
24

The Itanium processor is the first
implementation of the IA-64 instruction set
architecture (ISA). The design team opti-
mized the processor to meet a wide range of
requirements: high performance on Internet
servers and workstations, support for 64-bit
addressing, reliability for mission-critical
applications, full IA-32 instruction set com-
patibility in hardware, and scalability across a
range of operating systems and platforms.

The processor employs EPIC (explicitly
parallel instruction computing) design con-
cepts for a tighter coupling between hardware
and software. In this design style the hard-
ware-software interface lets the software
exploit all available compilation time infor-
mation and efficiently deliver this informa-
tion to the hardware. It addresses several
fundamental performance bottlenecks in
modern computers, such as memory latency,
memory address disambiguation, and control
flow dependencies.

EPIC constructs provide powerful archi-
tectural semantics and enable the software to
make global optimizations across a large
scheduling scope, thereby exposing available
instruction-level parallelism (ILP) to the hard-
ware. The hardware takes advantage of this
enhanced ILP, providing abundant execution
resources. Additionally, it focuses on dynam-

ic runtime optimizations to enable the com-
piled code schedule to flow through at high
throughput. This strategy increases the syn-
ergy between hardware and software, and
leads to higher overall performance.

The processor provides a six-wide and 10-
stage deep pipeline, running at 800 MHz on
a 0.18-micron process. This combines both
abundant resources to exploit ILP and high
frequency for minimizing the latency of each
instruction. The resources consist of four inte-
ger units, four multimedia units, two
load/store units, three branch units, two
extended-precision floating-point units, and
two additional single-precision floating-point
units (FPUs). The hardware employs dynam-
ic prefetch, branch prediction, nonblocking
caches, and a register scoreboard to optimize
for compilation time nondeterminism. Three
levels of on-package cache minimize overall
memory latency. This includes a 4-Mbyte
level-3 (L3) cache, accessed at core speed, pro-
viding over 12 Gbytes/s of data bandwidth.

The system bus provides glueless multi-
processor support for up to four-processor sys-
tems and can be used as an effective building
block for very large systems. The advanced
FPU delivers over 3 Gflops of numeric capa-
bility (6 Gflops for single precision). The bal-
anced core and memory subsystems provide

Harsh Sharangpani
Ken Arora

Intel

THE ITANIUM PROCESSOR EMPLOYS THE EPIC DESIGN STYLE TO EXPLOIT

INSTRUCTION-LEVEL PARALLELISM. ITS HARDWARE AND SOFTWARE WORK IN

CONCERT TO DELIVER HIGHER PERFORMANCE THROUGH A SIMPLER, MORE

EFFICIENT DESIGN.

0272-1732/00/$10.00  2000 IEEE

ITANIUM PROCESSOR
MICROARCHITECTURE

high performance for a wide range of appli-
cations ranging from commercial workloads
to high-performance technical computing.

In contrast to traditional processors, the
machine’s core is characterized by hardware
support for the key ISA constructs that
embody the EPIC design style.1,2 This
includes support for speculation, predication,
explicit parallelism, register stacking and rota-
tion, branch hints, and memory hints. In this
article we describe the hardware support for
these novel constructs, assuming a basic level
of familiarity with the IA-64 architecture (see
the “IA-64 Architecture Overview” article in
this issue).

EPIC hardware
The Itanium processor introduces a num-

ber of unique microarchitectural features to
support the EPIC design style.2 These features
focus on the following areas:

• supplying plentiful fast, parallel, and
pipelined execution resources, exposed
directly to the software;

• supporting the bookkeeping and control
for new EPIC constructs such as predi-
cation and speculation; and

• providing dynamic support to handle

events that are unpredictable at compi-
lation time so that the compiled code
flows through the pipeline at high
throughput.

Figure 1 presents a conceptual view of the
EPIC hardware. It illustrates how the various
EPIC instruction set features map onto the
micropipelines in the hardware.

The core of the machine is the wide execu-
tion engine, designed to provide the compu-
tational bandwidth needed by ILP-rich EPIC
code that abounds in speculative and predi-
cated operations.

The execution control is augmented with a
bookkeeping structure called the advanced
load address table (ALAT) to support data
speculation and, with hardware, to manage
the deferral of exceptions on speculative exe-
cution. The hardware control for speculation
is quite simple: adding an extra bit to the data
path supports deferred exception tokens. The
controls for both the register scoreboard and
bypass network are enhanced to accommo-
date predicated execution.

Operands are fed into this wide execution
core from the 128-entry integer and floating-
point register files. The register file addressing
undergoes register remapping, in support of

25SEPTEMBER–OCTOBER 2000

Compiler-programmed features:

Hardware features:

Branch
hints

Register
stack,

rotation

Data and control
speculation

Memory
hintsPredication

Explicit
parallelism;
instruction
templates

Instruction
cache,
branch

predictors

Fetch

Three levels
of cache

(L1, L2, L3)

Memory
subsystem

128 GR,
128 FR,
register
remap,
stack

engine

Register
handling

4 integer,
4 MMX units

2 load/store units

3 branch units

32-entry ALAT

2 + 2 FMACs

Parallel resources

Fa
st

, s
im

pl
e

6-
is

su
e

Issue Control

B
yp

as
se

s
an

d
de

pe
nd

en
ci

es

Speculation deferral management

Figure 1. Conceptual view of EPIC hardware. GR: general register file; FR: floating-point regis-
ter file

register stacking and rotation. The register
management hardware is enhanced with a
control engine called the register stack engine
that is responsible for saving and restoring
registers that overflow or underflow the reg-
ister stack.

An instruction dispersal network feeds the
execution pipeline. This network uses explic-
it parallelism and instruction templates to effi-
ciently issue fetched instructions onto the
correct instruction ports, both eliminating
complex dependency detection logic and
streamlining the instruction routing network.
A decoupled fetch engine exploits advanced
prefetch and branch hints to ensure that the
fetched instructions will come from the cor-
rect path and that they will arrive early enough
to avoid cache miss penalties. Finally, memo-
ry locality hints are employed by the cache
subsystem to improve the cache allocation and
replacement policies, resulting in a better use
of the three levels of on-package cache and all
associated memory bandwidth.

EPIC features allow software to more effec-
tively communicate high-level semantic infor-
mation to the hardware, thereby eliminating
redundant or inefficient hardware and lead-
ing to a more effective design. Notably absent
from this machine are complex hardware
structures seen in dynamically scheduled con-
temporary processors. Reservation stations,
reorder buffers, and memory ordering buffers
are all replaced by simpler hardware for spec-
ulation. Register alias tables used for register
renaming are replaced with the simpler and

semantically richer register-remapping hard-
ware. Expensive register dependency-detec-
tion logic is eliminated via the explicit
parallelism directives that are precomputed by
the software.

Using EPIC constructs, the compiler opti-
mizes the code schedule across a very large
scope. This scope of optimization far exceeds
the limited hardware window of a few hun-
dred instructions seen on contemporary
dynamically scheduled processors. The result
is an EPIC machine in which the close col-
laboration of hardware and software enables
high performance with a greater degree of
overall efficiency.

Overview of the EPIC core
The engineering team designed the EPIC

core of the Itanium processor to be a parallel,
deep, and dynamic pipeline that enables ILP-
rich compiled code to flow through at high
throughput. At the highest level, three impor-
tant directions characterize the core pipeline:

• wide EPIC hardware delivering a new
level of parallelism (six instructions/
clock),

• deep pipelining (10 stages) enabling high
frequency of operation, and

• dynamic hardware for runtime opti-
mization and handling of compilation
time indeterminacies.

New level of parallel execution
The processor provides hardware for these

execution units: four integer ALUs, four mul-
timedia ALUs, two extended-precision float-
ing-point units, two additional single-precision
floating-point units, two load/store units, and
three branch units. The machine can fetch,
issue, execute, and retire six instructions each
clock cycle. Given the powerful semantics of
the IA-64 instructions, this expands to many
more operations being executed each cycle.
The “Machine resources per port” sidebar on
p. 31 enumerates the full processor execution
resources.

