
Efficient Use of Memory Bandwidth to Improve Network Processor Throughput

Jahangir Hasan Satish Chandra1 T. N. Vijaykumar

School of Electrical and Computer Engineering
Purdue University

{hasanj,vijay}@ecn.purdue.edu

1India Research Lab
IBM Corporation

satishchandra@in.ibm.com

Abstract

We consider the efficiency of packet buffers used in packet
switches built using network processors (NPs). Packet buffers
are typically implemented using DRAM, which provides plen-
tiful buffering at a reasonable cost. The problem we ad-
dress is that a typical NP workload may be unable to uti-
lize the peak DRAM bandwidth. Since the bandwidth of
the packet buffer is often the bottleneck in the performance
of a shared-memory packet switch, inefficient use of avail-
able DRAM bandwidth further reduces the packet through-
put. Specialized hardware-based schemes that alleviate the
DRAM bandwith problem in high-end routers may be less
applicable to NP-based systems, in which cost is an impor-
tant consideration.

In this paper, we propose cost-effective ways to enhance
average-case DRAM bandwidth. In modern DRAMs, suc-
cessive accesses falling within the same DRAM row are sig-
nificantly faster than those falling across rows. If accesses
to DRAM can be generated differently or reordered to take
advantage of fast same-row accesses, peak DRAM band-
width can be approached. The challenge is in exploiting this
“row locality” despite the unpredictable nature of memory
accesses in NPs. We propose a set of simple techniques to
meet this challenge. These include locality-sensitive buffer
allocation on packet input, reordering DRAM accesses to in-
crease locality, and prefetching to reduce row miss penalty.
We evaluate our techniques on cycle-accurate simulations of
Intel’s IXP 1200 network processor and find that they boost
packet throughput on average by 42.7%, utilizing nearly the
peak DRAM bandwidth, for a set of common NP applica-
tions processing a real trace.

1 Introduction

Network processors (NPs), such as Intel’s IXP [9], IBM’s
PowerNP [7], and Motorola’s C-Port [2], are programm-
able microprocessors optimized for packet switches. Be-
cause NPs implement all packet processing in software, they
have cost and flexibility advantages over ASIC-based so-
lutions. An NP-based platform can be used generically to
provide a variety of packet processing functions, such as IP
forwarding, filtering, network address translation, metering
and policing, support for virtual private networks, protocol
translation, and others.

Packet switching platforms, including those built from
NPs, require significant amount of packet buffer space to
prevent congestive losses: typically IP routers have buffer
size of round-trip-time * line-rate, which amounts to sev-
eral megabytes of storage requirement (e.g., 40 ms * 2 Gbps

= 80 M bytes). DRAM technology provides such plentiful
buffering at reasonable cost. NPs hide DRAM latency by
using multithreading and multiple engines to process sev-
eral packets in parallel. Because handling of one packet is
largely independent of another, this multithreading success-
fully hides the packet buffer latency. However, because each
packet must be written to and read out of the packet buffer,
the buffer must also support high bandwidth—at least twice
the line rate to sustain peak operation. Therefore, DRAM
bandwidth is a key consideration in the design of packet
switching platforms [1].

In this paper, we consider packet buffers for NP-based
packet switches that target cost-effective performance rather
than the highest-end performance. A typical system may
use DRAM that can deliver 64 bits every cycle at 100 MHz
for a peak bandwidth of 6.4 Gbps, implying a peak packet
throughput of 3.2 Gbps. While the DRAM can be scaled
to deliver higher peak bandwidth, brute-force scaling incurs
not only substantially higher cost but also lower utilization.
The problem is that a typical NP workload may be unable
to utilize the peak DRAM bandwidth, resulting in poorer
packet throughput in the average case. The gap between
peak performance and average-case performance may be 25-
50%. Our goal is to improve average packet throughput via
efficient use of DRAM bandwidth in a cost-effective man-
ner.

Our key observation is that average packet throughput
can be improved by enhancing row locality in the packet
buffer accesses. Modern DRAMs exploit their wide, internal
organization and latch an entire row, e.g. 4K-bytes, of data
even if an access requires only a few, e.g., 8 bytes. DRAM
can supply data at substantially higher rates if subsequent
accesses fall within the latched row, than if the accesses go
to different rows. For example, a DRAM may deliver the
first 8 bytes of a row in 5 cycles, followed by a maximum of
8 bytes from that row every cycle. Assuming a cycle time
of 10 ns, the bandwidth reaches the peak of 6.4 Gbps only
if all 8-byte accesses go to the same row (i.e., 0% row miss
rate); if each access goes to a different row (i.e., 100% row
miss rate), the effective bandwidth is only 1.28 Gbps. An
NP with such a packet buffer can exploit row locality to a
modest extent by employing larger memory accesses. With
64-byte accesses, the system still incurs a 12.5% row miss
rate, delivering a DRAM bandwidth of 4.2 Gbps, and hence
packet throughput of 2.1 Gbps, 33% less than the theoretical
maximum.

It is difficult to exploit row locality to the fullest extent
while maintaining cost effectiveness. First, DRAM chips
typically have only a few, e.g. 4, internal row latches, re-
quiring most buffer accesses to fall within the handful of

rows. Adding more DRAM chips to increase the number of
row latches increases system cost. Second, row locality in
the sequence of DRAM accesses depends on the mapping
of packets to buffers and the order in which packets make
buffer accesses. Any scheme to increase row locality must
take into account (1) the interleaving of accesses due to the
NP’s multithreaded nature, and (2) the inherent variability
in the amount of processing, and time interval between in-
put and output, of a packet.

While graphics and vector processors exploit row local-
ity via streaming, these processors usually are not multi-
threaded, and typically handle regular, uniformly-sized data.
Because of interleaving of accesses, and variability in the
processing time per unit of input data, NPs do not lend them-
selves to streaming. Routers commonly use an SRAM cache
in front of the packet buffer in order to aggregate multi-
ple small accesses to a wide access [4, 11]. (This cache
is distinct from a general-purpose processor’s cache, whose
primary function instead is to exploit reuse of data and re-
duce traffic to DRAM.) The technique in [11] not only ag-
gregates small accesses into a wide access using an SRAM
cache, but also uses a wide array of DRAM banks, a wide
bus and a sophisticated lookahead mechanism to scale ag-
gregate DRAM bandwidth to match higher line rates. Be-
cause its goal is to guarantee a certain throughput for high-
end routers, [11] uses the extra hardware despite the costs,
and without concern for DRAM utilization. While network-
ing DRAMs [22] could provide high bandwidth, the cost of
these special-purpose DRAMs may be an issue for NP sys-
tems. Moreover, networking DRAMs also exploit row local-
ity, and can benefit from our techniques.

We present new, cost-effective techniques to improve the
utilization of existing DRAM bandwidth, without depend-
ing on an SRAM cache, without explicitly widening mem-
ory, and without deploying special-purpose memories. Our
techniques can be considered opportunistic rather than de-
terministic, as they improve row locality where opportunity
arises, but without giving any worst-case guarantees. Our
techniques include the following: (1) Allocation: While the
common practice of allocating buffer space from a pool of
64-byte units minimizes fragmentation, the buffer pool loses
row locality over time. We propose locality-sensitive alloca-
tion that attempts to allocate buffer space for contemporane-
ously arriving packets in the same row. (2) Access Reorder-
ing: To enhance row locality, we reorder DRAM references
such that accesses that are likely to go to the same row are
made consecutively in small groups (e.g., 4 accesses), with-
out being intervened by other accesses. We also generate
output-side accesses in an order that is more conducive to
exploiting row locality. (3) Prefetching: For the row misses
that occur despite our allocation and reordering, we perform
prefetching to overlap a row miss access with the preceding
access, if the two accesses go to different internal DRAM
banks.

