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ABSTRACT 
In this paper, we present a flexible accelerator designed for 
networking applications. The accelerator can be utilized 
efficiently by a variety of Network Processor designs. Most 
Network Processors employ hardware accelerators for 
implementing key tasks. New applications require new tasks, such 
as pattern matching, to be performed on the packets in real-time. 
Using our proposed accelerator, we have implemented several 
such tasks and measured their performance. Specifically, the 
accelerator achieves 25-fold improvement on the performance of 
pattern matching, and 10-fold improvement for tree lookup, over 
optimized software solutions. Since the accelerator is used for 
different tasks, the hardware requirements are small compared to 
an accelerator group that implements the same set of tasks. We 
also present accurate analytic models to estimate the execution 
time of these networking tasks.  
Categories and Subject Descriptors 
B.2.4 [Arithmetic and logic structures]: High-Speed Arithmetic, 
Cost/Performance.  

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
Application-Specific Processor, Networking Applications, 
Network Processor, Accelerator, Table Lookup, Pattern Matching.  

1. INTRODUCTION 
Traditionally, the processing elements in networks are either 
ASICs or variations of general-purpose processors. Both schemes 
have their advantages and shortcomings. ASICs generally provide 
better performance, but they have higher manufacturing costs and 
lack the flexibility of programmable processors. If there is a 
change in the protocol or application, it is hard to implement the 
change in the design. General-purpose processors, on the other 
hand, are not optimized for networking applications and hence do 
not provide satisfactory performance for many networking 
applications. 
Network Processors (NPUs) are a new type of processor 
optimized for networking applications that combine the 
advantages of ASIC and general-purpose processors. By utilizing 
specially designed hardware, these designs achieve performance 
comparable to ASIC. Since they are software programmable, they 

have the flexibility comparable to general-purpose processors.  
Soon after their introduction [2, 10], the NPU market became one 
of the fastest growing segments of the microprocessor industry. 
Currently there are more than 30 companies with a variety of 
NPU designs [8]. 
New networking applications coupled with the higher link speeds 
demand new and more complex tasks to be performed efficiently 
in the processing elements. A significant portion of these new 
applications search or modify Layer 7 application payload 
information in the packet that was not accessed by the traditional 
network processing elements. In this paper, we present design 
details of an accelerator used to implement key networking 
operations such as tree lookup and pattern matching. These 
operations are expected to be in demand in the near future by 
applications that must access and modify Layer 7 payloads. For 
example, pattern matching is performed by several classification 
engines to categorize packets for security, QoS, or similar 
purposes.  
Accelerators have been widely used by traditional routers and 
NPUs. However, due to their proprietary nature, design details of 
these accelerators have not been publicly discussed. We provide 
design details of such an accelerator and provide a thorough study 
of the performance of the accelerator. Specifically, we 
• present a novel accelerator design and discuss the effect of 

the applications on our design decisions, 
• discuss specialized algorithms used to implement different 

tasks on the accelerator,  
• present analytical models to estimate the execution times of 

these algorithms, 
• compare the performance of the accelerator against software 

solutions. 
Currently implemented accelerators in the NPUs are designed for 
a single task. For example, each protocol processor in IBM 
PowerNP [6] has eight separate coprocessors for tasks such as 
accessing tree data structures and calculating CRCs. Our proposed 
accelerator can efficiently implement several different tasks. 
Hence, it reduces the chip area required to implement a set of 
accelerators.  
The next section summarizes the related work. In Section 3, we 
explain the networking applications and present how frequently 
the accelerator can be used by these applications. In Section 4, we 
explain the accelerator design and the algorithms implemented in 
detail. Section 5 presents experimental results. We conclude the 
paper with Section 6, which summarizes the paper. 

