presented design details of such an accelerator. We have also
presented novel algorithms to implement such key tasks. We have
shown that our proposed accelerator can perform tasks such as
tree lookup and pattern matching efficiently. Specifically, it

achieves up to 25-fold improvements for pattern matching and 10-
fold improvement for tree lookup over optimized software
solutions. Finally, we have performed a study for the utilization of
the accelerator in a multi-core environment.

REFERENCES
[1] Burger, D. and Austin, T. The SimpleScalar Tool Set,

Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin, June 1997.

[2] C-port Corporation. C-5 Network Processor Architecture
Guide. C-port technical library C5NPD0-AG/D, May 2001.

[3] ClearSpeed Technology Ltd. The ClearSpeed Table Lookup
Engine. White paper 02-WP-1021 v3.0.
http://www.clearspeed.com/papers/tle_book.pdf

[4] Clearwater Networks. Introducing the CNP810 Family.
http://www.clearwaternetworks.com/clearwater-
overview.pdf

[5] Crowley, P., Fiuczynski, M. E., Baer, J. L, Bershad, B. N.
Characterizing Processor Architectures for Programmable
Network Interfaces. In Proc. of International Symposium on
Supercomputing, Santa Fe / NM, 2000.

[6] International Business Machine Corporation. IBM PowerNP
NP4GS3 Network Processor Datasheet. IBM technical
library, np3_DLTOC.fm.08, May / 2001.

[7] Kessler, R. The Alpha 21264 Microprocessor. In IEEE
Micro, 19(2), Mar/Apr 1999.

[8] Mangione-Smith, and W. H. and Memik, G. Network
Processing: Applications, Architectures and Examples.
Tutorial at International Symposium on Microarchitecture,
Austin / TX, Dec. 2001.

[9] Memik, G. and Mangione-Smith, W. H. NetBench: A
Benchmarking Suite for Network Processors. In Proc. of
International Conference on Computer-Aided Design, San
Jose / CA, Nov. 2001.

[10] MMC Networks, Inc. Leading the Network Processor
Revolution. http://www.mmcnet.com/Solutions

[11] Nie, X., Gazsi, L., Engel, F., Fettweis, G. A New Network
Processor Architecture for High-Speed Communications. In
Proc. of IEEE Workshop on Signal Processing Systems,
Taipei / Taiwan, Oct 1999.

[12] Roesch, M. Snort: The Open Source Network Intrusion
Detection System Web Site. http://www.snort.org

[13] Synopsys, Inc. Synopsys design compiler – Overview.
http://www.synopsis.com/products/logic/design_comp_cs.ht
ml

[14] Villamizar, C. OSPF Optimized Multipath (OSPF-OMP).
Internet Draft ietf-ospf-mpp-02, Feb, 1999.

[15] S. Wuytack, J.L. da Silva, Fr. Catthoor, G. de Jong and Ch.
Ykman. Memory Management for Embedded Network
Applications. IEEE Transactions on Computer-Aided
Design, Volume 18, Number 5, pp. 533-544, May 1999.

651

http://www.mmcnet.com/Solutions
http://www.synopsis.com/products/logic/design_comp_cs.html
http://www.synopsis.com/products/logic/design_comp_cs.html

	INTRODUCTION
	RELATED WORK
	NETWORKING APPLICATIONS
	ACCELERATOR DESIGN
	Pattern Matching
	Tree Lookup
	Security

	EXPERIMENTS
	Experimental Setup
	Validating Analytical Models
	The results for tree lookup are summarized in Figure 8. In all the configurations, the analytical model for tree lookup almost exactly matches the simulation numbers. The largest error is 2.6% for lookup in a tree with 1024 rules with 512-byte wide accel
	Performance Simulations

	CONCLUSIONS
	REFERENCES