An experimental evaluation of our techniques on a set
of common NP applications processing a real traffic trace
shows that they can increase row locality substantially, en-
abling nearly peak utilization of existing DRAM bandwidth.
Compared to a reference design based on the IXP 1200,
which assumes row misses are inevitable and optimizes for
reducing the cost of row misses, our techniques provide on

average about 42.7% higher packet throughput by reducing
the number of row misses. This comparison is representa-
tive in that many commercial NPs including the IBM Pow-
erNP [8] and the Motorola C-Port [3] similarly optimize for
row misses. The only hardware addition we assume is en-
largement of an existing buffer by 3K-bytes. Although our
experiments are based on the IXP 1200 for the sake of con-
creteness, our techniques and results are not specific to this
NP (see Section 5.4).

We also compare our techniques to the cache-based tech-
nique from [11], adapted for row locality. Because we are
aiming for high utilization at a low cost rather than guaran-
teed performance, our adaptation retains the SRAM cache
from [11] as the only additional hardware. Our results show
that opportunistic techniques perform comparably to the adap-
tation, without incurring the expense of an SRAM cache.

The paper makes the following contributions:

• We identify the root causes of the loss of row locality
in a typical NP workload.

• We perform a thorough quantitative analysis to show
that our techniques achieve significant gains by increas-
ing row hits in comparison to the alternative strategy of
optimizing for row misses.

• Our set of opportunistic techniques is the first to ad-
dress the bandwidth problem in packet buffers with-
out the use of an SRAM cache and without widening
memory.

The rest of the paper is organized as follows. Section 2
provides the necessary background material. Section 3 dis-
cusses in detail the challenges in exploiting row locality and
Section 4 describes the techniques we propose. Section 5
describes our experimental infrastructure and methodology.
It includes a description of the IXP 1200 and the software we
used. Section 6 presents the experimental results, and Sec-
tion 7 discusses related work. In Section 8 we draw some
conclusions.

2 Background on network processors

NPs are microprocessors designed specifically to build packet
switches [1, 15]. NPs present a close coupling of link-layer
interfaces with the processing engine, minimizing overhead;
unlike general microprocessors, no device driver is needed.
NPs use multiple execution engines–each of which is a mul-
tithreaded processor core to hide DRAM latency–to increase
their overall computing power. NPs may also contain hard-
ware support for hashing, CRC calculation, etc., not found
in typical microprocessors.

Figure 1 shows a schematic of an NP. For our purposes,
an NP consists of a set of multithreaded processing engines
connected to link-layer interfaces and to the packet buffer.
Additional storage is also present in the form of SRAM and
DRAM to store program data. In general, processing en-
gines are intended to carry out data-plane functions. Control-
plane functions could be implemented in a co-processor, or
a host processor. Multiple NPs may be combined to form a
distributed packet switch. At least three major NP offerings
fall in this broad architecture: IBM’s Power NP [7], Intel’s
IXP [9] and Motorola’s C-Port [2].

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

portsInput

SRAM

portsOutput

Multi−threaded Execution Units

Packet
buffer

Receive
buffers

Transmit
buffers

Co−Processor

Figure 1: Schematic diagram of a typical NP.

An NPs operation can be explained in terms of a repre-
sentative application: IP forwarding. (1) A thread on one of
the processing engines finds that a new packet has arrived in
the receive buffer of one of the input ports. (2) It reads the
packet’s header into its registers. (3) Based on the header
fields, it looks up a forwarding table to determine which
output queue the packet needs to go. Forwarding tables are
organized carefully for fast lookups [24], and are typically
stored in the high-speed SRAM. (4) The thread moves the
rest of the packet from the input interface to packet buffer.
It also writes a modified packet header in the buffer. (5) A
descriptor to the packet is placed in the target output queue,
which is another data structure stored in SRAM. (6) One or
more threads monitor the output ports and examine the out-
put queues. When a packet is scheduled to be sent out, a
thread transfers it from the packet buffer to the port’s trans-
mit buffer.

3 Problems in exploiting row locality

First, there are only a small number of row latches available,
as there typically are only 2 to 8 internal banks in a DRAM
chip. As a result, row locality is extremely fragile to main-
tain, because the probability of a random access falling on
a row that is not latched is high. Second, row locality in a
stream of DRAM accesses depends both on the assignment
of buffer addresses to packets in transit through the NP, and
on the order in which these packets make buffer accesses.
While one can exercise control over the former, the latter is
much more difficult to manage.

Consider the pattern of accesses to packet buffers gener-
ated by the IP forwarding application. Each incoming packet
p requires its own buffer space and is assigned one upon ar-
rival. During input processing, p initiates a write request Wp

to the address of its buffer. During output processing, p ini-
tiates a read request Rp to the same buffer address when it is
ready to be copied to the transmit buffer.

In the interval of time between Wp and Rp, some of the
packets arriving after p, denoted p+1, p+2, ..., will be written
to newly-allocated buffers, and some of the packets already
residing in buffers when p arrived, denoted q, q+1, ..., will
be read for output. At the time p is being input, some n-th
earlier packet p−n (denoted q for clarity) is being output; n

D C

E A

B

BA

CD

Eoutput
queues

input ports output
ports

Figure 2: Re-ordering of packets from input to output. The
size of boxes show relative packet sizes.

depends on the number of packets in transit in the NP and is
determined by the distribution of packet service times. To-
gether, the input and output sides initiate memory accesses
as an unpredictable interleaving of the two streams

... Wq ... Wp−2 ,Wp−1 ,Wp,Wp+1 ,Wp+2 ...

and
... Rq−2 , Rq−1 , Rq, Rq+1 , Rq+2 ... Rp ...

where Wp and Rq occur consecutively in the interleaving.
The upshot here is that it is difficult to assign buffers to
packets in such a way that the interleaved stream of mem-
ory accesses generated by the input and output sides will
predictably have row locality.

Even if we wish away the interleaving problem, there
is another major difficulty in achieving row locality. We
implicitly assumed in the previous paragraph that the order
in which packets depart the NP is the same as the order in
which they arrived. However, in reality there could be a sub-
stantial shuffling. See Figure 2. Suppose packets marked A
through E arrive as shown in the figure and allocate buffers
consecutively in the order A,B,C,D,E. We sequence in-
coming packets by the order in which they allocate their
buffers—which is the same order in which they initiate their
write requests. Let A be p, B be p+1, etc. Then, these pack-
ets generate the following stream of write requests:

Wp,Wp+1 ,Wp+2 ,Wp+3 ,Wp+4

Due to the variability in input-processing times—which
depends mostly on packet size—the order of events that each
of these packets get placed on an output queue is different
from the arrival order. Thus, the relative order of the events
of enqueuing of these packets could be B,C,A,D,E; we
emphasize relative because it is possible other packets be-
fore A or after E in sequence might also get enqueued in
between.

Because some of these packets may depart from the same
output port, and because different output queues may have
different occupancy at any instant, these five packets may
reach the heads of output queues in yet another relative or-
der: E,B,C,A,D. The stream of read requests they initiate
for departure is the following:

Rp+4 ... Rp+1 ... Rp+2 ... Rp ... Rp+3

which is substantially different from their write request stream;
ellipses denote possible intervening reads from other head-
of-queues in the general case.

If the output ports implement some QoS policy other
than FCFS, the packets’ QoS characteristics could cause even

more shuffling. The only constraint routers must follow is
that packets within each flow, e.g. C and D, must depart in
the order in which they arrived. The upshot here is that even
if we allocate buffers such that the input-side accesses have
row locality, there is little reason to expect row locality on
the output side, due to significant shuffling in the departure
order of packets.