2. RELATED WORK 
There is a wide variety of Network Processor design 
methodologies, which can be grouped into three major categories: 
VLIW-based processors, Simultaneous Multithreaded (SMT) 
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processors, and single-chip multiprocessor systems. Crowley et 
al. [5] evaluate different design methodologies (a VLIW, an SMT, 
a single-chip multiprocessor, a fine-grain multiprocessor) for 
NPUs. Nie et al., on the other hand, discuss a RISC-based 
Network Processor that has hardware support for thread switching 
and bit-wise data manipulation [11].  
Vendors such as Clearwater [4] implement smart memory 
management units for bulk packet data transfers. Wuytack et al. 
discuss a memory-oriented synthesis methodology and uses 
embedded network applications as an example [15]. 
Several NPU vendors implement accelerators to enhance the 
performance of the processor. Although the design details of these 
accelerators have not been disclosed, it emphasizes the 
importance of accelerators in Network Processors. Design details 
of ClearSpeed Table Lookup Engine are also not discussed, but 
the performance of the engine is presented for different key sizes 
used for tree lookup [3]. In IBM PowerNP [6] two processors 
share eight different accelerators such as checksum calculator that 
calculates and verifies frame; control access bus controller that 
controls access to data structures; string copier that accelerates 
data movement between coprocessors and the shared memory 
pool; tree search engine that performs analysis through tree 
searches; and semaphore manager that assists in controlling 
access to shared resources. C-port’s C-5 employs six accelerators 
for up to 15 processing cores [2]. The accelerators perform tasks 
such as buffer and queue management and tree lookup. The table 
lookup engines in both PowerNP and C-5 are based on hashing 
techniques.  

3. NETWORKING APPLICATIONS 
Network Processors are special-purpose architectures designed for 
networking applications. Hence, we need to understand the 
networking applications in detail to be able to judge the 
implications of design decisions for these processors. For this 
study, we have examined several applications from the NetBench 
[9] suite. NetBench is designed for NPUs and contains ten 
applications listed in Table 1. CRC performs the 32-bit cyclic 
redundancy checking. DH, MD5, and SSL are security 
applications. DH implements the Diffie-Hellmann public key 
encryption/decryption algorithm. MD5 is the message digest 
algorithm version 5, which generates secure signatures for 
packets. SSL implements the secure sockets layer, which first 
performs RSA and DSA authentication and then uses the blowfish 
and 3DES encryption/decryption algorithms. DRR is the deficit-
round-robin scheduling algorithm used to achieve fair share of the 
available bandwidth between the connections going through the 
switch or router. Ipchains is a common firewall application used 
to filter malicious packets from a network. Nat implements the 
network address translation application used by several service 
providers to increase the utilization of the available IP addresses. 
Route implements the IPv4 routing. Tl is the table lookup routine 
implemented as a radix-tree search and URL implements the 
URL-based switching, which performs intelligent switching 
according to the contents of the packet.  
Table 1 also presents the fraction of the execution cycles spent in 
functions that can be accelerated by the proposed accelerator 
(accel), the remaining cycles executed excluding the memory 
stalls (rest), and the number of instructions executed per packet 
processed (inst/packet). To find the execution fraction that can be 
accelerated, we have performed a thorough analysis of the 

applications with the provided input sets. We have examined each 
function in the applications and decided whether the function (or 
a sub-task in it) can be implemented using the accelerator 
proposed in this work. Then we have measured the fraction of the 
execution that is spent in these functions. The fraction of the 
execution time that can utilize the proposed accelerator varied 
from 0% (for CRC) to 81.2% (for URL) with an arithmetic mean 
of 37.2%. 
Table 1. Application information: Input parameters used for 
applications (input), the portions of the executed instructions that can 
be accelerated (accel), remaining execution in the applications 
excluding memory stalls (rest), and number of instructions executed 
per packet (inst/packet)1.  

App. Input Accel 
[%] 

Rest [%] Inst/packet 
[K] 

CRC 50000 0 98.6 23.9 

DH 20 27.3 71.4 1217001 

DRR 128 50000 32.4 55.7 6.1 

Ipchains 9 64 1000 37.1 53.9 7.4 

MD5 50000 44.5 49.5 20.4 

Nat 128 50000 33.4 57.7 2.1 

Route 128 50000 35.1 49.5 1.8 

SSL 1 34.7 62.6 4080001 

Tl 128 50000 46.1 37.4 1.2 

URL 128 50000 81.2 12.6 17.1 

4. ACCELERATOR DESIGN 
In this section, we explain the design details of the accelerator and 
present novel algorithms that utilize it. 
Figure 1 shows the overall accelerator design. The design of the 
unit resembles a barrel shifter. In a traditional barrel shifter, each 
module selects either the shifted input bit or the unshifted input 
bit to perform the conditional shifting operation. In our design, 
however, the input to each module is a byte and all control signals 
affect complete bytes. In addition, modules are capable of 
performing some logical operations on their input values. 
Specifically, the module is selected to perform one of the 
following functions on their input signals:  