Figure 2 illustrates two examples demon-
strating the level of parallel operation support-
ed for various workloads. For enterprise and
commercial codes, the MII/MBB template
combination in a bundle pair provides six
instructions or eight parallel operations per

26

ITANIUM PROCESSOR

IEEE MICRO

M F I

M I I M B B

M F I

2 ALU opsLoad 4 DP
(8 SP) ops via
2 ldf-pair and 2
ALU ops
(postincrement)

4 DP flops
(8 SP flops)

 6 instructions provide:

• 12 parallel ops/clock
 for scientific computing
• 20 parallel ops/clock for
 digital content creation

 6 instructions provide:

• 8 parallel ops/clock
 for enterprise and
 Internet applications

2 loads and
2 ALU ops
(postincrement)

2 ALU ops
2 branch
instructions

Figure 2. Two examples illustrating supported parallelism. SP: single preci-
sion, DP: double precision

clock (two load/store, two
general-purpose ALU opera-
tions, two postincrement ALU
operations, and two branch
instructions). Alternatively, an
MIB/MIB pair allows the
same mix of operations, but
with one branch hint and one
branch operation, instead of
two branch operations.

For scientific code, the use
of the MFI template in each
bundle enables 12 parallel
operations per clock (loading
four double-precision oper-
ands to the registers and executing four double-
precision floating-point, two integer ALU, and
two postincrement ALU operations). For digi-
tal content creation codes that use single-
precision floating point, the SIMD (single
instruction, multiple data) features in the
machine effectively enable up to 20 parallel
operations per clock (loading eight single-
precision operands, executing eight single-
precision floating-point, two integer ALU, and
two postincrementing ALU operations).

Deep pipelining (10 stages)
The cycle time and the core pipeline are bal-

anced and optimized for the sequential exe-
cution in integer scalar codes, by minimizing
the latency of the most frequent operations,
thus reducing dead time in the overall com-
putation. The high frequency (800 MHz) and
careful pipelining enable independent opera-
tions to flow through this pipeline at high
throughput, thus also optimizing vector
numeric and multimedia computation. The
cycle time accommodates the following key
critical paths:

• single-cycle ALU, globally bypassed
across four ALUs and two loads;

• two cycles of latency for load data
returned from a dual-ported level-1 (L1)
cache of 16 Kbytes; and

• scoreboard and dependency control to
stall the machine on an unresolved regis-
ter dependency.

The feature set complies with the high-
frequency target and the degree of pipelin-
ing—aggressive branch prediction, and three

levels of on-package cache. The pipeline
design employs robust, scalable circuit design
techniques. We consciously attempted to
manage interconnect lengths and pipeline
away secondary paths.

Figure 3 illustrates the 10-stage core
pipeline. The bold line in the middle of the
core pipeline indicates a point of decoupling in
the pipeline. The pipeline accommodates the
decoupling buffer in the ROT (instruction
rotation) stage, dedicated register-remapping
hardware in the REN (register rename) stage,
and pipelined access of the large register file
across the WLD (word line decode) and REG
(register read) stages. The DET (exception
detection) stage accommodates delayed branch
execution as well as memory exception man-
agement and speculation support.

Dynamic hardware for runtime optimization
While the processor relies on the compiler

to optimize the code schedule based upon the
deterministic latencies, the processor provides
special support to dynamically optimize for
several compilation time indeterminacies.
These dynamic features ensure that the com-
piled code flows through the pipeline at high
throughput. To tolerate additional latency on
data cache misses, the data caches are non-
blocking, a register scoreboard enforces
dependencies, and the machine stalls only on
encountering the use of unavailable data.

We focused on reducing sensitivity to branch
and fetch latency. The machine employs hard-
ware and software techniques beyond those
used in conventional processors and provides
aggressive instruction prefetch and advanced
branch prediction through a hierarchy of

27SEPTEMBER–OCTOBER 2000

Front end
Prefetch/fetch of 6 instructions/clock
Hierarchy of branch predictors
Decoupling buffer

Instruction delivery
Dispersal of 6 instructions onto
 9 issue ports
Register remapping
Register save engine

Operand delivery
Register file read and bypass
Register scoreboard
Predicated dependencies

Execution core
4 single-cycle ALUs, 2 load/stores
Advanced load control
Predicate delivery and branch
NaT/exceptions/retirement

IPG FET ROT EXP REN WLD REG EXE DET WRB

Figure 3. Itanium processor core pipeline.

branch prediction structures. A decoupling
buffer allows the front end to speculatively fetch
ahead, further hiding instruction cache laten-
cy and branch prediction latency.

Block diagram
Figure 4 provides the block diagram of the

Itanium processor. Figure 5 provides a die plot
of the silicon database. A few top-level metal
layers have been stripped off to create a suit-
able view.

Details of the core pipeline
The following describes details of the core

processor microarchitecture.

Decoupled software-directed front end
Given the high execution rate of the proces-

sor (six instructions per clock), an aggressive
front end is needed to keep the machine effec-
tively fed, especially in the presence of dis-
ruptions due to branches and cache misses.
The machine’s front end is decoupled from
the back end.

Acting in conjunction with sophisticated
branch prediction and correction hardware,
the machine speculatively fetches instructions
from a moderate-size, pipelined instruction
cache into a decoupling buffer. A hierarchy of
branch predictors, aided by branch hints, pro-
vides up to four progressively improving
instruction pointer resteers. Software-initiat-
ed prefetch probes for future misses in the
instruction cache and then prefetches such
target code from the level-2 (L2) cache into a
streaming buffer and eventually into the

28

ITANIUM PROCESSOR

IEEE MICRO

L1 instruction cache
and

fetch/prefetch engine
ITLB

Branch
prediction

Branch
units

Integer
and
MM
units

Dual-
port
L1

data
cache

Floating-
point
units

ALAT

IA-32
decode

and
control

Decoupling
buffer 8 bundles

B B B M M I I F F

Register stack engine/remapping

Branch and
predicate

128 integer
registers

Bus controller

128 floating-point
registers

SIMD
FMAC

S
co

re
bo

ar
d,

 p
re

di
ca

te
 N

aT
s,

 e
xc

ep
tio

ns

96-Kbyte
L2

cache

4-Mbyte
L3

cache

Figure 4. Itanium processor block diagram.

instruction cache. Figure 6
illustrates the front-end
microarchitecture.

Speculative fetches. The 16-
Kbyte, four-way set-associative
instruction cache is fully
pipelined and can deliver 32
bytes of code (two instruction
bundles or six instructions)
every clock. The cache is sup-
ported by a single-cycle, 64-
entry instruction translation
look-aside buffer (TLB) that
is fully associative and backed
up by an on-chip hardware
page walker.

The fetched code is fed into a decoupling
buffer that can hold eight bundles of code. As
a result of this buffer, the machine’s front end
can continue to fetch instructions into the
buffer even when the back end stalls. Con-
versely, the buffer can continue to feed the
back end even when the front end is disrupt-
ed by fetch bubbles due to branches or
instruction cache misses.

Hierarchy of branch predictors. The processor
employs a hierarchy of branch prediction
structures to deliver high-accuracy and low-
penalty predictions across a wide spectrum of
workloads. Note that if a branch mispredic-
tion led to a full pipeline flush, there would

be nine cycles of pipeline bubbles before the
pipeline is full again. This would mean a
heavy performance loss. Hence, we’ve placed
significant emphasis on boosting the overall
branch prediction rate as well as reducing the
branch prediction and correction latency.

The branch prediction hardware is assisted
by branch hint directives provided by the
compiler (in the form of explicit branch pre-
dict, or BRP, instructions as well as hint spec-
ifiers on branch instructions). The directives
provide branch target addresses, static hints
on branch direction, as well as indications on
when to use dynamic prediction. These direc-
tives are programmed into the branch predic-
tion structures and used in conjunction with
dynamic prediction schemes. The machine

29SEPTEMBER–OCTOBER 2000

Figure 5. Die plot of the silicon database.

Core processor die

4 x 1Mbyte L3 cache

To dispersal

Branch
address

calculation 2

Branch
address

calculation 1

Adaptive
multiway

2-level predictor

Target
address
registers

Branch
target

address
cache

IP
m

ul
tip

le
xe

r

Return stack buffer

Instruction cache,
ITLB, streaming buffers

Decoupling buffer

Loop exit
corrector

IPG FET ROT EXP
Stages

Figure 6. Processor front end.

provides up to four progressive predictions
and corrections to the fetch pointer, greatly
reducing the likelihood of a full-pipeline flush
due to a mispredicted branch.