4 An opportunistic approach

Given these problems, and given the limited degree of con-
trol we have—mapping packets to buffer addresses upon
their arrival—we propose the following opportunistic ap-
proach to exploiting row locality.

1. We allocate buffer space on arrival of packets in a way
that achieves good row locality at least on the input-
side processing of packets.

2. To counter interference, we reorder some DRAM ac-
cesses in a small window to take advantage of row lo-
cality when the opportunity arises.

3. To counter the effect of shuffling in the NP, we gen-
erate DRAM accesses on the output side in a slightly
modified order when the opportunity arises.

4. For situations in which we cannot improve row lo-
cality, we also propose a prefetching scheme at the
DRAM controller to reduce row miss penalty.

In the following discussion, we assume that all DRAM
references are accesses to the packet buffer. Otherwise, how-
ever carefully we manage row locality for accesses to the
packet buffer, there may be other data structures in DRAM
and accesses to those may interfere with packet buffer ac-
cesses. This assumption is reasonable because most NPs
today are equipped with either separate DRAM banks or
SRAM for such auxilliary data structures.

4.1 Contiguous allocation on input
Row locality from the perspective of input side can be max-
imized if packets p, p+1, p+2, ... are allocated buffers close
together in space and therefore are likely to write to the same
row. This means that we must allocate only as much space to
each packet as necessary, and allocate packets contiguously
in address space.

Many packet buffer management schemes use a fine-grain
approach and rely on a pool of available 64-byte “cells” to
avoid fragmentation in variable-size-packet traffic. An in-
coming packet procures just enough cells to store the en-
tire packet; these cells are freed upon transmit. With this
scheme, after a few allocations and de-allocations have taken
place, cells in the pool are likely to be randomized in terms
of their addresses, even if the pool was initially populated
with locality in mind. There is no guarantee of row locality
in cells allocated to packets arriving together.

In our linear allocation approach, we view buffer space
simply as one large array. We maintain a global allocation
frontier and allocate only the required amount of memory, in
granularity of 64-byte cells, simply by advancing the fron-
tier. By design, fragmentation is not a problem. When the
allocation frontier approaches the end of the buffer space, it

wraps around to the beginning. To deallocate a packet, we
partition the buffer space into 4K-byte pages, and maintain
counters that track the number of free 64-byte cells in each
page. When a packet departs, we increment the counter cor-
responding to the packet’s page. Returning discontiguous
pages to the free pool may incur significant processing over-
head. To avoid this overhead we do not reclaim an empty
page as soon as it becomes empty. Rather, we allow the
allocation frontier to wrap around and if the allocation fron-
tier finds the contiguously-first page to be empty, the page
is reclaimed and reused. If the page is not empty, allocation
does not skip over the page but instead waits for the page to
become empty.

It is possible that the allocation frontier stalls even though
some non-contiguous pages are empty. Packets belonging to
a slow-draining port can stall the allocation frontier, caus-
ing severe underutilization of the packet buffer memory. To
address this problem, we propose piece-wise linear alloca-
tion. This scheme is a middle-ground between the fine-grain
scheme, which has no underutilization problems but little
locality, and linear allocation, which has high locality but
severe underutilization problems. In piece-wise linear allo-
cation, we maintain a pool of moderate-size (e.g., 2K-byte)
pages, avoiding the fine-grain scheme’s locality problems.
At the same time, we avoid linear allocation’s underutiliza-
tion problems by returning a page to the free pool as soon as
it becomes empty. We retain the global allocation frontier,
except that it points to the start of free space in the most-
recently-allocated (MRA) page. For an incoming packet, we
allocate only the required amount of memory, similar to lin-
ear allocation. When a new packet cannot be fit in the space
remaining in the MRA page, a new page is allocated and the
allocation frontier is set to the first byte in the new page. For
deallocation, we maintain counters for each page, similar to
linear allocation.

Piece-wise linear allocation still has internal (i.e., within-
page) fragmentation problems, albeit less severe than the un-
derutilization problems of linear allocation. Fragmentation
and row-locality impose fundamentally conflicting require-
ments on the allocation scheme and it is hard to simultane-
ously fulfill both requirements.

One limitation of our techniques is that the software must
be able to extract a packet’s size from the packet header be-
fore allocation, a requirement not shared by fine-grain allo-
cation.

4.2 Batching to prevent interference
If the input/output interference is such that Wp and Rp−n

happen consecutively, it is likely that they access different
rows, because the allocation frontier from p−n to p can ad-
vance over several rows in general. We propose to serve
the stream of memory requests arriving at the DRAM’s con-
troller in a different order: service the stream of read re-
quests and the stream of write requests in small batches, ra-
ther than in the order in which they arrive.

It is convenient to assume two physical request queues
at the DRAM controller, one for read requests and one for
write requests. In fact, high-performance DRAM controllers
often have multiple request queues, e.g., a separate one for
each bank. The decision to switch from servicing reads
to servicing writes, or vice versa, depends on one of three

events, whichever occurs first: (1) The next element on the
current queue would definitely cause a row miss; (2) Some
k requests from that queue have been processed; (3) The
current queue becomes empty before k items have been han-
dled. Batching depends upon some amount of internal queu-
ing at various places inside the NP. We have found in our
experiments that a small value of k, e.g. 4, works well. If
a large value of k is chosen, it may either cause congestion
on input links or starve output links, degrading overall per-
formance; however with small batch sizes such issues do not
arise. Batching does not interfere with QoS, as it does not
alter the sequence of output events as dictated by the output
scheduler.

4.3 Blocked outputs for output locality
The order of read requests generated from the output side
depends on the output scheduler, which examines the out-
put ports, and then schedules packets from output queues to
be copied from the packet buffer over to a transmit buffer.
In order to serve output ports evenly, the output scheduler
must not permit a long packet to monopolize the read request
queue. Therefore, it schedules only a small, fixed-size “cell”
from a packet to be read at a time, which causes packets
from multiple queues to be read out from the packet buffer
in an interleaved fashion. By choosing a small cell size, only
a small amount of transmit buffer is needed in front of the
output ports.

The trouble with output scheduling as just described is
that there is no locality to be found across packets at the
heads of output queues, owing to shuffling (Section 3). Our
experiments (Section 6.5) show that packets at heads of out-
put queues can access so many rows that no permutation of a
“frontier” of read requests will have better row locality. The
only locality to be found on the output side is within the cells
that comprise a large packet.

In order to exploit this intra-packet locality, we propose
to modify the output scheduler so that it transfers up to a
block of t cells belonging to the current packet from the
packet buffer to transmit buffer. We also assume an increase
in the space available at the transmit buffer by a factor of t,
so that for each port, t cells can be read out from DRAM at a
time. With this change, we reduce the spread in the row ad-
dresses generated by the output side in any given window of
time, which enhances locality. Setting t to a small value, say
4, works well in practice (t = 1 in the original scheme), and
is also a reasonable increase in capacity (1K to 4K bytes).
A large value of t may have a detrimental effect on perfor-
mance, as it could lead to one of the output queues monopo-
lizing DRAM bandwidth at the expense of others; for small
t, this issue is not a concern. Blocked output does not in-
terfere with QoS: in essence, it creates a larger cell size and
any QoS policy should be oblivious to the cell size.

