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Abstract— Peer-to-Peer (P2P) systems provide decentraliza- failures and the fault tolerance mechanisms in literataig, [
tion, self-organization, scalability and failure-resilience, but suf- [2] to get back the data incur lots of overhead to the system.

fer from high worst-case latencies. Researchers have proposed Replication algorithms are believed to be an effective
various replication algorithms to place multiple copies of objects

across the network in pursuit of better performance for P2P method for improving the availability of data, 'enhancmg
computing; nevertheless, they neither presented clear analysion Performance of query latency and load balancing [1]. By
derived worst-case bound for their algorithms. In this paper, we distributing multiple copies of objects in the network and
model the replica placement problem arising in real-world P2P  forwarding each query to its nearest copy, we can effegtivel

networks as a Clustered K-Center problem which we prove 1o reqyuce the query search latency and enhance the reliability
be NP-complete. Then we propose an efficient approximation al-

gorithm to this problem with a provable upper bound. Extensive ,Of the system. Recently, a number of replication algorithms
experiments have been conducted to demonstrate the effeativess IN P2P have been proposed to offload the workload as well
and efficiency of our algorithm. The experimental results show as to avoid the network congestion [5], [16]. However, these
that our approach can run several orders of magnitude faster replication strategies are of ad hoc paradigm and are lack of
than the optimal solution while being able to minimizing the 4 cjear analysis of the performance gain.

query latency. Replica placement algorithm is essentially a tradeoff be-

Keywords: Replica Placement, Peer-to-Peer Network, Clug\{veen query latency and memory overhead (i.e. the overhead

tered K-Center Problem and Approximation Algorithm of stormg the replications in the networ.k). A good placgmgn
mechanism should demonstrate a maximum cost benefit given

the memory space in accordance with an access pattern. This
paper considers a static replication data placement proble

During the past few years, the emergence of Internet-scaliening at minimizing the maximum query latency across the
distributed systems including storage administrationlobgl network. More specifically, given a network of nodes, commu-
companies, entertainment file sharing, and large dis&ibutnication cost function and individual storage capacity afte
database systems has led to extensive research on efficreitte, we study the problem of determining a placement of
and scalable distributed computing architectures. Re@eer replication objects on the nodes such that the maximum query
(P2P) computing, among many other distributed computingtency, taken over all nodes and all objects, is minimix&e.
models, exhibit good scalability and stability. They havaame the optimization problem as Clustered K-Center proble
proved to be an efficient and successful way for distributex it bears some similarity to the classic k-center problem i
computing and file sharing over the Internet. graph theory. The k-center problem tries to find the sek of

Recent Internet traffic measurements have shown that R&nters in an arbitrary graph such that the maximum shortest
traffic increases significantly and becomes one of the majistance of all nodes to the nearest center is minimized. Our
traffic on the Internet. In some network segments, the PZRustered K-Center problem differs from the classic k-eent
traffic even goes beyond the traditional web traffic [15problem in that instead of choosing a setkohodes to place
Whereas, the P2P traffic distribution in terms of volumehe replication and serve the others, it requires every node
connectivity and bandwidth among the peers are extreméty serve as a center (server) as well as a client at the same
skewed [20] where peers may easily get overloaded. Whiéme. In this paper, we prove that Clustered K-Center proble
peers are overloaded, queries in the peers tend be droppets diP-complete and develops an approximation algorithm to
be kept in a queue for a long time which degrades the systsplve it in polynomial time.
performance significantly in terms of success rate and tclien The main contributions of this paper are described as
perceived latency. follows,

Many works have shown that existing P2P protocols maye. We formulate the optimal replica placement problem in
not achieve a satisfactory worst-case client-perceivesh&y P2P networks as a Clustered K-Center problem.
for large scale, latency sensitive applications [19]. Moeg, o We prove that the Clustered K-Center problem is NP-
Peer-to-Peer system is known to be unstable as peers may join complete and design an approximation algorithm with
and depart the system arbitrarily. Once a peer gets failed or quadratic time complexity.
leaves its group without notifying others, it will resultguery « Comprehensive experiments have been conducted to