• Resteer 1: Single-cycle predictor. A special
set of four branch prediction registers
(called target address registers, or TARs)
provides single-cycle turnaround on cer-
tain branches (for example, loop branch-
es in numeric code), operating under tight
compiler control. The compiler programs
these registers using BRP hints, distin-
guishing these hints with a special “impor-
tance” bit designator and indicating that
these directives must get allocated into this
small structure. When the instruction
pointer of the candidate branch hits in
these registers, the branch is predicted
taken, and these registers provide the tar-
get address for the resteer. On such taken
branches no bubbles appear in the execu-
tion schedule due to branching.

• Resteer 2: Adaptive multiway and return
predictors. For scalar codes, the processor
employs a dynamic, adaptive, two-level
prediction scheme3,4 to achieve well over
90% prediction rates on branch direction.
The branch prediction table (BPT) con-
tains 512 entries (128 sets ×4 ways). Each
entry, selected by the branch address,
tracks the four most recent occurrences
of that branch. This 4-bit value then
indexes into one of 128 pattern tables
(one per set). The 16 entries in each pat-
tern table use a 2-bit, saturating, up-down
counter to predict branch direction.

The branch prediction table structure
is additionally enhanced for multiway
branches with a 64-entry, multiway
branch prediction table (MBPT) that
employs a similar algorithm but keeps
three history registers per bundle entry.
A find-first-taken selection provides the
first taken branch indication for the mul-
tiway branch bundle. Multiway branch-
es are expected to be common in EPIC
code, where multiple basic blocks are
expected to collapse after use of specula-
tion and predication.

Target addresses for this branch resteer
are provided by a 64-entry target address
cache (TAC). This structure is updated

by branch hints (using BRP and move-
BR hint instructions) and also managed
dynamically. Having the compiler pro-
gram the structure with the upcoming
footprint of the program is an advantage
and enables a small, 64-entry structure to
be effective even on large commercial
workloads, saving die area and imple-
mentation complexity. The BPT and
MBPT cause a front-end resteer only if
the target address for the resteer is present
in the target address cache. In the case of
misses in the BPT and MBPT, a hit in the
target address cache also provides a branch
direction prediction of taken.

A return stack buffer (RSB) provides
predictions for return instructions. This
buffer contains eight entries and stores
return addresses along with correspond-
ing register stack frame information.

• Resteers 3 and 4: Branch address calcula-
tion and correction. Once branch instruc-
tion opcodes are available (ROT stage),
it’s possible to apply a correction to pre-
dictions made earlier. The BAC1 stage
applies a correction for the exit condition
on modulo-scheduled loops through a
special “perfect-loop-exit-predictor”
structure that keeps track of the loop
count extracted during the loop initial-
ization code. Thus, loop exits should
never see a branch misprediction in the
back end. Additionally, in case of misses
in the earlier prediction structures, BAC1
extracts static prediction information and
addresses from branch instructions in the
rightmost slot of a bundle and uses these
to provide a correction. Since most tem-
plates will place a branch in the rightmost
slot, BAC1 should handle most branch-
es. BAC2 applies a more general correc-
tion for branches located in any slot.

Software-initiated prefetch. Another key ele-
ment of the front end is its software-initiated
instruction prefetch. Prefetch is triggered by
prefetch hints (encoded in the BRP instruc-
tions as well as in actual branch instructions)
as they pass through the ROT stage. Instruc-
tions get prefetched from the L2 cache into
an instruction-streaming buffer (ISB) con-
taining eight 32-byte entries. Support exists
to prefetch either a short burst of 64 bytes of

30

ITANIUM PROCESSOR

IEEE MICRO

code (typically, a basic block residing in up to
four bundles) or a long sequential instruction
stream. Short burst prefetch is initiated by a
BRP instruction hoisted well above the actu-
al branch. For longer code streams, the
sequential streaming (“many”) hint from the
branch instruction triggers a continuous
stream of additional prefetch requests until a
taken branch is encountered. The instruction
cache filters prefetch requests. The cache tags
and the TLB have been enhanced with an
additional port to check whether an address
will lead to a miss. Such requests are sent to
the L2 cache.

The compiler can improve overall fetch per-
formance by aggressive issue and hoisting of
BRP instructions, and by issuing sequential
prefetch hints on the branch instruction when
branching to long sequential codes. To fully
hide the latency of returns from the L2 cache,
BRP instructions that initiate prefetch should
be hoisted 12 fetch cycles ahead of the branch.
Hoisting by five cycles breaks even with no
prefetch at all. Every hoisted cycle above five
cycles has the potential of shaving one fetch
bubble. Although this kind of hoisting of BRP
instructions is a tall order, it does provide a
mechanism for the compiler to eliminate
instruction fetch bubbles.

Efficient instruction and operand delivery
After instructions are fetched in the front

end, they move into the middle pipeline that
disperses instructions, implements the archi-
tectural renaming of registers, and delivers
operands to the wide parallel hardware. The
hardware resources in the back end of the
machine are organized around nine issue ports.
The instruction and operand delivery hardware
maps the six incoming instructions onto the
nine issue ports and remaps the virtual register
identifiers specified in the source code onto
physical registers used to access the register file.
It then provides the source data to the execution
core. The dispersal and renaming hardware
exploits high-level semantic information pro-
vided by the IA-64 software, efficiently
enabling greater ILP and reduced instruction
path length.

Explicit parallelism directives. The instruction
dispersal mechanism disperses instructions pre-
sented by the decoupling buffer to the proces-

sor’s issue ports. The processor has a total of
nine issue ports capable of issuing up to two

31SEPTEMBER–OCTOBER 2000

Machine resources per port
Tables A-C describe the vocabulary of operations supported on the different issue ports

in the Itanium processor. The issue ports feed into memory (M), integer (I), floating-point (F),
and branch (B) execution data paths.

Table C. Branch execution resources.

Ports for issuing an instruction

Instruction class B0 B1 B2

Conditional or unconditional branch • • •

Call/return/indirect • • •

Loop-type branch, BSW, cover •

RFI •

BRP (branch hint) • • •

Table A. Memory and integer execution resources.

Ports for issuing an instruction Latency

Instruction class M0 M1 I0 I1 (no. of clock cycles)

ALU (add, shift-add, logical,

addp4, compare) • • • •

Sign/zero extend, move long • • 1

Fixed extract/deposit, Tbit, TNaT • 1

Multimedia ALU (add/avg./etc.) • • • • 2

MM shift, avg, mix, pack • • 2

Move to/from branch/predicates/

ARs, packed multiply, pop count • 2

Load/store/prefetch/setf/break.m/

cache control/memory fence • • 2+

Memory management/system/getf • 2+

Table B. Floating-point execution resources.

Ports for issuing an instruction Latency

Instruction class F0 F1 (no. of clock cycles)

FMAC, SIMD FMAC • • 5

Fixed multiply • • 7

FClrf • • 1

Fchk • • 1

Fcompare • 2

Floating-point logicals, class,

min/max, pack, select • 5

memory instructions (ports M0 and M1), two
integer (ports I0 and I1), two floating-point
(ports F0 and F1), and three branch instruc-
tions (ports B0, B1, and B2) per clock. The
processor’s 17 execution units are fed through
the M, I, F, and B groups of issue ports.

The decoupling buffer feeds the dispersal
in a bundle granular fashion (up to two bun-
dles or six instructions per cycle), with a fresh
bundle being presented each time one is con-
sumed. Dispersal from the two bundles is
instruction granular—the processor disperses
as many instructions as can be issued (up to
six) in left-to-right order. The dispersal algo-
rithm is fast and simple, with instructions
being dispersed to the first available issue port,
subject to two constraints: detection of in-
struction independence and detection of
resource oversubscription.

• Independence. The processor must ensure
that all instructions issued in parallel are
either independent or contain only
allowed dependencies (such as a compare
instruction feeding a dependent condi-
tional branch). This question is easily dealt
with by using the stop-bits feature of the
IA-64 ISA to explicitly communicate par-
allel instruction semantics. Instructions
between consecutive stop bits are deemed
independent, so the instruction indepen-
dence detection hardware is trivial. This
contrasts with traditional RISC processors
that are required to perform O(n2) (typi-
cally dozens) comparisons between source
and destination register specifiers to deter-
mine independence.