4.4 Precharging and prefetching
When a memory access is a row hit, only a column access
strobe (CAS) needs to be performed. However, upon a row
miss, a new row must be fetched into the row latch of the
accessed DRAM bank. First, the bank is precharged, then a
row access strobe (RAS) for the required row is performed.
DRAM controllers takes advantage of internal banking by

latchesr1

r1
r5

r6

r2 r3
r7r6

r4
r8

r4r11

Current access

Bank 1 Bank 2 Bank 3 Bank 4

rows

r6 r3 r5 r8

Case 2Case 1 Case 3

Precharge Bank 3
RAS Row 3

Switch to other queue
Precharge Bank 4

No action needed

RAS Row 8

Figure 3: Precharging and Prefetching. The cases shown
correspond to the three cases in the text, with left queue cur-
rent in each.

overlapping precharges of one bank with data transfers of
another. We present a DRAM controller policy that opti-
mizes performance assuming most accesses are row hits.

First, we precharge a bank lazily, when we know an im-
pending access is going to access another row in the bank
and a RAS is inevitable. By contrast, a DRAM controller
that optimizes for row misses might prefer eagerly precharg-
ing an idle bank, in anticipation that a future reference to
a row in that bank can have a smaller row miss servicing
time. That policy can be counter-productive if row hits are
expected—as we intend to be the case—because eager pre-
charge will have discarded the contents of the row latch even
if a subsequent access were to the latched row.

Second, we also issue the RAS to hide the RAS latency,
essentially prefetching the row into the row latch. To deter-
mine impending accesses, we exploit the fact that the DRAM
controller can examine the heads of read and write request
queues. As in batching, we maintain a single read and a sin-
gle write queue at equal priorities, but our strategy works
with or without batching.

When our DRAM controller processes the head item of
one of the queues, it dequeues the item and processes its
request. During the processing of that request, it also exam-
ines the new head of the same queue and performs one of
the following actions (See Figure 3):

1. If the address is to another bank, and the addressed row
is already latched, it does nothing further.

2. If the address is to the other bank, and the addressed
row is not latched, issue a precharge to that bank fol-
lowed by a RAS for that row.

3. If the address is a different row of the current bank,
or if the current request was the last in a batch of k
requests, then it peeks at the address to be requested
by the head item of the other queue. It performs steps
1 and 2 above for that address.

In the third case, even after switching to another queue, we
might incur a row miss. Since we assign rows to b banks

Qi
Head cache

Q
i

iQ
Tail cache

Packet Buffer
....

Figure 4: Caching the head and tail of each output queue.
The arrows denote a wide transfer of data. Only the i’th
queue is shown.

round robin, there is a 1/b chance the next address would
map to the current bank. Clearly, having more banks de-
creases the chance of a bank conflict preventing a prefetch.

For our DRAM configuration, the precharge and prefet-
ching actions outlined above can be completed by the con-
troller in the “delay slot” of an 8-CAS access, but may be
only partially completed under narrower accesses. When
they are not completed, the latency of the RAS is exposed
to the subsequent access.

4.5 Wide accesses via caching
Although a traditional SRAM cache in front of the packet
buffer is not helpful because of the streaming nature of NP
workloads, it is still possible to use a cache-like SRAM struc-
ture for widening accesses to the packet buffer. The scheme
presented in this section is derived from [11]. We have adap-
ted it as follows: (1) We exploit row locality in internal
banks rather than the original scheme’s parallel transfers from
multiple external banks, which incurs additional costs in mem-
ory and bus. (2) Unlike the original scheme, which intends
to satisfy deterministic bandwidth guarantees, we do not use
a lookahead buffer and we do not assume a hardware imple-
mented algorithm to make use of a lookahead buffer. These
changes are made to produce a relatively less expensive mem-
ory system, one that only improves the average case rather
than guarantee worst-case performance.

The idea behind this adaptation is to cache the prefix (or
tail end) and suffix (or head end) of each output queue sep-
arately in SRAM. When a newly arrived packet destined to
some output queue makes its write request to packet buffer,
the request is satisfied by storing packet data into that queue’s
prefix cache. When the space in the prefix cache dedicated
to a given queue is full, the set of consecutive cells from the
cache are written to the DRAM in a wide accesses. For this
approach to work, the packet buffer space for packets in each
output queue is allocated linearly. The output side works in
the same way. The read requests coming from the output
scheduler are serviced by the suffix cache, which is refilled
periodically from DRAM in a wide access. See Figure 4. If
the size of the prefix (or suffix) that is cached per queue is 4
cells of 64-byte each, then this technique essentially widens
DRAM accesses to 256 bytes, bringing down the miss rate
by a factor of 4.

The cost of the adaptation is the cost of the additional
SRAM cache. If the cache accomodates m cells per queue,
and there are q output queues, then storage of 2×m×q cells

is required [11]. For 64-byte cells, m = 4 and q = 16, this is
8K-bytes. If a system is designed for running multiple out-
put queues per port for QoS, the value of q could be much
larger; a realistic 8 queues per port implies q = 128 and
64K-bytes of SRAM cache. Adding a large SRAM cache
is significantly more expensive, either off-chip or on-chip,
than merely increasing the existing on-chip transmit buffer
by 3K-bytes. Because we rely only on intra-packet local-
ity, the transmit buffer increase is agnostic to the number of
output queues per port.

For DRAMs with internal banking, the prefetching op-
timization of Section 4.4 can be used in combination with
the cache-based scheme presented here. Section 6 presents
a quantitative comparison of our approach with the cache-
based scheme with and without prefetching.

5 Methodology

We use three common NP applications processing a real traf-
fic trace on an Intel IXP 1200. Although we base our eval-
uation on the IXP 1200, we believe that the IXP is repre-
sentative of commercial NPs in key architectural aspects, as
discussed in Section 5.4.

5.1 Hardware
The IXP 1200 consists of six 4-way multithreaded “micro-
engines” for traffic processing, a StrongARM core for control-
plane functions, a controller for off-chip SRAM, a controller
for off-chip DRAM, on-chip scratchpad memory, and re-
ceive and transmit “fifos”, which are receive and transmit
buffers that interface both with I/O ports and microengines.
Transfer of data between the fifos and DRAM, or between
the fifos and registers, is carried out explicitly by memory
instructions. For DRAM accesses, a single instruction can
transfer up to 64 bytes of data between fifo and DRAM, or
32 bytes between registers and DRAM; the smallest DRAM
access is an 8-byte quantity, which is the bus width on this
system. Typically, a memory instruction also switches con-
text to another thread to tolerate latency. We defer a descrip-
tion of IXP’s DRAM controller until Section 6.2.

5.2 Software
We use three representative NP applications for our exper-
iments: IP forwarding, network address translation (NAT),
and firewall. We briefly describe these applications pointing
out their similarities and dissimilarities.

We use L3fwd16, a sample IP forwarding software that
comes with an SDK provided by Intel [10]. This application
performs Layer 3 (IP) forwarding for 16 100-Mbps Ethernet
ports. Input and output processing in L3fwd16 closely fol-
lows the description in Section 2. In terms of packet buffer
accesses, for input of the first 64 bytes of a packet, it makes
a 32-byte write for the modified header and a 32-byte write
for the remaining cell. The rest of the packet is stored in 64-
byte writes (except possibly for the end-of-packet). On the
output side, reads from the packet buffer are all 64-byte wide
(except possibly for the end-of-packet). L3fwd16 maintains
a single FIFO queue per output port.

NAT translates network addresses for 2 1-Gbps ports. For
each packet, it computes an index using the source and des-
tination IP addresses, and the source and destination port

numbers. Using this index, it looks up a hash table to re-
trieve a replacement address and port. Unlike L3fwd16, NAT
needs to look up and modify the TCP header. Therefore,
the first 64 bytes are read into microengine registers, mod-
ified, and then written to the packet buffer, all in 2 32-byte
transfers. The rest of the packet is processed similarly to
L3fwd16. NAT differs from L3fwd16 in that (1) NAT dynam-
ically updates the hash table when TCP SYN or FIN packets
are encountered. Because the hash table resides in SRAM,
NAT generates many SRAM accesses. (2) Due to the NP’s
multithreading, the hash table updates have to be atomic, re-
quiring lock and unlock operations.