- output = left input (shift right) 
- output = right input (pass without shift) 
- output = (left input AND right input) 
- output = (left input OR right input)  
- output = (left input XNOR right input) 
- output = (left input BYTE-WISE-OR right input) 
- output = (left input BYTE-WISE-AND right input) 

The utility of each these operations will be examined during the 
discussion of the applications in the following subsections. AND, 
OR, and XNOR are bit-wise operations, performing the logical 
operation on the corresponding bits of the two input signals. 

                                                                 
1 For DH this column corresponds to instructions per key generation 
and for SSL it corresponds to instructions for performing all 
supported key generations and performing encryptions on the packet. 
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Byte-wise-or results 0xFF if one of its inputs is equal to 0xFF, 
0x0 otherwise. Similarly, byte-wise-and results 0xFF if both of 
its inputs are equal to 0xFF, 0x0 otherwise. Figure 2 illustrates 
the design of the modules in the accelerator. All modules are 
equivalent. The leftmost AND gates in the figure are 8-bit AND 
gates taking all their input either from left input or from right 
input byte and performing the AND operation on these bits. 
Hence, they output 1 if the corresponding input equals to 0xFF. 
The outputs of these gates are connected to 2-bit and and or 
gates. The results of these 2-bit logic gates are rippled to form 8-
bit inputs to the multiplexer. Hence, the signals on their output are 
0xFF or 0x00. 
The accelerator uses a common value register and a wide buffer 
(n bytes) to store the packet information. The common value is 4 
bytes wide. We have selected this size, because it is an efficient 
width for many tasks. For example, this size is equal to the size of 
an IP address in IPv4. Hence, many address related tasks (lookup, 
match, etc.) can be efficiently performed. We have performed 
several simulations with different widths (n) of the accelerator. 
The results for the simulations with the accelerator widths ranging 
from 64 to 512 bytes are given in Section 5. Using the selection 
bits, the operations on each level is selected. Using these selection 
bits and appropriate setting of the common value and the buffer, a 
wide variety of tasks can be accomplished by the accelerator. 
The accelerator also uses an encoder, which is embedded in the 
third level of the modules. It has (n / 4) inputs chosen one bit from 
every four modules starting with the fourth leftmost module as 
shown in Figure 1. This encoder gives the index of the leftmost 
input that is high.  
For illustrative purposes, the accelerator in Figure 1 is drawn 16-
byte wide. In our design, however, we have selected the unit to be 
128-byte wide, which gives a good performance / cost ratio. The 
results are explained in Section 5. This architecture directly 
supports the extraction of any 4-bytes from the input buffer 
without requiring that they be contiguous. This function is very 
useful for traditional packet analysis operations. 

We have implemented an RTL level description of the accelerator 
in VHDL and synthesized it using Synopsis design compiler [11]. 
We have used a library representing a .25µ technology. The 
accelerator with 128-byte buffer required 115K transistors and 
has a total delay of 6.65 ns. 
In the following subsections, we describe algorithms to 
implement key emerging tasks for networking applications and 
present analytical models to estimate the execution time of these 
tasks. 
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Figure 2. Block diagram of the modules 

4.1 Pattern Matching 
One of the common tasks in the networking applications is pattern 
matching. For example, in URL-based switching, a known pattern 
is searched in the payload to decide the type of the HTML request 
encoded in the packet. Similarly, several security applications 
search for known patterns in the payload to detect malicious 
packets [12]. 
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Figure 1. Accelerator design (the figure is plotted 16-
bytes wide for illustrative purposes) 
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Consider an example, in which we are searching for the pattern 
‘.jpg’ in the payload. The pseudo-code in Figure 3 illustrates the 
pattern-matching algorithm. We first load the common value with 
the ‘.jpg’ value and load the payload into the buffer. Then, we 
configure the accelerator to perform ‘xnor’ in the highest level, 
‘and’ in the next two levels and ‘byte-wise-or’ in the following 
levels. If there is no match in the payload, the ‘xnor’ results will 
not be equal to 0xFF and this will in turn make the output equal 
to zero. If the payload contains ‘.jpg’ and the first character (‘.’) is 
aligned with the first character of the common value (‘.’), then 
there will be four consecutive 0xFF values at the end of the first 
level (‘xnor’) and at least one 0xFF after the third level (‘and’). 
Hence, the result will not be equal to zero. Note that, to guarantee 
whether there is a match or not, we have to perform the operation 
with different alignments. This is achieved by rotating the 
common value. After four iterations, if there is not a match, we 
can conclude that the payload section examined does not contain 
the pattern. Note that the pattern matching code contains two 
unique instructions: load-buffer and op. ‘load-buffer r, add’ 
results in loading r bytes from address add into the accelerator 
input buffer. ‘Op r1, r2, r3’ activates the accelerator with the 
selection bits stored in r2 and the common value stored in r3. The 
result of the operation is written to r1. 
 load    $2,ACCELERATOR_WIDTH 