• Oversubscription. The processor must also
guarantee that there are sufficient execu-

tion resources to process all the instructions
that will be issued in parallel. This over-
subscription problem is facilitated by the
IA-64 ISA feature of instruction bundle
templates. Each instruction bundle not
only specifies three instructions but also
contains a 4-bit template field, indicating
the type of each instruction: memory (M),
integer (I), branch (B), and so on. By
examining template fields from the two
bundles (a total of only 8 bits), the disper-
sal logic can quickly determine the num-
ber of memory, integer, floating-point, and
branch instructions incoming every clock.
This is a hardware simplification resulting
from the IA-64 instruction set architecture.
Unlike conventional instruction set archi-
tectures, the instruction encoding itself
doesn’t need to be examined to determine
the type of each operation. This feature
removes decoders that would otherwise be
required to examine many bits of the
encoded instruction to determine the in-
struction’s type and associated issue port.

A second key advantage of the tem-
plate-based dispersal strategy is that cer-
tain instruction types can only occur on
specific locations within any bundle. As
a result, the dispersal interconnection
network can be significantly optimized;
the routing required from dispersal to
issue ports is roughly only half of that
required for a fully connected crossbar.

Table 1 illustrates the effectiveness of the
dispersal strategy by enumerating the instruc-
tion bundles that may be issued at full band-
width. As can be seen, a rich mix of
instructions can be issued to the machine at
high throughput (six per clock). The combi-
nation of stop bits and bundle templates, as
specified in the IA-64 instruction set, allows
the compiler to indicate the independence and
instruction-type information directly and
effectively to the dispersal hardware. As a
result, the hardware is greatly simplified, there-
by allowing an efficient implementation of
instruction dispersal to a wide execution core.

Efficient register remapping. After dispersal, the
next step in preparing incoming instructions
for execution involves implementing the reg-
ister stacking and rotation functions.

32

ITANIUM PROCESSOR

IEEE MICRO

Table 1. Instruction bundles capable of

full-bandwidth dispersal.

First bundle* Second bundle

MIH MLI, MFI, MIB, MBB, or MFB
MFI or MLI MLI, MFI, MIB, MBB, BBB, or MFB
MII MBB, BBB, or MFB
MMI BBB
MFH MII, MLI, MFI, MIB, MBB, MFB

* B slots support branches and branch hints.

* H designates a branch hint operation in the B slot.

Register stacking is an IA-64 technique that
significantly reduces function call and return
overhead. It ensures that all procedural input
and output parameters are in specific register
locations, without requiring the compiler to
perform register-register or memory-register
moves. On procedure calls, a fresh register
frame is simply stacked on top of existing
frames in the large register file, without the
need for an explicit save of the caller’s registers.
This enables low-overhead procedure calls,
providing significant performance benefit on
codes that are heavy in calls and returns, such
as those in object-oriented languages.

Register rotation is an IA-64 technique that
allows very low overhead, software-pipelined
loops. It broadens the applicability of com-
piler-driven software pipelining to a wide vari-
ety of integer codes. Rotation provides a form
of register renaming that allows every itera-
tion of a software-pipelined loop to have a
fresh copy of loop variables. This is accom-
plished by accessing the registers through an
indirection based on the iteration count.

Both stacking and rotation require the
hardware to remap the register names. This
remapping translates the incoming virtual reg-
ister specifiers onto outgoing physical register
specifiers, which are then used to perform the
actual lookup of the various register files.
Stacking can be thought of as simply adding
an offset to the virtual register specifier. In a
similar fashion, rotation can also be viewed as
an offset-modulo add. The remapping func-
tion supports both stacking and rotation for
the integer register specifiers, but only register
rotation for the floating-point and predicate
register specifiers.

The Itanium processor efficiently supports
the register remapping for both register stack-
ing and rotation with a set of adders and mul-
tiplexers contained in the pipeline’s REN
stage. The stacking logic requires only one 7-
bit adder for each specifier, and the rotation
logic requires either one (predicate or float-
ing-point) or two (integer) additional 7-bit
adders. The extra adder on the integer side is
needed due to the interaction of stacking with
rotation. Therefore, for full six-syllable exe-
cution, a total of ninety-eight 7-bit adders and
42 multiplexers implement the combination
of integer, floating-point, and predicate
remapping for all incoming source and desti-

nation registers. The total area taken by this
function is less than 0.25 square mm.

The register-stacking model also requires
special handling when software allocates more
virtual registers than are currently physically
available in the register file. A special state
machine, the register stack engine (RSE), han-
dles this case—termed stack overflow. This
engine observes all stacked register allocation
or deallocation requests. When an overflow is
detected on a procedure call, the engine silent-
ly takes control of the pipeline, spilling regis-
ters to a backing store in memory until
sufficient physical registers are available. In a
similar manner, the engine handles the con-
verse situation—termed stack underflow—
when registers need to be restored from a
backing store in memory. While these registers
are being spilled or filled, the engine simply
stalls instructions waiting on the registers; no
pipeline flushes are needed to implement the
register spill/restore operations.

Register stacking and rotation combine to
provide significant performance benefits for a
variety of applications, at the modest cost of
a number of small adders, an additional
pipeline stage, and control logic for a pro-
grammer-invisible register stack engine.

Large, multiported register files. The processor
provides an abundance of registers and execu-
tion resources. The 128-entry integer register
file supports eight read ports and six write
ports. Note that four ALU operations require
eight read ports and four write ports from the
register file, while pending load data returns
need two additional write ports (two returns
per cycle). The read and write ports can ade-
quately support two memory and two integer
instructions every clock. The IA-64 instruc-
tion set includes a feature known as postin-
crement. Here, the address register of a
memory operation can be incremented as a
side effect of the operation. This is supported
by simply using two of the four ALU write
ports. (These two ALUs and write ports would
otherwise have been idle when memory oper-
ations are issued off their ports).

The floating-point register file also consists
of 128 registers, supports double extended-
precision arithmetic, and can sustain two
memory ports in parallel with two multiply-
accumulate units. This combination of

33SEPTEMBER–OCTOBER 2000

resources requires eight read and four write
ports. The register write ports are separated
in even and odd banks, allowing each mem-
ory return to update a pair of floating-point
registers.

The other large register file is the predicate
register file. This register file has several
unique characteristics: each entry is 1 bit, it
has many read and write ports (15 reads/11
writes), and it supports a “broadside” read or
write of the entire register file. As a result, it
has a distinct implementation, as described
in the “Implementing predication elegantly”
section (next page).

High ILP execution core
The execution core is the heart of the EPIC

implementation. It supports data-speculative
and control-speculative execution, as well as
predicated execution and the traditional func-
tions of hazard detection and branch execu-
tion. Furthermore, the processor’s execution
core provides these capabilities in the context
of the wide execution width and powerful
instruction semantics that characterize the
EPIC design philosophy.

Stall-based scoreboard control strategy. As men-
tioned earlier, the frequency target of the Ita-
nium processor was governed by several key
timing paths such as the ALU plus bypass and
the two-cycle data cache. All of the control
paths within the core pipeline fit within the
given cycle time—detecting and dealing with
data hazards was one such key control path.

To achieve high performance, we adopted
a nonblocking cache with a scoreboard-based
stall-on-use strategy. This is particularly valu-
able in the context of speculation, in which
certain load operations may be aggressively
boosted to avoid cache miss latencies, and the

resulting data may potentially not be con-
sumed. For such cases, it is key that 1) the
pipeline not be interrupted because of a cache
miss, and 2) the pipeline only be interrupted
if and when the unavailable data is needed.

Thus, to achieve high performance, the
strategy for dealing with detected data haz-
ards is based on stalls—the pipeline only stalls
when unavailable data is needed and stalls
only as long as the data is unavailable. This
strategy allows the entire processor pipeline
to remain filled, and the in-flight dependent
instructions to be immediately ready to con-
tinue as soon as the required data is available.
This contrasts with other high-frequency
designs, which are based on flushing and
require that the pipeline be emptied when a
hazard is detected, resulting in reduced per-
formance. On the Itanium processor, innov-
ative techniques reap the performance benefits
of a stall-based strategy and yet enable high-
frequency operation on this wide machine.

The scoreboard control is also enhanced to
support predication. Since most operations
within the IA-64 instruction set architecture
can be predicated, either the producer or the
consumer of a given piece of data may be nul-
lified by having a false predicate. Figure 7 illus-
trates an example of such a case. Note that if
either the producer or consumer operation is
nullified via predication, there are no hazards.
The processor scoreboard therefore considers
both the producer and consumer predicates,
in addition to the normal operand availabili-
ty, when evaluating whether a hazard exists.
This hazard evaluation occurs in the REG
(register read) pipeline stage.