Firewall is also implemented for 2 1-Gbps ports. The
application first extracts values for various fields from the
packet headers and then walks through a list of templates
against which the values are matched. Based on the matches,
it decides whether to forward or drop the packet. For in-
stance, a firewall may be configured to drop packets with a
directed broadcast, or packets sent from a particular source.
A key feature distinct from the previous applications is that
the templates are stored in the NP’s SRAM as a linked list.
Firewall traverses this list for each packet, generating more
SRAM accesses than the other applications. In general, Fire-
wall performs more computation per packet than the other
applications considered.

All the applications dedicate the first four microengines
(16 threads) to input processing, mapping threads statically
to input ports, and the last two (8 threads) handle output pro-
cessing. In all the applications, buffer allocation is done by
popping from a shared stack of fixed-size, 2K-byte buffers;
IXP 1200 has hardware support for operations on a shared
stack that resides in SRAM.

5.3 Simulation infrastructure
We build on the IXP 1200 simulator provided with Intel’s
SDK. This execution-driven simulator models the details of
the IXP 1200 and provides cycle-accurate execution time
statistics. We disable the simulator’s DRAM module, and
plug in our own DRAM module to respond to the simula-
tor’s DRAM requests. Our DRAM module’s outputs are fed
back to the simulator in a timing-accurate manner. We have
validated our DRAM module against the simulator’s.

The NP applications executing on stock IXP 1200 are
compute bound—even if we improved DRAM bandwidth
via row locality, we would not see any improvements in
overall throughput. In the following table, we show the
utilization of the microengines, for L3fwd16, to justify this
claim.

Configuration Packet Size in bytes
(uEng/DRAM Mhz) 64 256 1K

200/100 uEng idle 8.0% 8.1% 8.1%
DRAM idle 13.4% 12.3% 11.0%

400/100 uEng idle 31.5% 31.0% 32.0%
DRAM idle 1.1% 1.2% 1.3%

We see that for various fixed packets sizes (based on a syn-
thetic trace), the system using processor clock of 200 MHz
and DRAM clock of 100 MHz is completely compute-bound.
However, when the processor speed is scaled up to 400MHz
and DRAM speed stays at 100 MHz, the system is no longer
compute-bound. Because processor speeds improve at a much

faster rate than memory speeds, we believe that future NPs
will be DRAM-bandwidth bound rather than compute bound.

In all our experiments, we simulate processor at 400MHz
and DRAM at 100 MHz. To ensure that any potential in-
crease in throughput we measure is not limited by finite
speed ports, but rather by the system’s processing speed, we
scale port speeds in the simulator so input threads always
have a packet available to process, similar to [23].

We use a real, edge-router traffic trace, IND-1027393425-
1.tsh from [18]. The average packet size for the is trace is
540 bytes. Our experiments forward tens of thousands of
packets, running the simulations for 24-hour periods.1 We
also did these experiments with a synthetic trace generated
by the Packmime tool [5] and found the results obtained to
be similar to those presented here.

5.4 Generality of our results
We argue that neither the problems in exploiting row local-
ity, nor our proposed solutions are specific to the IXP. The
basic premise of this paper is that NPs use DRAM for packet
buffering. This premise is true for all commercial NPs in-
cluding the Intel IXP 1200, IBM PowerNP [8], and Motorola
C-port [3]. Our claim is that exploiting row locality to im-
prove throughput is hard because NPs are multithreaded and
introduce shuffling and interleaving. This claim is also true
for all the above NPs. Our solutions involve allocation in
software, modifying the DRAM controller for batching and
prefetching, and lengthening the transmit fifo for blocked
output. All the above NPs do allocation in software, use
a DRAM controller to interface to the DRAM, and use the
equivalent of a transmit fifo to buffer parts of packets in be-
tween DRAM and the output ports.

We use a design based on the IXP 1200 as the reference
point for our results. The salient features of this design: dis-
tributing free buffer pools across odd and even banks of the
DRAM, and alternating between the odd and even banks for
DRAM requests to hide row misses, are common across the
IXP, the PowerNP and the C-Port. All these NPs assume
that row misses are inevitable and attempt to reduce the cost
of row misses, unlike our approach to reduce the number of
row misses.

6 Experimental Results

In all the experiments, we report packet throughput (and not
DRAM bandwidth) in Gbps (gigabits per second). Because
most inexpensive DRAMs have 2 to 4 internal banks, we
vary the number of banks as 2 and 4, with rows in our tables
marked “2 banks”, and “4 banks”. Because the impact of
each of our techniques in isolation is similar across our ap-
plications, we present a detailed analysis of our techniques
using L3fwd16. Then, we present overall results for NAT and
Firewall.

6.1 Opportunity
In the first experiment, we show the maximum achievable
packet throughput assuming perfect row locality. We con-
figured the memory simulator to return row hit timings for

1We ran some of these experiments for several days each, processing hundreds of
thousands of packet, and did not find any change in the relevant statistics.

all accesses, irrespective of reality. In Table 1, we compare
the IXP 1200 reference design, REF BASE, against an ide-
alized REF IDEAL endowed with all row hits. For the ideal
case with all row hits, the number of internal DRAM banks
is irrelevant, but we vary the number of banks for REF BASE.

Comparing REF BASE and REF IDEAL throughput impro-
ves by 46.2% with 2 banks and by 37.8% with 4 banks,
clearly showing the large scope for improvement enabled by
row locality. The improvements reduce from 2 to 4 banks as
may be expected, because 4 banks allow the system to hide
some of the row misses via eager precharges (Section 4.4).
The peak DRAM throughput allowed by the 100-MHz DRAM
with a 64-bit bus is 6.4 Gbps, corresponding to 3.2 Gbps
packet throughput. Thus, REF IDEAL uses 90%, and not
100%, of the DRAM’s peak bandwidth. To understand this
disparity, we ran the same experiments with the processor
scaled to 600 Mhz while keeping DRAM at 100 Mhz, and
obtained only 93.7% DRAM utilization. The scaled run es-
tablishes that the utilization is less than 100%, due not to
compute-boundedness but to imperfect computation-memory
overlap inherent to L3fwd16.

6.2 Baseline
Because REF BASE assumes row misses are inevitable and
optimizes for row misses, and we want to optimize for row
hits, we make three preparatory changes before applying our
techniques. OUR BASE is our starting design which includes
the preparatory changes, but not any of our techniques. In
the following sections, we evaluate our techniques on top
of OUR BASE, and not REF BASE. In this section, we show
that these preparatory changes do not give us any perfor-
mance advantage even before applying our techniques. Note
that REF BASE is not unique in optimizing for row misses,
the same optimizations are also advocated by the IBM Pow-
erNP [8] and the Motorola C-Port [3].

