
The ARM9 Family - High Performance Microprocessors for Embedded
Applications

Simon Segars, Manager CPU Development, ARM Ltd.

Abstract

Portable applications such as mobile phones,
pagers, and PDAs are continually growing in
sophistication. This places an increasing burden on the
embedded microprocessor to provide high performance
while retaining low power consumption and small die
size.

The ARM7TDMI microprocessor has been
highly successful in these application areas. However, as
products grow in complexity more processing power is
required while the expectation on battery life also
increases. This has lead to the introduction of the ARM9
family, a range of high performance low power embedded
microprocessors targeted at next generation embedded
applications.

This paper focuses on the implementation of 2
members of the ARM9 family, the ARM9TDMI integer
core and the ARM940T cached processor. These offer
performance in excess of 150 MIPS while retaining low
power consumption. The evolution from the ARM7 to the
ARM9 microarchitecture is described and the trade offs
between low power consumption and high performance
discussed.

Introduction

ARM designs high performance, low power
microprocessors targeted at embedded applications. To
date most of the ARM design wins have been with the
ARM7TDMI [1,2] processor. This product incorporates
the Thumb instruction set [3], providing industry leading
code density and typically achieves around 60MHz and
only 1.5 mW/MHz power consumption on a 0.35µm
process. Coupled with a small die size and integral debug
features, this product is ideal for many medium-
performance embedded applications.

ARM7TDMI has been successful in many
portable applications. Examples include GSM mobile
phones such as the Panasonic G650 [4]. ARM7 based
cores have also been integrated with cache memories and

peripherals in ASSPs such as the ARM7100 [5] as used in
the PSION 5 PDA [6]. The ARM7 family owes its
success to the combination of low power, low cost and
high performance.

However, as applications become more complex
and integrate more and more functionality, the processor
is required to provide more and more performance. A
classic example of such an application is the so-called
‘Smart Phone’. This is a cellular phone and PDA rolled
into one. Initial smart phones have used multiple
processors in order to meet the performance needs - one to
run the PDA, another to run the cellular protocol stack
and a DSP to process the data traffic.

Applications such as this epitomize Moore’s law
and have lead ARM to develop the ARM9 family of
microprocessors [7]. These devices build on the
architecture of the ARM7 family and provide higher
levels of performance. ARM9 processors are specifically
targeted to meet the needs of the next generation of highly
integrated portable applications while at the same time
keeping power consumption and die size to a minimum.

While the ARM9 family rises to meet this
challenge, the ARM7 family will live on servicing the
needs of low-end applications.

The ARM9TDMI embedded core

The first member of the ARM9 family is the
ARM9TDMI integer core. The goal of this product was
to produce a high performance Thumb compatible
processor, to providing a performance upgrade path from
the ARM7TDMI. The processor was specified to be used
either stand alone, or within a cached processor such as
the ARM940T.

Higher performance has been achieved by
increasing the depth of the pipeline from 3 stages as in the
ARM7TDMI to 5 stages. This allows the device to be
clocked at a higher rate than the ARM7TDMI.
Forwarding paths have also been introduced to the
pipeline in order to reduce the number of interlock cases
and hence reduce the average number of clocks per
instruction, CPI.

Load and store operations account for around
25% of all instructions in the ARM instruction flow (a
more detailed breakdown of ARM instruction distribution
is shown in Table 1). In ARM7TDMI a basic load takes 3
cycles and a store takes 2 cycles and these contribute
significantly to the average overall CPI. It is therefore
important to optimise for these instructions in high
performance processors. This has been achieved in the
ARM9TDMI processor core by adopting a Harvard
memory architecture (ARM7TDMI used a Von Neumman
architecture for simplicity) thereby allowing instruction
fetches to occur in parallel with data accesses.

The ARM9TDMI pipeline consists of the stages
fetch, decode, execute, memory access and write-back.
The main operations performed in each stage are
described in Figure 1 which compares the pipelines of the
ARM7TDMI and ARM9TDMI.