Given the high frequency of the processor
pipeline, there’s not sufficient time to both
compute the existence of a hazard, and effect a
global pipeline stall in a single clock cycle.
Hence, we use a unique deferred-stall strategy.
This approach allows any dependent consumer
instructions to proceed from the REG into the
EXE (execute) pipeline stage, where they are
then stalled—hence the term deferred stall.

However, the instructions in the EXE stage
no longer have read port access to the register
file to obtain new operand data. Therefore, to
ensure that the instructions in the EXE stage
procure the correct data, the latches at the start
of the EXE stage (which contain the source
data values) continuously snoop all returning

34

ITANIUM PROCESSOR

IEEE MICRO

Clock 1: cmp.eq rl,r2 → pl, p3 Compute predicates P1, P3
cmp.eq r3, r4 → p2, p4;; Compute predicates P2,P4

Clock 2: (p1) ld4 [r3] → r4;; Load nullified if P1=False
(Producer nullification)

ClockN: (p4) add r4, r1 → r5 Add nullified if P4=False
(Consumer nullification)

Note that a hazard exists only if
(a) p1=p2=true AND
(b) the r4 result is not available when the add collects its source data

Figure 7. Predicated producer-consumer dependencies.

data values, intercepting any data that the
instruction requires. The logic used to per-
form this data interception is identical to the
register bypass network used to collect
operands for instructions in the REG stage.
By noting that instructions observing a
deferred stall in the REG stage don’t require
the use of the bypass network, the EXE stage
instructions can usurp the bypass network for
the deferred stall. By reusing existing register
bypass hardware, the deferred stall strategy is
implemented in an area-efficient manner.
This allows the processor to combine the ben-
efits of high frequency with stall-based
pipeline control, thereby precluding the
penalty of pipeline flushes due to replays on
register hazards.

Execution resources. The processor provides an
abundance of execution resources to exploit
ILP. The integer execution core includes two
memory and two integer ports, with all four
ports capable of executing arithmetic, shift-
and-add, logical, compare, and most integer
SIMD multimedia operations. The memory
ports can also perform load and store opera-
tions, including loads and stores with postin-
crement functionality. The integer ports add
the ability to perform the less-common inte-
ger instructions, such as test bit, look for zero
byte, and variable shift. Additional uncom-
mon instructions are also implemented on
only the first integer port.

See the earlier sidebar for a full enumera-
tion of the per-port capabilities and associat-
ed instruction latencies on the processor. In
general, we designed the method used to map
instructions onto each port to maximize over-
all performance, by balancing the instruction
frequency with the area and timing impact of
additional execution resources.

Implementing predication elegantly. Predication
is another key feature of the IA-64 architec-
ture, allowing higher performance by elimi-
nating branches and their associated
misprediction penalties.5 However, predica-
tion affects several key aspects of the pipeline
design. Predication turns a control depen-
dency (branching on the condition) into a
data dependency (execution and forwarding
of data dependent upon the value of the pred-
icate). If spurious stalls and pipeline disrup-

tions get introduced during predicated exe-
cution, the benefit of branch misprediction
elimination will be squandered. Care was
taken to ensure that predicates are imple-
mented transparently in the pipeline.

The basic strategy for predicated execution
is to allow all instructions to read the register
file and get issued to the hardware regardless
of their predicate value. Predicates are used to
configure the data-forwarding network, detect
the presence of hazards, control pipeline
advances, and conditionally nullify the exe-
cution and retirement of issued operations.
Predicates also feed the branching hardware.
The predicate register file is a highly multi-
ported structure. It is accessed in parallel with
the general registers in the REG stage. Since
predicates themselves are generated in the exe-
cution core (from compare instructions, for

35SEPTEMBER–OCTOBER 2000

IA-32 compatibility
Another key feature of the Itanium processor is its full support of the IA-32 instruction set

in hardware (see Figure A). This includes support for running a mix of IA-32 applications and
IA-64 applications on an IA-64 operating system, as well as IA-32 applications on an IA-32
operating system, in both uniprocessor and multiprocessor configurations. The IA-32 engine
makes use of the EPIC machine’s registers, caches, and execution resources. To deliver high
performance on legacy binaries, the IA-32 engine dynamically schedules instructions.1,2 The
IA-64 Seamless Architecture is defined to enable running IA-32 system functions in native
IA-64 mode, thus delivering native performance levels on the system functionality.

References
1. R. Colwell and R. Steck, “A 0.6µm BICMOS Microprocessor with Dynamic

Execution,” Proc. Int’l Solid-State Circuits Conf., IEEE Press, Piscataway, N.J.,
1995, pp. 176-177.

2. D. Papworth, “Tuning the Pentium Pro Microarchitecture,” IEEE Micro,
Mar./Apr. 1996, pp. 8-15.

IA-32 instruction
fetch and decode

IA-32 dynamic
and scheduler

IA-32 retirement
and exceptions

Shared
instruction cache

and TLB

Shared
IA-64

execution
core

Figure A. IA-32 compatibility microarchitecture.

example) and may be in flight when they’re
needed, they must be forwarded quickly to
the specific hardware that consumes them.

Note that predication affects the hazard
detection logic by nullifying either data pro-
ducer or consumer instructions. Consumer
nullification is performed after reading the
predicate register file (PRF) for the predicate
sources of the six instructions in the REG
pipeline stage. Producer nullification is per-
formed after reading the predicate register file
for the predicate sources for the six instruc-
tions in the EXE stage.

Finally, three conditional branches can be
executed in the DET pipeline stage; this
requires reading three additional predicate
sources. Thus, a total of 15 read ports are
needed to access the predicate register file.
From a write port perspective, 11 predicates
can be written every clock: eight from four
parallel integer compares, two from a float-
ing-point compare, and one via the stage pred-
icate write feature of loop branches. These
read and write ports are in addition to a broad-
side read and write capability that allows a sin-
gle instruction to read or write the entire
64-entry predicate register into or from a sin-
gle 64-bit integer register. The predicate reg-
ister file is implemented as a single 64-bit latch
with 15 simple 64:1 multiplexers being used
as the read ports. Similarly, the 11 write ports
are efficiently implemented, with each being
a 6:64 decoder, with an AND-OR structure
used to update the actual predicate register file
latch. Broadside reads and writes are easily
implemented by reading or writing the con-
tents of the entire 64 bit latch.

In-flight predicates must be forwarded
quickly after generation to the point of con-

sumption. The costly bypass
logic that would have been
needed for this is eliminated
by taking advantage of the
fact that all predicate-writing
instructions have determinis-
tic latency. Instead, a specula-
tive predicate register file
(SPRF) is used and updated
as soon as predicate data is
computed. The source pred-
icate of any dependent
instruction is then read
directly from this register file,

obviating the need for bypass logic. A sepa-
rate architectural predicate register file (APRF)
is only updated when a predicate-writing
instruction retires and is only then allowed to
update the architectural state.

In case of an exception or pipeline flush, the
SPRF is copied from the APRF in the shadow
of the flush latency, undoing the effect of any
misspeculative predicate writes. The combi-
nation of latch-based implementation and the
two-file strategy allow an area-efficient and
timing-efficient implementation of the high-
ly ported predicate registers.

Figure 8 shows one of the six EXE stage pred-
icates that allow or nullify data forwarding in
the data-forwarding network. The other five
predicates are handled identically. Predication
control of the bypass network is implemented
very efficiently by ANDing the predicate value
with the destination-valid signal present in con-
ventional bypass logic networks. Instructions
with false predicates are treated as merely not
writing to their destination register. Thus, the
impact of predication on the operand-
forwarding network is fairly minimal.