The three changes are: (1) REF BASE’s DRAM controller
partitions internal DRAM banks into odd and even. Input-
processing engines allocate buffer space alternately from odd
and even banks. The controller maintains separate queues
for requests to odd and even banks, and services the two
queues in strict alternation. While one bank is transferring
data in CAS cycles, an idle bank is precharged eagerly to
hide the precharge latency when it is accessed next. The
only exception to this eager precharge is if the DRAM con-
troller notices in time that the next access is in fact to the
bank’s latched row. This eager precharge policy is cho-
sen to work well in conjunction with the odd/even queues
when row misses are expected rather than row hits. In-
stead, OUR BASE combines the two pools into one and dis-
ables eager precharging to maximize row hits by increasing
the chances of buffers falling in the same row. (2) Apart
from the odd/even request queues, there is a third, higher-
priority queue that is always serviced in preference to the
odd/even queues. The output-side requests are handled at a
higher priority via the third queue. In contrast, OUR BASE
uses two non-prioritized queues–one for reads and the other
for writes–to facilitate batching. (3) OUR BASE maps rows
round-robin across banks (i.e., row x maps to bank i and
row x + 1 maps to bank i + 1). If contemporaneously arriv-
ing packets occupy multiple consecutive rows, the rows are
latched in their respective banks, allowing row hits to all the

Table 1: Packet Throughput (Gbps) of REF BASE vs. ideal
memory for L3fwd16

banks REF BASE REF IDEAL
2 1.97 2.88
4 2.09 2.88

Table 2: Packet Throughput (Gbps) of REF BASE vs.
OUR BASE for L3fwd16

banks REF BASE OUR BASE
2 1.97 1.93
4 2.09 2.05

rows without any contention. In contrast, REF BASE assigns
rows 1 through N/2 to odd banks, and rows N/2 through N to
even banks, to hide precharges by alternating between odd
and even banks.

In Table 2, we show the packet throughput achieved by
OUR BASE and REF BASE. We see that the two systems per-
form similarly in each case; our preparatory changes make
no difference.

6.3 Allocation
We show the impact of both our allocation schemes in this
experiment. REF BASE uses a fixed-size allocation of 2K-
byte buffers, irrespective of the incoming packet size. While
this fixed-size scheme enables fast allocation and deallo-
cation, and keeps buffer pool management simple, it frag-
ments memory, especially because small packets can con-
tribute 40% or more of real traffic. In view of this problem,
many routers use fine-grain allocation of 64-byte cells (see
Section 4.1).

In Table 3, we compare REF BASE using fixed-size allo-
cation against L ALLOC and P ALLOC which are OUR BASE
augmented with linear and piece-wise linear allocation, re-
spectively. We also show F ALLOC which uses fine-grain
allocation keeping everything else the same as REF BASE.
L ALLOC and P ALLOC should exploit row locality in at
least the input side; the output side is likely to be disrupted
by shuffling due to variability in packet sizes. There is also
likely to be some interference between the input and output
sides.

Comparing REF BASE against L ALLOC and P ALLOC,
we see that L ALLOC achieves packet throughput improve-
ments of 0.5% using 2 banks, and 8.1% using 4 banks, while
P ALLOC achieves improvements of 3% using 2 banks, and
7.6% using 4 banks. We do not see much improvements us-
ing 2 banks because the input side accesses touch almost
4 rows for L ALLOC and 5.6 rows for P ALLOC (see Ta-
ble 5), which causes thrashing in the 2 row-latches. With
4 banks, this problem is alleviated yielding higher improve-
ments. We see that P ALLOC is comparable to L ALLOC in
performance, but because piece-wise linear allocation has
better memory utilization behavior we use P ALLOC as the
allocation scheme for the following sections.

Comparing REF BASE and F ALLOC, we see that there
is little difference between the two. The fine-grain alloca-

Table 3: Packet Throughput (Gbps) of piece-wise linear al-
location for L3fwd16

banks REF BASE F ALLOC L ALLOC P ALLOC
2 1.97 1.89 1.98 2.03
4 2.09 2.04 2.26 2.25

Table 4: Packet Throughput (Gbps) of batching for L3fwd16

banks P ALLOC P ALLOC+BATCH
2 2.03 2.08
4 2.25 2.34

tor, over time, draws the chunks scattered throughout mem-
ory, as explained in Section 4.1. Hence, F ALLOC has poor
row locality like REF BASE. Therefore we continue to use
REF BASE, instead of F ALLOC, as our comparison point
in the following sections. Note that P ALLOC has neither
REF BASE’s fragmentation problem nor F ALLOC’s poor row
locality problem.

6.4 Batching
In Table 4, we compare P ALLOC against P ALLOC+BATCH
which augments P ALLOC with batching. Because batch-
ing tries to gather accesses together to increase row hits,
batching is meaningful only in the presence of our allocation
scheme. Therefore, we do not evaluate batching without our
allocation. We set the maximum batch size to be 4 (i.e., the
number k in Section 4.2 is 4). We expect batching to improve
upon our allocation by preventing the interference between
the input and output sides.

Comparing P ALLOC and P ALLOC+BATCH we see that
the 2-bank case does not gain as much from batching be-
cause of the input-side not fitting in 2 row latches, as men-
tioned in the previous section. The 4-bank case does not
have this problem, and P ALLOC+BATCH achieves a 4% im-
provement over P ALLOC.

In Figure 5, we show the effect of varying the maximum
batch size on the packet throughput (top line graph) and on
the observed batch size (bottom bar graph). Because the 2-
bank case does not appreciably improve by batching, we do
not plot this case in the figure, we plot only the 4-bank case.
The maximum batch size is defined as before (e.g., maxi-
mum batch size of 2 means upto 2 requests are batched).

1 2 84
Maximum Batch size

Pa
ck

et
th

ro
ug

hp
ut

2.24

2.32
2.28

2
1

3

O
bs

er
ve

d
ba

tc
h

si
ze

Read queue Write queue Packet throughput

Figure 5: Observed batch size and packet throughput vs.
maximum batch size for 4-banks

Table 5: Rows touched in a window of 16 references.

Rows touched INPUT OUTPUT
L ALLOC 3.9 11.4
P ALLOC 5.6 12.9

However, computing the observed batch size is a little more
involved: Because the transfers between the NP and DRAM
occur in a mix of different sizes (see Section 5.2) we use the
average transfer size as the unit of the observed batch size.
For our input trace, this average is 58.4 bytes.

From the top line graph, we see that the packet through-
put increases with maximum batch size as expected, peaks
at the maximum batch size of 4, and then drops. The bottom
bar graph explains this drop: The bar graph shows that while
the observed batch size for writes (input side) increases quic-
kly, the observed batch size for reads (output side) increases
slowly. The output side locality is poorer and frequent row
misses break up batches. At the maximum batch size of 8,
the disparity between input- and output-side batches causes
the input side to starve the output side of the DRAM band-
width, resulting in a drop in packet throughput.

6.5 Blocked output
Before we show the effectiveness of blocked output in alle-
viating shuffling at the output side, we show the extent of the
problem. In Table 5, we show the average number of unique
rows accessed by the input and output side requests, at any
given instant of time. We see that the output side touches
at least 11 rows, showing that the variability in the service
times of the packets takes its toll on the output-side local-
ity. Because DRAM accesses touch more than 11 rows at
the output side, our throughput in the last experiment (see
Table 4) remains far less than ideal, despite using batching.
(see Table 1).

To address the shuffling problem, we perform blocked
output of up to 4 64-byte cells from the DRAM to the trans-
mit buffer, and we assume the extra cells are buffered in a
transmit buffer 4-times deeper than that in REF BASE, as ex-
plained in Section 4.3. Using the deeper transmit buffer al-
lows blocked output to be done via 4 overlapped 64-byte
transfers, without any intervening handshake between the
transmit buffer and NP. However, in REF BASE because these
4 transfers occupy the same slot in the transmit buffer, these
transfers need to be serialized via explicit handshakes be-
tween the transmit buffer and the NP. Consequently, this
overlapping enables ideal throughput (i.e., all row hits) using
the deeper transmit buffer to be higher than that of REF IDEAL,
which uses a 1-cell transmit buffer in Section 6.2. Accord-
ingly, we simulate a new idealized case IDEAL++, in which
we use the deeper transmit buffer and all DRAM accesses
are row hits.