I. INTRODUCTION



demonstrate the effectiveness and efficiency of our dbr putting the replicas for one service or one object (or one
gorithm. group of objects) on the selectdd centers. Other peers in

The rest of the paper is organized as follows. In Sectidhe network cannot contribute to the system as much a& the
I, we survey different replica placement protocols. Smeti centers. This is the case for all the facility location, kefia
Il models the replica placement problem and proves the Np2d k-center problem. Only recently, Baev and Rajaraman [3]
completeness of the Clustered K-Center problem. Section Pyopose a 20.5-approximation algorithm for replica plaeem
presents our approximation a|gorithm in details. In sectip OnN all nodes in the network with storage constraint using a
we analyze the time complexity of our algorithm and givéounding technique of the integer linear programming. Thei
a formal proof for the performance bound. Finally, experPbjective function is the average query latency. Our proble

mental results are demonstrated in section VI and section s not take into consideration the open-up cost of placing
concludes the paper. replicas since in a query intensive P2P system the open-up

cost for placing the replicas is typically orders of magdéu
Il. RELATED WORK smaller than the cost generated by queries.
The replica placement problem has been studied extensively

in many disparate fields, such as file assignment problem [Il. PROBLEM FORMULATION

[7], file allocation [23], distributed databases [13], datan-  \yg consider a set of peers in a distributed peer-to-peer
agement [14], etc. However, these fields require the repliggyyork, each peer stores various objects like video fileh w
placement algorithms to take into consideration the da@$r 565 or other arbitrary documents. Queries requesting for
consistency, update propagation and compounded gu"“5'5""”%®ecific object may originate from any node at any time within

which are not major concerns in a read operation oriented PgR network and they are all forwarded to the host nbataere
systems. the object is placed. Here, the latency of a query is denoted

The majority works for replica placement in P2P SySte"Ey the total distance of the route from the querying node to
are focused on content delivery networks (CDN [24], [10}e host node.
[11]), where CDN nodes cooperate with each other to satisfy|, oqer 1o reduce the query latency, researchers propose

the requests made by end users. Usually, these problems Rgvg,jicate the objects on other nodes in the network. The
their own objective function with different constraintscbuas problem becomes, given the replication numbghow to find

storage capacity, link capacity, node bandwidth capaelty, he pesg replication nodes, denoted &= 71, 7, ..., 7, such

In [11], the authors try to minimize the average query la¥engy,,; the maximum latency to fetch the nearest copy of obgect i
with storage constraint. The replica placement problenoiis f inimized. Here, we assume the system is able to forward the
mulated as an integer linear programming problem and somiies to the nearest replicatienusing existing mechanisms
heurlst|c. algorithms are proposed. However, the authos diﬁl]. As such an effect, the network can actually be viewed as
not.prowde_ an aqaly3|s of the performa}nce pound. In [24hest ofk search trees with each tree rooted at one replication
a simple hierarchically placement algorithm is proposed {4, Thus all thek roots cooperatively serve the queries
minimize the average access time with bandwidth cons&aigf, yhe gpjects, and in this way the workload is shared among
and the proof of the constant factor approximation is pregtid o1 This can be modeled as a well-known graph problem: k-

Whereas the objective function is not the maximum clienfanier problem which is described as following. Given a grap
perceived latency as we stress in this paper. In [10], thHeoasit  _ (V, E) representing an overlay network topology where
propose to place the tracers optimally such that the maximym jenotes the set of nodes arl denotes the connections
distance from any client to its nearest tracer is minimizeflaveen the nodes, and given an inteecompute a subset
but only part of the nodes are selected as tracers WhiIeS)tthk verticesR C V, such that the maximum distance between
only act as clients which may deteriorate load balancing E{hy vertexy € V and its nearest center € R is minimized.