Optimized speculation support in hardware.
With minimal hardware impact, the Itanium
processor enables software to hide the latency
of load instructions and their dependent uses
by boosting them out of their home basic
block. This is termed speculation. To perform
effective speculation, two key issues must be
addressed. First, any exceptions that are detect-
ed must be deferrable until an operation’s
home basic block is encountered; this is termed
control speculation. Second, all stores between
the boosted load and its home location must
be checked for address overlap. If there is an

36

ITANIUM PROCESSOR

IEEE MICRO

=?
AND

S
ou

rc
e

by
pa

ss
m

ul
tip

le
xe

r

Register file data

Bypass forwarded data

"True" source data Added to support predication

Source RegID

Forwarded destination RegID

Forwarded instruction predicate

Bypass forwarded data

Figure 8. Predicated bypass control.

overlap, the latest store should forward the cor-
rect data; this is termed data speculation. The
Itanium processor provides effective support
for both forms of speculation.

In case of control speculation, normal
exception checks are performed for a control-
speculative load instruction. In the common
case, no exception is encountered, and there-
fore no special handling is required. On a
detected exception, the hardware examines
the exception type, software-managed archi-
tectural control registers, and page attributes
to determine whether the exception should be
handled immediately (such as for a TLB miss)
or deferred for future handling.

For a deferral, a special deferred exception
token called NaT (Not a Thing) bit is retained
for each integer register, and a special float-
ing-point value, called NaTVal and encoded
in the NaN space, is set for floating-point reg-
isters. This token indicates that a deferred
exception was detected. The deferred excep-
tion token is then propagated into result reg-
isters when any of the source registers indicates
such a token. The exception is reported when
either a speculation check or nonspeculative
use (such as a store instruction) consumes a
register that is flagged with the deferred excep-
tion token. In this way, NaT generation lever-
ages traditional exception logic simply, and
NaT propagation uses straightforward data
path logic.

The existence of NaT bits and NaTVals also
affect the register spill-and-fill logic. For
explicit software-driven register spills and fills,
special move instructions (store.spill and
load.fill) are supported that don’t take excep-
tions when encountering NaT’ed data. For
floating-point data, the entire data is simply
moved to and from memory. For integer data,
the extra NaT bit is written into a special reg-
ister (called UNaT, or user NaT) on spills, and
is read back on the load.fill instruction. The
UNaT register can also be written to memo-
ry if more than 64 registers need to be spilled.
In the case of implicit spills and fills generat-
ed by the register save engine, the engine col-
lects the NaT bits into another special register
(called RNaT, or register NaT), which is then
spilled (or filled) once for every 64 register save
engine stores (or loads).

For data speculation, the software issues an
advanced load instruction. When the hard-

ware encounters an advanced load, it places
the address, size, and destination register of
the load into the ALAT structure. The ALAT
then observes all subsequent explicit store
instructions, checking for overlaps of the valid
advanced load addresses present in the ALAT.
In the common case, there’s no match, the
ALAT state is unchanged, and the advanced
load result is used normally. In the case of an
overlap, all address-matching advanced loads
in the ALAT are invalidated.

After the last undisambiguated store prior
to the load’s home basic block, an instruction
can query the ALAT and find that the
advanced load was matched by an interven-
ing store address. In this situation recovery is
needed. When only the load and no depen-
dent instructions were boosted, a load-check
(ld.c) instruction is used, and the load
instruction is reissued down the pipeline, this
time retrieving the updated memory data. As
an important performance feature, the ld.c
instruction can be issued in parallel with
instructions dependent on the load result
data. By allowing this optimization, the crit-
ical load uses can be issued immediately,
allowing the ld.c to effectively be a zero-cycle
operation. When the advanced load and its
dependent uses were boosted, an advanced
check-load (chk.a) instruction traps to a user-
specified handler for a special fix-up code that
reissues the load instruction and the opera-
tions dependent on the load. Thus, support
for data speculation was added to the pipeline

37SEPTEMBER–OCTOBER 2000

With minimal hardware

impact, the Itanium processor

enables software to hide the

latency of load instructions

and their dependent uses by

boosting them out of their

home basic block.

38

ITANIUM PROCESSOR

IEEE MICRO

The FPU in the processor is quite advanced. The native 82-bit hard-
ware provides efficient support for multiple numeric programming mod-
els, including support for single, double, extended, and
mixed-mode-precision computations. The wide-range 17-bit exponent
enables efficient support for extended-precision library functions as well
as fast emulation of quad-precision computations. The large 128-entry
register file provides adequate register resources. The FPU execution
hardware is based on the floating-point multiply-add (FMAC) primitive,
which is an effective building block for scientific computation.1 The
machine provides execution hardware for four double-precision or eight
single-precision flops per clock. This abundant computation bandwidth
is balanced with adequate operand bandwidth from the registers and
memory subsystem. With judicious use of data prefetch instructions, as
well as cache locality and allocation management hints, the software can
effectively arrange the computation for sustained high utilization of the
parallel hardware.

FMAC units
The FPU supports two fully pipelined, 82-bit FMAC units that can exe-

cute single, double, or extended-precision floating-point operations. This
delivers a peak of 4 double-precision flops/clock, or 3.2 Gflops at 800
MHz. FMAC units execute FMA, FMS, FNMA, FCVTFX, and FCVTXF oper-
ations. When bypassed to one another, the latency of the FMAC arith-
metic operations is five clock cycles.

The processor also provides support for executing two SIMD-floating-
point instructions in parallel. Since each instruction issues two single-
precision FMAC operations (or four single-precision flops), the peak
execution bandwidth is 8 single-precision flops/clock or 6.4 Gflops at 800
MHz. Two supplemental single-precision FMAC units support this com-
putation. (Since the read of an 82-bit register actually yields two single-
precision SIMD operands, the second operand in each case is peeled off
and sent to the supplemental SIMD units for execution.) The high com-
putational rate on single precision is especially suitable for digital con-
tent creation workloads.

The divide operation is done in software and can take advantage of
the twin fully pipelined FMAC hardware. Software-pipelined divide oper-

ations can yield high throughput on division and square-root operations
common in 3D geometry codes.

The machine also provides one hardware pipe for execution of FCMPs
and other operations (such as FMERGE, FPACK, FSWAP, FLogicals, recip-
rocal, and reciprocal square root). Latency of the FCMP operations is two
clock cycles; latency of the other floating-point operations is five clock
cycles.

Operand bandwidth
Care has been taken to ensure that the high computational bandwidth

is matched with operand feed bandwidth. See Figure B. The 128-entry
floating-point register file has eight read and four write ports. Every cycle,
the eight read ports can feed two extended-precision FMACs (each with
three operands) as well as two floating-point stores to memory. The four
write ports can accommodate two extended-precision results from the
two FMAC units and the results from two load instructions each clock.
To increase the effective write bandwidth into the FPU from memory, we
divided the floating-point registers into odd and even banks. This enables
the two physical write ports dedicated to load returns to be used to write
four values per clock to the register file (two to each bank), using two ldf-
pair instructions. The ldf-pair instructions must obey the restriction that
the pair of consecutive memory operands being loaded in sends one
operand to an even register and the other to an odd register for proper
use of the banks.

The earliest cache level to feed the FPU is the unified L2 cache (96
Kbytes). Two ldf-pair instructions can load four double-precision values
from the L2 cache into the registers. The latency of loads from this cache
to the FPU is nine clock cycles. For data beyond the L2 cache, the band-
width to the L3 cache is two double-precision operations/clock (one 64-
byte line every four clock cycles).

Obviously, to achieve the peak rating of four double-precision floating-point
operations per clock cycle, one needs to feed the FMACs with six operands
per clock. The L2 memory can feed a peak of four operands per clock. The
remaining two need to come from the register file. Hence, with the right
amount of data reuse, and with appropriate cache management strategies
aimed at ensuring that the L2 cache is well primed to feed the FPU, many

workloads can deliver sustained per-
formance at near the peak floating-
point operation rating. For data
without locality, use of the NT2 and
NTA hints enables the data to appear
to virtually stream into the FPU
through the next level of memory.

FPU and integer core
coupling

The floating-point pipeline is cou-
pled to the integer pipeline. Regis-
ter file read occurs in the REG stage,
with seven stages of execution

Floating-point feature set

4-Mbyte
L3

cache

L2
cache

Register
file

(128-entry,
82 bits)

2 stores/clock

2 double-
precision
ops/clock

6 × 82 bits

2 × 82 bits

4 double-
precision
ops/clock

(2 × ldf-pair)

Even

Odd

Figure B. FMAC units deliver 8 flops/clock.

in a straightforward manner, only needing
management of a small ALAT in hardware.