load   $3,’.jpg’ 
load-buffer  $2,payload 

 load   $4,0x2db6da93 #conf.
 op   $2,$3,$4 
 branch-not-equal $2,$0,$match 
 rotote-right  $3,$3,8 
 op   $2,$3,$4 
 branch-not-equal $2,$0,$match 
 rotote-right  $3,$3,8 
 op   $2,$3,$4 
 branch-not-equal $2,$0,$match 
 rotote-right  $3,$3,8 
 op   $2,$3,$4 
 branch-not-equal $2,$0,$match 
 #no match 

Figure 3. Code for pattern matching 

If the pattern of interest is larger than four bytes, we first divide it 
into four byte sub-patterns. Then each sub-pattern is searched in 
the buffer. If all sub-patterns are found, we return the buffer to the 
processor to be examined for the whole pattern. If one of the sub-
patterns is not matched, we indicate a mismatch to the processor. 
Note that, if the pattern of interest is smaller than four bytes, we 
can use the accelerator directly by modifying the selection bits.  
We have developed an analytical model to estimate the execution 
time of the pattern matching algorithm. The number of cycles 
required can be estimated using: 

#cycles = haystack / n * (Mem(max(n, haystack)) + exec) 
Equation 1. Cycles required for pattern matching  

In Equation 1 haystack corresponds to the size of the buffer that is 
searched, Mem (x) corresponds to the number of cycles spent in 
reading x amount of data from memory and exec is number of 
cycles required by the accelerator when the buffer data is 
available. For example, assuming a delay of 4 cycles for the 
accelerator, exec equals to 26 (1 cycle for setting common value, 
1 cycle for setting the select bits and 24 cycles to produce the 
results, because we have to perform 4 iterations each lasting for 6 
cycles). In Section 5.2, we compare the estimations for the model 

against simulation numbers and show that the model estimates the 
number of execution cycles within 22% in worst case. 
We have performed several simulations to see the performance 
effect of the accelerator. The accelerator is able to improve the 
performance by as much as 25 times over a software solution. The 
experiments and the results are explained in Section 5.3.  

4.2 Tree Lookup 
Most networking applications contain significant amount of table 
lookup operations. For example, in traditional IP routing, routing 
tables must be traversed to decide what rules to apply on the 
packet. An efficient method for implementing these tables is in 
the form of trees. Particularly, radix-tree lookup is commonly 
used in several UNIX systems and routing architectures [14].  
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After the buffer values are set, the common value in the 
accelerator is set as the address from the packet. The highest level 
is set to perform ‘or’ and the following two levels perform ‘byte-
wise-and’. If there is a 0xFF value at the result of the third level, 
the index of the module will determine the result of the lookup 
operation. This index will be equal to the output of the encoder. 
This value is later used for retrieving the leaf information from 
the array of leaf nodes. 
If the required buffer size exceeds the width of the accelerator, an 
indirect addressing is used. The first accelerator operation 
identifies the buffer to be retrieved, for which the accelerator 
gives the index of the resultant leaf node.  
We have developed an analytical model to estimate the number of 
execution cycles for a tree lookup: 
#cycles = log(n/4)leaves * (Mem(avg.) + exec)  

Equation 2. Cycles required for table lookup 
In Equation 2 leaves correspond to the number of leaf nodes, 
Mem (avg.) corresponds to the number of cycles spent in reading 
data from memory and exec is number of cycles required by the 
accelerator when the buffer data is available. For example, 
assuming the delay of the accelerator is 4 cycles, exec equals to 7 
(1 cycle for setting common value, 1 cycle for setting the select 
bits and 4 cycles to produce the results and 1 cycle for reading the 
encoder value). In Section 5.2, we compare the estimations for the 
model against simulation numbers and show that the model 
estimates the number of execution cycles within 3% in worst case. 
We have performed several simulations to measure the 
effectiveness of the accelerator for tree-lookup. The accelerator is 
able to improve the performance of software solution by as much 
as 12-times. The detailed results are explained in Section 5.3. 