The extra stages allow the work performed in the
somewhat congested execute state of the ARM7TDMI to
be spread more evenly, thereby permitting a higher
maximum operating frequency. ARM7TDMI performs a
Thumb to ARM instruction format conversion during the
first phase of the decode cycle. In the 5 stage pipeline of
ARM9TDMI, ARM and Thumb instructions are decoded
in parallel. ARM9TDMI performs register address
decode in the first half of the decode cycle and register
reads in the second half. This means that there is no spare
phase in which to perform a Thumb to ARM instruction
conversion as there was in the ARM7TDMI. This leads to
two parallel decode units, one which is only active when
the processor is in ARM state and the other active only
when the processor is in Thumb state, in order to save
power.

The datapath of the ARM9TDMI is shown in
Figure 2. The register bank has 3 read ports and two write
ports. The A and B read ports feed the execution units in
the datapath. The C port is used exclusively for reading
store data. Store data is read during the execute stage of
the pipeline. This reduces the number of forwarding paths
and also removes the need for holding latches which

would be required if the data was read during decode
along with the other registers.

The shifter and ALU perform the same functions
as those found in ARM7TDMI. The main difference in
the ALU is that the arithmetic and logic units are
separated so that during an instruction only the required
functional unit is activated. It has been found that the
ALU contributes significantly to the power consumption
of the ARM7TDMI. In that device the simple nature of
the ALU means that both an arithmetic and a logic result
are calculated each cycle and the required result is then
selected. This is inefficient from a power consumption
perspective and so the two units have been partitioned in
the ARM9TDMI design.

The forwarding paths in the ARM9TDMI allow
back to back data processing instructions to execute in the
pipeline without stall cycles. Load data, which becomes
available at the end of the memory cycle, is also
forwarded into the pipeline. If the data from the load is
required in the very next cycle then there is a one cycle
interlock, since the data is not returned until the end of the
memory cycle, and the load instruction occupies 2 execute
cycles in the datapath. However, if the data is not
required until the next but one instruction then the data is
forwarded, there is no interlock and the instruction has
only occupied one execute cycle in the datapath. These
two cases are depicted in Figure3 (a) and (b).

There is a third case where a load data specifies a
rotation or sign extension as it is fetched and here the
forwarding paths cannot be used. The loaded data must
be passed through the Byte Rotator block and written back
to the register bank before being used by subsequent
instructions. Therefore, instructions such as these can
cause up to two cycles of interlock depending on when the
data is required.

The ARM9TDMI microarchitecture described
above results in an average CPI of 1.5. A breakdown of
the number of cycles for each instruction class is shown in
Table 1 along with that of ARM7TDMI for comparison.
The new microarchitecture results in a 21% increase in

ARM Decode

Thumb Decode

DecodeFetch

Instruction Fetch

Execute Memory

Reg. Address

Decode

Register

Read

Reg. Address

Decode

Register
Read

Shifter ALU Memory Data access

ALU Result

and / or

Load data

Writeback

Writeback

ARM9TDMI Pipeline Operation

Convert Thumb

Register Address
Decode

Register Read
Shifter

ALU

Writeback

Fetch Decode Execute

to ARM
Main Decode

Instruction Fetch

ARM7TDMI Pipeline Operation

Figure 1 : ARM7TDMI and ARM9TDMI Pipelines

instruction throughput relative to ARM7TDMI and 1.1
MIPS/MHz, compared to 0.9 MIPS/MHz.

The re-pipelining allows the clock rate to be
increased significantly compared to ARM7TDMI. On the
same process, ARM9TDMI may be clocked at twice the
rate of ARM7TDMI. The increase in complexity required
to achieve the increase in performance requires around
50% more transistors and the area has increased by almost
90% This area increase is accounted for by an increase in
the number of routing channels in the datapath (to permit
the additional forwarding paths) and a relative increase in
the standard cell control logic to custom datapath ratio. A
comparative summary between the two processor cores is
shown in Table 2.

The ARM940T cached processor

The ARM9TDMI processor core has been
integrated with caches, a write buffer and a protection unit
in the ARM940T processor. This system has many
advantages for the system designer. Firstly, it allows the
processor to operate at its maximum frequency since
memory accesses are to the local, high performance cache.
Secondly, since main memory is accessed infrequently,
system power is reduced. Also, the main memory system
may now be used for other tasks, such as DMA, while the

Vectors

PSR

B[..]

A[..]

Imm

+PC

REGBANK

MUL

BData[..]

AData[..]

IINC
Shift

Cmux

IA[..]