As shown in Figure 9, the ALAT is imple-
mented as a 32-entry, two-way set-associative
structure. The array is looked up based on the
advanced load’s destination register ID, and
each entry contains an advanced load’s phys-
ical address, a special octet mask, and a valid
bit. The physical address is used to compare
against subsequent stores, with the octet mask
bits used to track which bytes have actually
been advance loaded. These are used in case of
partial overlap or in cases where the load and
store are different sizes. In case of a match, the
corresponding valid bit is cleared. The later
check instruction then simply queries the
ALAT to examine if a valid ALAT entry still
exists for the ALAT.

The combination of a simple ALAT for the
data speculation, in conjunction with NaT
bits and small changes to the exception logic

for control speculation, eliminates the two
fundamental barriers that software has tradi-
tionally encountered when boosting instruc-
tions. By adding this modest hardware

39SEPTEMBER–OCTOBER 2000

extending beyond the REG stage, followed by floating-point write back.
Safe instruction recognition (SIR) hardware enables delivery of precise
exceptions on numeric computation. In the FP1 (or EXE) stage, an early exam-
ination of operands is performed to determine the possibility of numeric
exceptions on the instructions being issued. If the instructions are unsafe
(have potential for raising exceptions), a special form of hardware microre-
play is incurred. This mechanism enables instructions in the floating-point
and integer pipelines to flow freely in all situations in which no exceptions
are possible.

The FPU is coupled to the integer data path via transfer paths between
the integer and floating-point register files. These transfers (setf, getf)
are issued on the memory ports and made to look like memory operations
(since they need register ports on both the integer and floating-point reg-
isters). While setf can be issued on either M0 or M1 ports, getf can only
be issued on the M0 port. Transfer latency from the FPU to the integer
registers (getf) is two clocks. The latency for the reverse transfer (setf) is
nine clocks, since this operation appears like a load from the L2 cache.

We enhanced the FPU to support integer multiply inside the FMAC
hardware. Under software control, operands are transferred from the inte-
ger registers to the FPU using setf. After multiplication is complete, the
result is transferred to the integer registers using getf. This sequence
takes a total of 18 clocks (nine for setf, seven for fmul to write the regis-
ters, and two for getf). The FPU can execute two integer multiply-add
(XMA) operations in parallel. This is very useful in cryptographic appli-
cations. The presence of twin XMA pipelines at 800 MHz allows for over
1,000 decryptions per second on a 1,024-bit RSA using private keys (server-
side encryption/decryption).

FPU controls
The FPU controls for operating precision and rounding are derived from

the floating-point status register (FPSR). This register also contains the
numeric execution status of each operation. The FPSR also supports spec-
ulation in floating-point computation. Specifically, the register contains
four parallel fields or tracks for both controls and flags to support three par-
allel speculative streams, in addition to the primary stream.

Special attention has been placed on delivering high performance for
speculative streams. The FPU provides high throughput in cases where the
FCLRF instruction is used to clear status from speculative tracks before
forking off a fresh speculative chain. No stalls are incurred on such
changes. In addition, the FCHKF instruction (which checks for exceptions
on speculative chains on a given track) is also supported efficiently. Inter-
locks on this instruction are track-granular, so that no interlock stalls are
incurred if floating-point instructions in the pipeline are only targeting the
other tracks. However, changes to the control bits in the FPSR (made via
the FSETC instruction or the MOV GR→FPSR instruction) have a latency
of seven clock cycles.

FPU summary
The FPU feature set is balanced to deliver high performance across a

broad range of computational workloads. This is achieved through the
combination of abundant execution resources, ample operand bandwidth,
and a rich programming environment.

References
1. B.Olsson et al., “RISC System/6000 Floating-Point Unit,” IBM

RISC System/6000 Technology, IBM Corp., 1990, pp. 34-42.

16 sets
Way 0 Way 1

RegID tag

Physical address of adv load

Valid bit

RegID
[3:0]

(index)

Figure 9. ALAT organization.

support for speculation, the processor allows
the software to take advantage of the compil-
er’s large scheduling window to hide memo-
ry latency, without the need for complex
dynamic scheduling hardware.

Parallel zero-latency delay-executed branching.
Achieving the highest levels of performance
requires a robust control flow mechanism. The
processor’s branch-handling strategy is based
on three key directions. First, branch seman-
tics providing more program details are need-
ed to allow the software to convey complex
control flow information to the hardware. Sec-
ond, aggressive use of speculation and predi-
cation will progressively lead to an emptying
out of basic blocks, leaving clusters of branch-
es. Finally, since the data flow from compare to
dependent branch is often very tight, special
care needs to be taken to enable high perfor-
mance for this important case. The processor
optimizes across all three of these fronts.

The processor efficiently implements the
powerful branch vocabulary of the IA-64
instruction set architecture. The hardware takes
advantage of the new semantics for improved
branch handling. For example, the loop count
(LC) register indicates the number of iterations
in a For-type loop, and the epilogue count (EC)
register indicates the number of epilogue stages
in a software-pipelined loop.

By using the loop count information, high
performance can be achieved by software
pipelining all loops. Moreover, the imple-
mentation avoids pipeline flushes for the first
and last loop iterations, since the actual num-
ber of iterations is effectively communicated
to the hardware. By examining the epilog
count register information, the processor
automatically generates correct stage predi-
cates for the epilogue iterations of the soft-
ware-pipelined loop. This step leverages the
predicate-remapping hardware along with the
branch prediction information from the loop
count register-based branch predictor.

Unlike conventional processors, the Itani-
um processor can execute up to three parallel
branches per clock. This is implemented by
examining the three controlling conditions
(either predicates or the loop count/epilog
count counter values) for the three parallel
branches, and performing a priority encode
to determine the earliest taken branch. All side

effects of later instructions are automatically
squashed within the branch execution unit
itself, preventing any architectural state update
from branches in the shadow of a taken
branch. Given that the powerful branch pre-
diction in the front end contains tailored sup-
port for multiway branch prediction, minimal
pipeline disruptions can be expected due to
this parallel branch execution.

Finally, the processor optimizes for the com-
mon case of a very short distance between the
branch and the instruction that generates the
branch condition. The IA-64 instruction set
architecture allows a conditional branch to be
issued concurrently with the integer compare
that generates its condition code—no stop bit
is needed. To accommodate this important
performance optimization, the processor
pipelines the compare-branch sequence. The
compare instruction is performed in the
pipeline’s EXE stage, with the results being
known by the end of the EXE clock. To
accommodate the delivery of this condition to
the branch hardware, the processor executes
all branches in the DET stage. (Note that the
presence of the DET stage isn’t an overhead
needed solely from branching. This stage is
also used for exception collection and priori-
tization, and for the second clock of execution
for integer-SIMD operations.) Thus, any
branch issued in parallel with the compare that
generates the condition will be evaluated in
the DET stage, using the predicate results cre-
ated in the previous (EXE) stage. In this man-
ner, the processor can easily handle the case of
compare and dependent branches issued in
parallel.

As a result of branch execution in the DET
stage, in the rare case of a full pipeline flush
due to a branch misprediction, the processor
will incur a branch misprediction penalty of
nine pipeline bubbles. Note that we expect
this to occur rarely, given the aggressive mul-
titier branch prediction strategy in the front
end. Most branches should be predicted cor-
rectly using one of the four progressive resteers
in the front end.

The combination of enhanced branch
semantics, three-wide parallel branch execu-
tion, and zero-cycle compare-to-branch laten-
cy allows the processor to achieve high
performance on control-flow-dominated
codes, in addition to its high performance on

40

ITANIUM PROCESSOR

IEEE MICRO

more computation-oriented data-flow-dom-
inated workloads.

Memory subsystem
In addition to the high-performance core,

the Itanium processor provides a robust cache
and memory subsystem, which accommo-
dates a variety of workloads and exploits the
memory hints of the IA-64 ISA.

Three levels of on-package cache
The processor provides three levels of on-

package cache for scalable performance across
a variety of workloads. At the first level, instruc-
tion and data caches are split, each 16 Kbytes
in size, four-way set-associative, and with a 32-
byte line size. The dual-ported data cache has
a load latency of two cycles, is write-through,
and is physically addressed and tagged. The L1
caches are effective on moderate-size workloads
and act as a first-level filter for capturing the
immediate locality of large workloads.