P2P systems . . i i The k-center problem is known to be NP-complete [12], and
Generally, the problem of determining optimal replica BIac here exist several constant-factor approximation atlyors in
ment in an arbitrary network is modeled as a classical gragly, jiterature 9.

theory problem, S_l_JCh as facility location, k-median and k- However, our problem is different. Consider a P2P network
centefr. In thI? fﬁc"'ty location probr:em,dthere (;S_ an ople-quth thousands of objects and all of them are replicated en th
cost for reﬁ icating ? c;]opy at each node, adn h'ts go? IS Wmek centers, thek centers may easily get overloaded by
m|n|m|zVtht.|e fsum ho Le ogen-up golfts and the ;cl)ta RNGE huge amount of queries. Moreover, the memory capacities
co;ts.. hiie for t € k-median an -center pro ems, ”bef the k& centers will be quickly saturated as the replications
objective is to minimize the total query latency and MaxIMUi crease. The whole P2P systems becomes extremely load
latency respectively given the number of the replicas. Allyp,anced. In other words, it is not a good idea to use the
of the problems are NP-complete and [4], [12] propose the ey centers for all the objects when replicating the objects.

approximation algorithms. As the worst-case latency iligu . 1,44 balance purpose, nodes are required to keep roughly
the major concern in a QoS (quality of service) oriented

network [22], the k-center problem is most C'Qse'y relau_ed U 1h0st node for objecb is a node which contains and is ready to share
our problem. However, the k-center problem is only suitabléth others.



the same number of objects across the network which mine domatic number problem reduces to it, we prove that our
help to ensure the queries are evenly distributed among tleplica placement problem is NP-complete. ]
nodes. Thus in our replication system, objects are grouped
together and each group of objects can be placed on one
set of k centers. Essentially, the network is partitioned into As shown in section lll, the replica placement problem
m? non-overlapping groupsy{, g, ..., gm) Of k centers where cannot be solved easily in a large scale P2P system as it is NP-
V =g Ugo U...Ug,, and each group serves for a group ofomplete. In this section, we present a polynomial algorith
objects, here we assumecan be divided by: integrally and for the Clustered K-Center problem which guarantees the
m = n/k. For anyg;(i € [1,m]), there is a cover radiug; worst case latency is no more than-1 factor of the optimal
which is the maximum distance between any vertexV and solution.

its nearest center € g;. Our problem now is given a graph Recall thatG = (V, E) represents the network topology

G = (V, E) with n nodes, and given an integeyr computemn  where each vertex iV is a peer in the network and each
non-overlapping groups such that the maximum cover radiedge inE represents a link between the connected two peers.
among all the groups is minimized. From the graph coloringhe latency of the link is denoted by an edge weight
view, the problem can also be described as follows: givevheree, € E. In our algorithm, we us&7; = (V, Ey) to

a graph withn nodes and a parametér color the vertices denote the distance graph 6f where each pair of vertices
with m colors so that each color class hasvertices. The in V' are connected, s&, is actually a clique. The weight
objective is to find the small valu® such that the vertices of the edge between node andv; in G is the sum of the
within distanceD of any vertex in the network contain at leastotal edges’ weights on the shortest path frojto v; in G.

one vertex of every color. One observation is any distance graph satisfies the triangle
inequality ¢;; < ¢, + cx; for all 4,7,k € E, refer to lemma

IV. APPROXIMATION ALGORITHM

Theorem 3.1: The decision problem oflustered K-Center j
problem is NP-complete. 51 for detsne(;j proof. hat th | fth imal solution i
Proof: In order to prove that our optimization problem It is not hard to see that the value of the optimal solution in

is NP-complete, we first formulate the problem as a decisi@uSte“ad K—Cen(tjer p.rg;blir: Is ?ctualfly one of ”k‘)? shortettt%
problem. Given an arbitrary undirected gragh = (V,F) DEWeen two nodes ia/. Therefore, for any arbitrary grap