In Table 6, we compare PREV+BLOCK, which adds bloc-
ked output to P ALLOC+BATCH, against P ALLOC+BATCH
and IDEAL++. We see that PREV+BLOCK improves through-
put over P ALLOC+BATCH by as much as 25.9% and 18.8%
in the 2- and 4-bank cases, respectively. The disparity be-
tween the two cases is due to the input-side spread of 5.6

Table 6: Packet Throughput (Gbps) of blocked output for
L3fwd16

banks P ALLOC+BATCH PREV+BLOCK IDEAL++
2 2.08 2.62 3.19
4 2.34 2.78 3.19

1 2 4 8 16

2
4
6
8

2.2
2.4
2.6
2.8
3.0

Maximum batch size

Pa
ck

et
th

ro
ug

hp
ut

O
bs

er
ve

d
ba

tc
h

si
ze

4 banks 2 banks 4 banks 2 banks
Read queues Packet Throughput

2.0

Figure 6: Observed block size and packet throughput vs.
maximum block size for 2 and 4 banks

rows, as shown in Table 5. This spread implies that the prob-
ability of an output-side access contending for a bank with
an input-side latched row is higher in the case of 2 banks
than 4 banks. Blocked output reduces the frequency of out-
put side row misses, reducing the contention. Therefore, the
2-bank case shows a larger improvement than the 4-bank
case.

In Figure 6, we show the effect of varying the maximum
output block size on the packet throughput (top line graph)
and on the observed output batch size (bottom bar graph).
The maximum output block size (mob-size) is defined as
before (e.g., mob-size of 2 means upto 2 cells are blocked).
Mob-sizes of 8 and 16 use batch sizes of 8 and 16, respec-
tively, as using mob-size larger than the batch size is mean-
ingless. Similar to the previous section, we use the average
output-side transfer size as the unit of the observed output
batch size. For our input trace, this average is 60 bytes.

From the top line graphs, we see that the packet through-
put increases with mob-size as expected, and levels off at
8. Further increasing the mob size results in diminishing
returns because fewer and fewer packets in the traffic can
benefit from a larger mob size. The bottom bar graph shows
that the 4-bank case has larger observed output batch size
than the 2-bank case; the higher bank contention in the 2-
bank case breaks up output batches more often than in the
4-bank case. Although mob-size of 8 performs better than
4, we use 4 because of its lower cost. Mob-size of 8 requires
an 8KB transmit buffer, twice as large as that required by
mob-size of 4. We make up for the performance difference
via prefetching.

6.6 Prefetching
In this experiment, we evaluate the impact of prefetching. In
Table 7, we compare PREV+BLOCK against ALL+PF (shown
highlighted), which is PREV+BLOCK augmented with pre-
fetching.

We see that ALL+PF achieves 6.8% and 10.8% improve-

Table 7: Packet Throughput (Gbps) of prefetching for
L3fwd16

banks PREV+BLOCK ALL+PF PREV+PF
2 2.62 2.80 2.25
4 2.78 3.08 2.62

Table 8: Packet Throughput (Gbps) of our adaptation for
L3fwd16

banks ADAPT ADAPT+PF
2 2.76 2.89
4 2.84 3.05

ments over PREV+BLOCK for 2 and 4 banks, respectively.
The improvements are higher for 4 banks than for 2 banks
because the probability that the next access will go to differ-
ent bank than the current access is higher for 4 banks than
for 2 banks. By employing prefetching, the throughput ap-
proaches close to IDEAL++’s throughput for the 4-bank case
in Table 6. Thus, all our techniques put together approach
close to ideal throughput, showing that optimizing for row
hits works better than optimizing for misses.

We also show the improvements achieved without re-
quiring any extra hardware–specifically the deeper transmit
buffer of the blocked output optimization. The PREV+PF
column in Table 7 corresponds to P ALLOC+BATCH aug-
mented with prefetching. Compared to P ALLOC+BATCH
(in Table 4), PREV+PF achieves 8.17% and 11.9% improve-
ment using 2 and 4 banks, respectively.

6.7 Adaptation
Finally, we evaluate our adaptation of [11]. In Table 8, we
show ADAPT which is the adaptation using 16 queues in
each of the two SRAM caches at the input and output sides
of the NP. To match ALL+PF’s maximum batch size of 4,
ADAPT moves data between the SRAM caches and DRAM
in units of 4, 64-byte transfers. We also show ADAPT+PF
(highlighted) which is ADAPT augmented with our prefet-
ching. From the table, we see that ADAPT performs well,
exploiting the wide transfers enabled by the caches. While
ADAPT lags behind IDEAL++ in Table 6, ADAPT+PF closes
the gap, achieving throughputs similar to those of ALL+PF
in Table 7. Thus, we have shown that without using any ex-
tra SRAM caches, our opportunistic techniques achieve the
same performance as the adaptation.

6.8 NAT and firewall
Having presented a detailed analysis of our techniques using
L3fwd16, we present overall results for the NAT and Firewall
applications.

In Table 9 we show the throughput achieved by REF BASE,
ALL+PF, and ADAPT+PF for NAT. Compared to REF BASE,
ALL+PF applies all our techniques together and achieves
overall 39.3% and 41.3% performance gains for 2 and 4
banks, respectively. ADAPT+PF performs comparably to our
techniques with 39.8% and 40.8% improvements in through-
put over REF BASE for 2 and 4 banks, respectively.

Table 9: Packet Throughput (Gbps) for NAT

banks REF BASE ALL+PF ADAPT+PF
2 2.11 2.94 2.95
4 2.13 3.01 3.00

Table 10: Packet Throughput (Gbps) for Firewall

banks REF BASE ALL+PF ADAPT+PF
2 2.01 2.77 2.77
4 2.05 2.86 2.89

Table 10 shows the throughput achieved by REF BASE,
ALL+PF, and ADAPT+PF for Firewall. We see that the per-
formance gains of ALL+PF are 37.8% and 39.5% for 2 and
4 banks, respectively. ADAPT+PF performs comparably by
achieving 37.8% and 40.9% for 2 banks and 4 banks, respec-
tively.

6.9 Summary of results
We see that all our techniques put together achieve on aver-
age 42.7% improvement in packet throughput over REF BASE
for the three applications presented. In Table 11, we com-
pare the overall DRAM bandwidth utilized by REF BASE
and by ALL+PF. ALL+PF achieves 96%, 94% and 89% uti-
lization of available peak DRAM bandwidth, for the three
applications. In contrast, REF BASE achieves 65%, 66% and
64% utilization of the available DRAM bandwidth.

7 Related work

7.1 Software
Bux et al. [1] point out that NP memory bandwidth is the
key bottleneck in achieving high throughput. In a recent
paper [23], the authors examine the challenges in program-
ming NPs. They show that an IXP 1200-based, inexpen-
sive router can forward minimum-sized packets at a rate of
3.47 million packets per second. This rate is nearly an order
of magnitude higher than those of existing pure PC-based
routers. At less aggregate line speeds, they exploit the ex-
cess resources available on the IXP 1200 to be used robustly
for extra packet processing.

Using batching to avoid context switching overhead has
parallels in locality driven co-scheduling policies that have
been proposed for operating systems [16].

Table 11: DRAM bandwidth utilization for the three appli-
cations

L3fwd16 NAT Firewall
REF BASE 65% 66% 64%
ALL+PF 96% 94% 89%

7.2 Hardware
We have already made extensive comparisons to [11], which
presents a technique suited to high-end routers. The work
in [4] also uses an SRAM buffer to improve DRAM latency
in a shared-memory ATM switch.