The second cache level is 96 Kbytes in size,
is six-way set-associative, and uses a 64-byte
line size. The cache can handle two requests per
clock via banking. This cache is also the level at
which ordering requirements and semaphore
operations are implemented. The L2 cache uses
a four-state MESI (modified, exclusive, shared,
and invalid) protocol for multiprocessor coher-
ence. The cache is unified, allowing it to ser-
vice both instruction and data side requests
from the L1 caches. This approach allows opti-
mal cache use for both instruction-heavy (serv-
er) and data-heavy (numeric) workloads. Since
floating-point workloads often have large data
working sets and are used with compiler opti-
mizations such as data blocking, the L2 cache
is the first point of service for floating-point
loads. Also, because floating-point performance
requires high bandwidth to the register file, the
L2 cache can provide four double-precision
operands per clock to the floating-point regis-

ter file, using two parallel floating-point load-
pair instructions.

The third level of on-package cache is 4
Mbytes in size, uses a 64-byte line size, and is
four-way set-associative. It communicates
with the processor at core frequency (800
MHz) using a 128-bit bus. This cache serves
the large workloads of server- and transaction-
processing applications, and minimizes the
cache traffic on the frontside system bus. The
L3 cache also implements a MESI protocol
for microprocessor coherence.

A two-level hierarchy of TLBs handles vir-
tual address translations for data accesses. The
hierarchy consists of a 32-entry first-level and
96-entry second-level TLB, backed by a hard-
ware page walker.

Optimal cache management
To enable optimal use of the cache hierar-

chy, the IA-64 instruction set architecture
defines a set of memory locality hints used for
better managing the memory capacity at spe-
cific hierarchy levels. These hints indicate the
temporal locality of each access at each level of
hierarchy. The processor uses them to deter-
mine allocation and replacement strategies for
each cache level. Additionally, the IA-64 archi-
tecture allows a bias hint, indicating that the
software intends to modify the data of a given
cache line. The bias hint brings a line into the
cache with ownership, thereby optimizing the
MESI protocol latency.

Table 2 lists the hint bits and their mapping
to cache behavior. If data is hinted to be non-
temporal for a particular cache level, that data
is simply not allocated to the cache. (On the L2
cache, to simplify the control logic, the proces-
sor implements this algorithm approximately.
The data can be allocated to the cache, but the
least recently used, or LRU, bits are modified
to mark the line as the next target for replace-
ment.) Note that the nearest cache level to feed

41SEPTEMBER–OCTOBER 2000

Table 2. Implementation of cache hints.

Hint Semantics L1 response L2 response L3 response

NTA Nontemporal (all levels) Don’t allocate Allocate, mark as next replace Don’t allocate
NT2 Nontemporal (2 levels) Don’t allocate Allocate, mark as next replace Normal allocation
NT1 Nontemporal (1 level) Don’t allocate Normal allocation Normal allocation
T1 (default) Temporal Normal allocation Normal allocation Normal allocation
Bias Intent to modify Normal allocation Allocate into exclusive state Allocate into exclusive state

the floating-point unit is the L2 cache. Hence,
for floating-point loads, the behavior is modi-
fied to reflect this shift (an NT1 hint on a float-
ing-point access is treated like an NT2 hint on
an integer access, and so on).

Allowing the software to explicitly provide
high-level semantics of the data usage pattern
enables more efficient use of the on-chip
memory structures, ultimately leading to
higher performance for any given cache size
and access bandwidth.

System bus
The processor uses a multidrop, shared sys-

tem bus to provide four-way glueless multi-
processor system support. No additional bridges
are needed for building up to a four-way sys-
tem. Systems with eight or more processors are
designed through clusters of these nodes using
high-speed interconnects. Note that multidrop
buses are a cost-effective way to build high-per-
formance four-way systems for commercial
transaction processing and e-business work-
loads. These workloads often have highly shared
writeable data and demand high throughput
and low latency on transfers of modified data
between caches of multiple processors.

In a four-processor system, the transaction-
based bus protocol allows up to 56 pending
bus transactions (including 32 read transac-
tions) on the bus at any given time. An
advanced MESI coherence protocol helps in
reducing bus invalidation transactions and in
providing faster access to writeable data. The
cache-to-cache transfer latency is further
improved by an enhanced “defer mechanism,”
which permits efficient out-of-order data
transfers and out-of-order transaction com-

pletion on the bus. A deferred transaction on
the bus can be completed without reusing the
address bus. This reduces data return latency
for deferred transactions and efficiently uses
the address bus. This feature is critical for scal-
ability beyond four-processor systems.

The 64-bit system bus uses a source-syn-
chronous data transfer to achieve 266-Mtrans-
fers/s, which enables a bandwidth of 2.1
Gbytes/s. The combination of these features
makes the Itanium processor system a scalable
building block for large multiprocessor sys-
tems.

The Itanium processor is the first IA-64
processor and is designed to meet the

demanding needs of a broad range of enter-
prise and scientific workloads. Through its use
of EPIC technology, the processor funda-
mentally shifts the balance of responsibilities
between software and hardware. The software
performs global scheduling across the entire
compilation scope, exposing ILP to the hard-
ware. The hardware provides abundant exe-
cution resources, manages the bookkeeping
for EPIC constructs, and focuses on dynam-
ic fetch and control flow optimizations to keep
the compiled code flowing through the
pipeline at high throughput. The tighter cou-
pling and increased synergy between hardware
and software enable higher performance with
a simpler and more efficient design.

Additionally, the Itanium processor deliv-
ers significant value propositions beyond just
performance. These include support for 64
bits of addressing, reliability for mission-crit-
ical applications, full IA-32 instruction set
compatibility in hardware, and scalability
across a range of operating systems and mul-
tiprocessor platforms. MICRO

References
1. L. Gwennap, “Merced Shows Innovative

Design,” Microprocessor Report, Micro-
Design Resources, Sunnyvale, Calif., Oct. 6,
1999, pp. 1, 6-10.

2. M.S. Schlansker and B.R. Rau, “EPIC:
Explicitly Parallel Instruction Computing,”
Computer, Feb. 2000, pp. 37-45.

3. T.Y. Yeh and Y.N. Patt, “Two-Level Adaptive
Training Branch Prediction,” Proc. 24th Ann.
Int’l Symp. Microarchitecture, ACM Press,
New York, Nov. 1991, pp. 51-61.

42

ITANIUM PROCESSOR

IEEE MICRO

The Itanium processor is the

first IA-64 processor and is

designed to meet the

demanding needs of a broad

range of enterprise and

scientific workloads.

4. L. Gwennap, “New Algorithm Improves
Branch Prediction,” Microprocessor Report,
Mar. 27, 1995, pp. 17-21.

5. B.R. Rau et al., “The Cydra 5 Departmental
Supercomputer: Design Philosophies,
Decisions, and Trade-Offs,” Computer, Jan.
1989, pp. 12-35.

Harsh Sharangpani was Intel’s principal
microarchitect on the joint Intel-HP IA-64
EPIC ISA definition. He managed the
microarchitecture definition and validation of
the EPIC core of the Itanium processor. He
has also worked on the 80386 and i486 proces-
sors, and was the numerics architect of the Pen-
tium processor. Sharangpani received an
MSEE from the University of Southern Cali-
fornia, Los Angeles and a BSEE from the Indi-
an Institute of Technology, Bombay. He holds
20 patents in the field of microprocessors.

Ken Arora was the microarchitect of the exe-
cution and pipeline control of the EPIC core
of the Itanium processor. He participated in
the joint Intel/HP IA-64 EPIC ISA definition
and helped develop the initial IA-64 simula-
tion environment. Earlier, he was a designer
and architect on the i486 and Pentium proces-
sors. Arora received a BS degree in computer
science and a master’s degree in electrical engi-
neering from Rice University. He holds 12
patents in the field of microprocessor archi-
tecture and design.

Direct questions about this article to Harsh
Sharangpani, Intel Corporation, Mail Stop
SC 12-402, 2200 Mission College Blvd.,
Santa Clara, CA 95052; harsh.sharang-
pani@intel.com.

43SEPTEMBER–OCTOBER 2000

Career
Service
Center

• Certification

• Educational Activities

• Career Information

• Career Resources

• Student Activities

• Activities Board

http://computer.org

Career Service Center

Introducing the
IEEE Computer Society

Career Service Center

Advance your career

Search for jobs

Post a resume

List a job opportunity

Post your company’s profile

Link to career services

http://computer.org/careers/