andk, let D(i,j) denote the distance between nadand j G =(V,E), thg value of the optima! solu.tion for. cluster k-
wherei, j € V. Given a target distanc®, we ask if there is center problem is one of the edge weights in the distancéhgrap
a clustéringgl 2, .. gm SUCh that Gg4. Herein, the first step is to construct a distance grapbf

the topology by calculating the shortest distance betweerye
mgxrlflea‘;cggI}D(v,r) <T (1) pair of nodes inG. This can be done by running a Dijkstra
' algorithm [6]. Furthermore, we label the edgesif so that
We prove the NP-completeness of this problem by showirg, < c., < ... < c., wherel = (3).
that it belongs in NP and then we reduce the domatic numbemBegin with a graphG, = (V, Ey) where Ey = {e;|5 < 0},
problem to a special case of our problem. This proves th& interactively add one edge with the smallest weight from
NP-completeness. the remaining edges that have not been added to the graph in
The problem is easily seen to be in NP. Given a clusterirgaich round. That is to say, after tith round of the procedure,
91,92, gm and the number of hop&, we can verify in the produced graph i€; = (V, E;) where E; = {e;|j < i}.
polynomial time whether the worst case latency (formulate@very time, a test is made to check whether the current graph
in equation 1) is less thaf' hops. G, contains an appropriate feasible subgraph for clusteks of
Next, we take a grapli: = (V, E) where the weight of centers. However, it is NP-complete to evaluate whether the
each edge;; is 1 if (¢,j) € E. We consider the special casegraph is eligible for producing clusters &f centers or not.
whereT = 1 and all the edges i have weightl (That Our strategy is to relax the decision procedure a bit such tha
isci; =1 VY(i,7) € E). In this case, we try to partition theit can finish in polynomial time with a provable performance
network intomn disjoint groupsy, g2, ---, gm in @ way such that bound for the worst case latency.
for each groupy;, all the vertices inG are directly connected  For each iteration, the gragh; is evaluated to see whether
to any vertices within the groug,. Let N; denote the vertices it containsk connected components each with sizeThis can
directly connected to vertices i3, the following equation is be solved easily by a DFS (Depth First Search) traversaleof th
true for the special cas@. graph which is arO(v + e) algorithm (herep ande represent
. ) . ) . the number of vertices and edges in the graph respectively).
Ni={vil3j € 9, () € B}, Vi, NiUgi =V Q) 50 we get a grap8i; satisfying the above condition, by the
In other words, each group; is a dominating set of the definition of the power of graphit is not hard for us to get
graph G. Thus, our problem is identical to the well-knowrelusteredk centers inG;"~*. As in G;, each vertex; € V' is
NP—compIete domatic number problem [8] Given that Our3Here the power of graph is defined as follows: given an atyitgraph
Clustered K-Center problem belongs in NP problem and that_ (v', ) andt is a positive integer, let theth power of G be G —

(V, Et), where there is an edde:,v) in G* wherever there is a path from
2Number of groups of centersa = n/k u to v with at mostt edges in G.



Approximation Algorithm

Input Parameters:

Underlying Topology:G = (V, E)

Number of Duplicationsk (k*m =n)
Output Parameters:

m groups of centergi, g2, g3...gm
begin

(1) Construct a distance grapfy = (V, E4) from the
network topologyG by computing all pairs of shortest distance
(2) Sort the edges i,
Cey < Cey < ... < ey, Wherel = (3);
(3) Initialize ¢ = 0;
(4) Loop
t=1+1;
Gi = (‘/, El) WhereEi = {6j|j < Z},
Condition: G; =\J'_, Si  Vi,[Si|%m =0
S; is a connected component
if (Condition is false)
Repeat Loop;
else
Grt=Uk, G Y, |0 =m
CiNC; =0 Vi, je€1,2,...,k
(5) Greedily select one node from each cluster
C; to form a groupg;
(6) Finish. Returry1, g2, g3...gm
end

Fig. 1. Approximation Algorithm for the Clustered K-CenteroBlem

edges respectively. When constructing the distance grajh, i
n time of Dijkstra’s algorithm which i€ (n(n+e)logn). Since
the number of edges is at mo§}) = n(n — 1)/2, the time
complexity for constructing the distance graptdgén®logn).
When we label the edges ii; in an ascending order, it is
actually a sort algorithm for th¢?)) edges. That is at most
O(n2logn).