DA[..]

DAScan

DD[..]

SHIFTER

Amux

Bmux

C[..]

ALU

Byte Rot
/ Sign Ex.

DDScan

Byte/
Word
Repl

DINC

Figure 2 : The ARM9TDMI Datapath

F D E M WLDR R1, [R0]

Data

F D WADD R2, R1, R1 MEInterlock

F D E M WLDR R1, [R0]

F D E M W

F D E M W

ADD R2, R3, R4

ADD R5, R6, R1

(b) No Interlock

(a) Single Cycle Interlock

Figure 3 : ARM9TDMI Load Behaviour

processor is executing from its caches. A block diagram of
the ARM940T design is shown below in Figure 4.

The Harvard caches in the ARM940T are both
4KB in size in the first implementation. The caches are
constructed in a modular manner using 1KB cache blocks.
Through the use of these blocks the size of the cache can
easily be varied with minimal impact on the rest of the
design. The cache blocks are built using a CAM-RAM
structure comprising 64 lines each with 4 words of data.
Each cache block has 64 way associativity and the CAMs
are designed to compare a maximum of 27 address bits. A
cache read involves 3 basic steps.

• Firstly, the 32 bit address from the processor is
decoded to determine which of the 4 segments the
addressed data might be in. In the 4KB ARM940T
design, bits 5:4 of the address are used for the segment
decode.

• Secondly, the upper 26 bits of the address are then
passed into the CAM where they are compared with
the CAM contents.

• Finally, if there is a CAM match, then a data access in
the cache RAM occurs. Each RAM line is 4 words
long and bits 3:2 of the address are used to select the
desired word. If the cache lookup fails then the

processor is stalled by the cache control logic and an
external access occurs to fetch the required data.

Although the high associativity helps little with cache
hit rates, the design has a number of advantages. These
include low power, short cycle time and simple
modularity allowing the ARM940T to be extended to have
larger caches by utilising more cache segments. For
example, if the caches were 8KB in size, then an
additional bit must be used for the segment decode and
one less bit passed into the CAM for address look-up. In
this case, bits 6:4 would be used for segment decode and

bits 31:7 of the address would be passed into the CAMs.
The unused column of the CAM would simply be tied off.
In fact, the CAMs are designed to cope with cache sizes
down to 2KB and in the initial design the least significant
CAM column is tied off.

In order to increase performance, the ARM940T
contains a write buffer. Without this, then any store
operation to main memory would have to stall the
processor until the memory bus was free. The write buffer
allows the processor to be isolated from the traffic on the
system memory bus and so stall cycles are minimised.
The write buffer allows storage for up to 8 words of data
and 4 address values.

As a further power and bus activity saving
feature, the ARM940T data cache may be operated in a

Instruction % Taken % Skipped ARM7TDMI ARM9TDMI
Data processing 49 4 1 1
Data processing with PC 3 0 3 3
Branch/Branch with link 11 4 3 3
Load register 14 1 3 1-2
Store register 8 1 2 1
Load multiple registers 1 0 7 5
Store multiple registers 2 0 7 6
CPI 1.9 1.5

Table 1 : ARM9TDMI vs ARM7TDMI CPI Analysis

ARM7TDMI ARM9TDMI
Area (mm2, 0.35µm) 2.2 4.15
Transistor count 74k 112k
Pipeline stages 3 5
CPI 1.9 1.5
MIPS/MHz 0.9 1.1
Typical Max Clock rate (0.35µm) 60 120
Power (mW/MHz @ 3.0V) 1.5 1.8

Table 2 : ARM9TDMI vs ARM7TDMI Comparison Sumary

write-back mode. In this mode of operation, whenever a
store occurs which hits in the cache, the cache is updated
but the write is not passed to the external memory system.
At this time the cache and main memory have lost
coherency and the cache line containing the incoherent
data is said to be ‘dirty’. Subsequently, if as a result of a
later cache miss the dirty line is selected to be overwritten
with new data, the dirty data must be written back to main
memory. When this occurs, the processor is stalled while
the dirty data is copied from the cache into the write
buffer. The linefill of the new data is then performed and
written into the cache. At that point processor execution
is resumed. The data in the write buffer is written back to
memory when the system bus is free and before any
further read operations, ensuring memory coherency.