4.3 Security 
Many encryption/decryption algorithms use permutation to find 
unique signatures for a packet or to change the original packet 
payload. For example, the MD5 algorithm use the permutations 
listed in Figure 6. Such permutations can be directly mapped into 
the accelerator. For example, to implement ‘F’ from Figure 6, the 
buffer is loaded with x, y, ~x, and z series. Then, in the first two 
levels the buffer values are forwarded. In the third level, ‘and’ 
and in the fourth level ‘or’ operation is performed. The results at 
this stage are propagated one by one to the output register to get 
the desired section from the series.  
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))   
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))   
#define H(x, y, z) ((x) ^ (y) ^ (z))   
#define I(x, y, z) ((y) ^ ((x) | (~z)))   

Figure 6. MD5 code segment for permutations 

5. EXPERIMENTS 
5.1 Experimental Setup 
In the simulations performed, the programmable core is an out-of-
order execution processor much like Alpha 21264 [7]. We have 
modified the SimpleScalar [1] simulator by implementing the 
accelerator as a function unit in the processor. Three different 
accelerator widths are studied: 64 bytes, 128 bytes and 512 bytes. 
The delay for the 64 and 128-byte accelerators is set to 4 cycles 
and the delay for the 512-byte accelerator is set to 5 cycles. The 
simulated core has 32 KB of separate L1 data and instruction 
caches and a 512 KB unified L2 cache. The latencies for L1 and 
L2 caches are set to 1 and 10 cycles, respectively.   

5.2 Validating Analytical Models 
In Sections 4.1 and 4.2, we have presented analytical models to 
estimate the execution latency for pattern matching and tree 
lookup algorithms. In this section, we compare the estimations 
made using these models and simulation values from the 
SimpleScalar simulator.  
Figure 7 summarizes the estimations for the pattern matching 
task. The worst estimation is made for 512-byte wide accelerator 
for the haystack size of 640 bytes, for which the error is 21.85%. 
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Figure 7. Estimations for pattern matching 
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Figure 8.  Estimations for tree lookup 

The results for tree lookup are summarized in Figure 8. In all the 
configurations, the analytical model for tree lookup almost 
exactly matches the simulation numbers. The largest error is 2.6% 
for lookup in a tree with 1024 rules with 512-byte wide 
accelerator. 

5.3 Performance Simulations 
The simulated applications in this section are kernels that perform 
the radix-tree lookup and pattern matching tasks. Our goal in 
these simulations is to measure the performance of the accelerator 
for different input parameters. 
Figure 9 summarizes the results for pattern matching. The 
improvement achieved by the accelerator increases with the 
increased string size. For large strings, the accelerator achieves up 
to 25-fold improvements (e.g., the accelerator with 512-byte 
width achieves 24.2-fold improvement for 1200-byte haystack). 
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The results for tree lookup are summarized in Figure 10. As the 
table size is increased the improvement of the accelerator 
increases. However, the speed-up is non-monotonic. It can be 
seen that these jumps exactly occur when the buffer is not large 
enough to hold all the leaves. At these sizes, the accelerator has to 
perform multiple accesses, creating the saw tooth pattern 
observed in the results. In addition, the overall trend in the 
improvement for 64-byte wide accelerator is downward, whereas 
it is upwards for the 512-byte wide accelerator and is almost 
constant for the 128-byte design.  
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Figure 9. Improvement by accelerator for pattern matching 
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Figure 10.  Improvement by accelerator for tree lookup 

We have also performed simulations to measure the effectiveness 
of the accelerator for security applications. We have modified the 
MD5Transform routine (including the Decode sub-routine) to 
utilize the function unit. The accelerator was able to increase the 
performance of MD5Transform by 58.54%.  