Several papers have proposed DRAM row locality opti-
mizations in general-purpose computer systems [6, 17], and
media processors [21]. [17] and [21] optimize for bandwidth
by leveraging the fact that L2-cache blocks are large and
contiguous in general-purpose computers, and media appli-
cations access regular streams of data; NPs do not have L2
caches, and have inherently irregular access patterns due to
interference and shuffling. Other DRAMs, such as the Di-
rect Rambus DRAM (DRDRAM), also provide significantly
higher bandwidth for row hits than row misses, implying that
our optimizations work for these DRAMs as well. In [25],
the authors propose locality-aware hardware scheduling sche-
mes to reduce instruction cache misses in NP packet pro-
cessing. Katevenis [19] proposes an ASIC-based router which
uses DRAM to maintain per-flow queues for QoS purposes.
The paper employs out-of-order execution techniques to hide
DRAM latencies, and uses optimizations to avoid DRAM
bank conflicts.

7.3 Other packet processing architectures
Alternatives to a NP-based solution include a traditional PC-
based architecture [14] on the low end and a hardware-only
router on the high end. There are higher-end routers based
on commodity microprocessors [20]. A high-end hardware
router—albeit one with fixed functionality—can have a sub-
stantially higher forwarding capacity than an NP (see a de-
scription in [13]). In comparison to such routers—which
may be more appropriate for the backbone—growing de-
mand for functionality on the edge of the network might
favor an NP-based solution.

8 Conclusion

DRAM bandwidth is a key bottleneck to higher throughput
in network processors. Existing NP systems do not necessar-
ily make use of the peak DRAM bandwidth, which is avail-
able only when a majority of references to DRAM are row
hits.

We proposed a number of opportunistic techniques to in-
crease row locality and to also reduce the cost of row misses.
These techniques were: (1) Locality-sensitive, space-efficient
buffer allocation on packet input; (2) reducing input-output
interference at the DRAM controller by batching; (3) bloc-
ked transfers on packet output; and (4) reducing row miss
penalty by prefetching in multi-bank DRAMs. Unlike previ-
ous schemes which use SRAM caches to achieve high DRAM
bandwidth, our techniques better utilize the existing DRAM
bandwidth without incurring the expense of an SRAM cache,
wide memory, or special-purpose memory.

Our techniques, evaluated on a cycle accurate simulator
of the IXP 1200, improved throughput on average by 42.7%,
utilizing nearly peak DRAM bandwidth, for a set of com-
mon NP applications processing a real traffic trace. This
improvement is representative in that many commercial NPs
including the IBM PowerNP [8] and the Motorola C-Port [3]
share key DRAM-related features with the IXP 1200. The

higher throughput made available by our optimizations may
be used to support more connections on an otherwise satu-
rated system, lowering the amortized cost per connection.

Our results showed that reducing the number of row misses
achieves higher throughput than reducing the cost of row
misses, as is done by many commercial NPs including the
IXP 1200, PowerNP, and C-Port; and that without using any
extra SRAM caches, our techniques performed comparably
to an adaptation of a previously-proposed, cache-based tech-
nique. As NP-based systems scale, efficient use of DRAM
bandwidth will pose an even greater challenge. We claim
that by showing improvements in a bandwidth-bound sce-
nario, we alleviate a real problem in NPs now and in the
future.

Acknowledgements
We would like to thank Dimitrios Stiliadis and the anony-
mous reviewers for their useful comments and suggestions.
An earlier version of this work appeared as [12]. This
work was supported in part by NSF grants CCR-9875960
and CCR-9986020.

References
[1] Werner Bux, et al. Technologies and building blocks for fast packet

forwarding. IEEE Communications Magazine, pages 70–77, January
2001.

[2] C-Port Corporation. C-5 Digital Communications Processor.
http://www.cportcorp.com/solutions/docs/c5brief.pdf, 1999.

[3] C-Port Corporation. C-5 Network Processor D0 Architecture Guide.
http://e-www.motorola.com/collateral/C5NPD0-AG.pdf, 2001.

[4] Tzi cker Chiueh and Srinidhi Varadarajan. Design and evaluation of a
DRAM-based shared memory ATM switch. In Proceedings of ACM
Sigmetrics ’97 Conference, pages 248–259, 1997.

[5] W. S. Cleveland, D. Lin, and D. X. Sun. IP packet generation: Sta-
tistical models for TCP start times based on connection-rate superpo-
sition. In Performance Evaluation Review: Proc. ACM Sigmetrics,
pages 166–177, 2000.

[6] S. I. Hong et al. Access order and effective bandwidth for streams
on a direct rambus memory. In Proceedings of Fifth International
Symposium on High Performance Computer Architecture, pages 80–
89, January 1999.

[7] IBM. The Network Processor: Enabling Technology for High-
Performance Networking. IBM Microelectronics, 1999.

[8] IBM. IBM PowerNP NP2G Datasheet. http://www-
3.ibm.com/chips/techlib/techlib.nsf/products/PowerNP NP2G, 2002.

[9] Intel Corporation. Intel IXP1200 Network Processor Fam-
ily Hardware Reference Manual. http://developer.intel.com/ de-
sign/network/ixa.htm, 2001.

[10] Intel Corporation. IXP1200 Software Development Kit.
http://developer.intel.com/design/network/ixa.htm, 2001.

[11] S. Iyer, R.R. Kompella, and N. McKeown. Analysis of a memory
architecture for fast packet buffers. In Proc. IEEE Workshop High
Performance Switching and Routing (HPSR), 2001.

[12] J. Hasan, S. Chandra and T. N. Vijaykumar. Enhancing row locality to
improve network processor throughput. Technical report, 10009638-
020318-11TM, Bell Labs, Lucent Technologies, Mar 2002.

[13] S. Keshav and R. Sharma. Issues and trends in router design. IEEE
Communications MAgazine, pages 144–151, May 1998.

[14] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. Computer Systems,
18(3):263–297, 2000.

[15] Mark Kohler. NP complete. Embedded Systems Programming,
page 45, November 2000.

[16] James Larus and Michael Parkes. Using cohort scheduling to enhance
server performance. In Proceedings of the Usenix Technical Confer-
ence, June 2002.

[17] W. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies
with an integrated memory hierarchy design. In Proceedings of Sev-
enth International Symposium on High-Performance Computer Archi-
tecture, pages 301–312, January 2001.

[18] National Laboratory for Applied Network Research. Daily Traces.
http://pma.nlanr.net/PMA/, 2002.

[19] A. Nikologiannis and M. Katevenis. Efficient per-flow queueing in
DRAM at OC-192 line rate using out-of-order execution techniques.
In Proceedings of the IEEE International Conference on Communica-
tions, pages 2048–2052, June 2001.

[20] C. Partridge, et al. A fifty gigabit per second IP router. IEEE/ACM
Transactions on Networking, 6(3):237–248, June 1998.

[21] Scott Rixner et al. Memory access scheduling. In Proceedings of
27th Annual International Symposium Computer Architecture, pages
128–138, June 2000.

[22] SAMSUNG Corporation. SAMSUNG Network DRAM.
http://www.samsungelectronics.com/semiconductors/dram/ techni-
cal data/application notes/network-dram app note 2.pdf, 2002.

[23] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb.
Building a robust software-based router using network processors. In
Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples, pages 216–229. Association for Computing Machinery, Octo-
ber 2001.

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high
speed IP routing lookup. In Proceedings of the ACM Communication
Architectures, Protocols, and Applications (SIGCOMM’97), Septem-
ber 1997.

[25] T. Wolf and M. Franklin. Locality-aware predictive scheduling of
network processors. In Proceedings of IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
152–159, November 2001.