The benefit of a write-back cache is that many
store operations may occur to the cache before they are
copied to the main memory. Therefore the total number
of main memory accesses and hence system power, is
reduced. This is especially useful for data regions where
program variables are to be stored. There are cases when
main memory and the cache must be kept coherent at all
times, for a video frame buffer. Consequently ARM940T
also supports a write-through mode of operation where all
cache updates are written through to memory as they
happen.

ARM940T is targeted at a class of embedded
applications referred to as closed applications. Closed
applications are where all the software the processor will
execute is present in the system when it is shipped by the
OEM. Since the software can be considered reliable and
safe, the memory protection provided by the processor
may be minimised. Consequently, ARM940T does not
support virtual memory and does not contain an MMU or
TLB. Instead, a simple Protection Unit, PU, is provided.
The PU is programmed via accesses to the system
coprocessor, CP15.

The protection unit allows the system designer to
partition memory into 16 regions, 8 on the instruction side
and another 8 unique regions on the data side. Each
region is specified by a base address pointer and a size
field. The size can be anything, in powers of 2, from 4GB
to 4KB. The address of the start of the region must be
multiple of the region’s size. Each region has a number of
properties associated with it specifying how the cache and
write buffer behave in that region, eg. cacheable, non-
cacheable, write-through or write-back, and also what type
of access, eg. supervisor only, can occur within the region.

The regions are labeled 0-7 and may be
programmed such that they overlap. If a memory access
occurs which corresponds to 2 or more regions then the
attributes for the highest numbered region are used (ie.
region 7 has the highest priority and region 0 the lowest).

IA[31:0] DA[31:0]

ID[31:0] DD[31:0]

.

.

Bcontrol BD[31:0]BA[31:0]

JTAG Interface

TAP
Controller

AMBA Interface Buffer
Write

Data CacheInstruction Cache
(Integral EmbeddedICE)

Processor Core

Unit / CP15
D-Cache
Control

Protection

External Coprocessor
Interface

Instruction ControlData

I-Cache
Control

ARM9TDMI

Figure 4 : The ARM940T Processor

The advantages of overlapping regions is that the
flexibility with which the regions may be used is
increased, since silicon area restrictions only permit 8 for
each side.

By way of an example, consider a system with
16KB of RAM where there is 4KB of supervisor code and
12KB of user code. Without overlapping regions, 3
protection regions would have to be specified, a 8KB and
a 4KB region for the user code, and another 4KB region
for the supervisor code. With the overlapping facility
only 2 regions have to be used, one 16KB region
programmed for user access and one overlapping 4KB
region, with a higher region number, for the supervisor
code.

The ARM940T design was taped out at the same
time as ARM9TDMI and first silicon has been evaluated.
With 2, 4KB caches, the device contains 800K transistors
and measures 13.0mm2 on a 0.35µm process.
Measurements of the silicon show power consumption of
400mW while operating with a core clock rate of 120MHz
and a memory bus clock of 16MHz.

Conclusions

The ARM9TDMI and ARM940T have met their
design goals of providing high performance Thumb
compatible processors with small die size and low power
consumption. These products and their derivatives will
serve the need of next generation applications while
ARM7TDMI continues to serve the needs of the low end.
ARM9TDMI and ARM940T devices have been licensed
to a number of ARM’s semiconductor partners and silicon
has been produced. Several products utilising these
devices are expected to be announced later this year.

References

[1] : S Segars, K Clarke, and L Goudge, “Embedded Control
Problems, Thumb and the ARM7TDMI”, IEEE Micro, Oct
1995, p.22-30
[2] : S Segars, “ARM7TDMI Power Consumption”, IEEE
Micro, July/Aug 1997, p.12-19
[3] : D V Jaggar, “Advanced Risc Machines Architecture
Reference Manual”, Prentice Hall, London, 1996, ISBN 0 13
736299 4
[4] : http://www.arm.com/Markets/ARMapps/Panasonic/
[5] : G Budd, and G Milne, “ARM7100 - A High-Integration,
Low-Power Microcontroller for PDA Applications” ,
Proceedings of COMPCON ’96, p182-187
[6] : http://www.psion.com/series5/index.html
[7] : I Devereux, “ARM9 Family”, Proceedings of
Microprocessor Forum, 1997