6. CONCLUSIONS 
New networking applications coupled with the higher link speeds 
demand new and more complex tasks to be performed efficiently 
in the processing elements. A significant portion of these 
applications searches or modifies Layer 7 information in the 
packet that was not accessed by the traditional network processing 
elements. Hence, implementing accelerators for such tasks is a 
necessity to achieve high performance. In this paper, we have 
presented design details of such an accelerator. We have also 
presented novel algorithms to implement such key tasks. We have 
shown that our proposed accelerator can perform tasks such as 
tree lookup and pattern matching efficiently. Specifically, it 

achieves up to 25-fold improvements for pattern matching and 10-
fold improvement for tree lookup over optimized software 
solutions. Finally, we have performed a study for the utilization of 
the accelerator in a multi-core environment.  

REFERENCES 
[1] Burger, D. and Austin, T. The SimpleScalar Tool Set, 

Version 2.0. Technical Report CS-TR-97-1342, University 
of Wisconsin, June 1997. 

[2] C-port Corporation. C-5 Network Processor Architecture 
Guide. C-port technical library C5NPD0-AG/D, May 2001.   

[3] ClearSpeed Technology Ltd. The ClearSpeed Table Lookup 
Engine. White paper 02-WP-1021 v3.0. 
http://www.clearspeed.com/papers/tle_book.pdf 

[4] Clearwater Networks. Introducing the CNP810 Family. 
http://www.clearwaternetworks.com/clearwater-
overview.pdf 

[5] Crowley, P., Fiuczynski, M. E., Baer, J. L, Bershad, B. N. 
Characterizing Processor Architectures for Programmable 
Network Interfaces. In Proc. of International Symposium on 
Supercomputing, Santa Fe / NM, 2000. 

[6] International Business Machine Corporation. IBM PowerNP 
NP4GS3 Network Processor Datasheet. IBM technical 
library, np3_DLTOC.fm.08, May / 2001.  

[7] Kessler, R. The Alpha 21264 Microprocessor. In IEEE 
Micro, 19(2), Mar/Apr 1999. 

[8] Mangione-Smith, and W. H. and Memik, G. Network 
Processing: Applications, Architectures and Examples. 
Tutorial at International Symposium on Microarchitecture, 
Austin / TX, Dec. 2001.  

[9] Memik, G. and Mangione-Smith, W. H. NetBench: A 
Benchmarking Suite for Network Processors. In Proc. of 
International Conference on Computer-Aided Design, San 
Jose / CA, Nov. 2001. 

[10] MMC Networks, Inc. Leading the Network Processor 
Revolution. http://www.mmcnet.com/Solutions 

[11] Nie, X., Gazsi, L., Engel, F., Fettweis, G. A New Network 
Processor Architecture for High-Speed Communications. In 
Proc. of IEEE Workshop on Signal Processing Systems, 
Taipei / Taiwan, Oct 1999.  

[12] Roesch, M. Snort: The Open Source Network Intrusion 
Detection System Web Site. http://www.snort.org 

[13] Synopsys, Inc. Synopsys design compiler – Overview. 
http://www.synopsis.com/products/logic/design_comp_cs.ht
ml 

[14] Villamizar, C. OSPF Optimized Multipath (OSPF-OMP). 
Internet Draft ietf-ospf-mpp-02, Feb, 1999. 

[15] S. Wuytack, J.L. da Silva, Fr. Catthoor, G. de Jong and Ch. 
Ykman. Memory Management for Embedded Network 
Applications. IEEE Transactions on Computer-Aided 
Design, Volume 18, Number 5, pp. 533-544, May 1999.  

651

http://www.mmcnet.com/Solutions
http://www.synopsis.com/products/logic/design_comp_cs.html
http://www.synopsis.com/products/logic/design_comp_cs.html

	INTRODUCTION
	RELATED WORK
	NETWORKING APPLICATIONS
	ACCELERATOR DESIGN
	Pattern Matching
	Tree Lookup
	Security

	EXPERIMENTS
	Experimental Setup
	Validating Analytical Models
	The results for tree lookup are summarized in Figure 8. In all the configurations, the analytical model for tree lookup almost exactly matches the simulation numbers. The largest error is 2.6% for lookup in a tree with 1024 rules with 512-byte wide accel
	Performance Simulations

	CONCLUSIONS
	REFERENCES