We can further see that the number of the loop iterations
cannot exceec(g) times. During each iteration, we run a
DFS (Depth First Search) to traverse the graph to check the
eligibility of G; which runs inO(n + e). Thus, the time
complexity for the loop isO(n?(n + e)).

The time complexity of our algorithm is the sum of the
three partsO(n3logn) + O(n2logn?) + O(n?(n + €)), which
makesO(n*).

B. Approximation Ratio

In this subsection, we place a bound on the bottleneck
distance in the clustereld centers produced by the algorithm.
Let d,,: denote the optimal solution antt; denote the worst
case latency to the nearest center among allnthgroups of
centers, we prove in theorem 5.4 thiat < (m — 1) «d,, for
any arbitrary graph. Her@pproximation ratio is dg/dop:-

As far as we know, most of the network topologies do not
necessarily follow the triangle inequality metric. For myae,

within a connected component containimgvertices (denoted the direct link between nodeand j might be very slow due

asV; including v;), every two vertices in any; needm — 1

to the network congestion while another path linkingnd j

steps to reach each other. According to the definition of pow@ight be relatively faster. However, the distance graphafor

of graph, everyV; is a clique with|V;| nodes inG*~*. It is

easy to see tha(t?;"*1 can be partitioned int& cliques each

network satisfies the metric.
Lemma 5.1: Let G = (V, E) be an arbitrary subgraph of

with m members. Now, we choose one vertex from each cliq@e distance graphG, = (V,E,), then G satisfies triangle
exclusively to form a group ok centersg;. Thus, we cluster inequality.

the networkG into m groups where each group acts fas

Proof: Suppose that there exists an edgg) € F such

centers for part of the objects in the system. If the tessfaikhat there is a nodé € V,k # i Nk # j which produces
we repeat the procedure to add one more edge. Otherwise,aves ¢, + ¢,,. This means there exists a shorter path from
produce a power ofm —1) of the current graph and form thenode ; to nodej than the existing direct edge in distance

m clusters out of it.

V. ANALYSIS

graph. This contradicts to the definition of the distancephra

which has the length of the shortest path to represent the edg

. weight. =
We demonstrated how our algorithm works to cluster the F G —

nodes in the network to form the groupskotenters in section

(V,E) is an arbitrary graph, letnax(G) =
maxe, e Ce;. OUr approximation technique is based on some

IV. In this section, we first analyze the time complexity oéth
algorithm and then show that the worst case latency produ
by our algorithm is no more thafn — 1) factor of the optimal
solution.

nice properties of the power of graph which are demonstrated
%the following Facts.

Fact 5.2: Let G be any subgraph of a distance graph, then
max(G') <t * max(G).
A. Time Complexity Analysis Proof: According to the definition of power graph, a path
In this subsection, we analyze the time complexity of owith no more thart edges inGG produces an edge i@’. Since
approximation algorithm and show that it can be finishethe weight of each edge on the pathGhis at mostmax(G),
within O(n*) wheren is the number of nodes in the networkthe sum of all the edges’ weights on the path is no more than
At the very beginning, we construct a distance graph bymax(G). By the triangle inequality, the weight of any edge
calculating the shortest distance among all pairs of nodes(i, j) in G* is no more than that of the entire path franto
G which is a multiple source shortest path problem. To oyt Therefore the weight ofi, j) is at mostt x maz(G). B
knowledge, a single source multiple destination shortait p  For the Clustered K-Center problem, there is a set of feasibl
problem can be solved by a Dijkstra’s algorithm with run timsubgraphsS of distance grapliz; each element of which has
O((n+e)logn) wheren ande denote the number of nodes andon-overlappingm groups ofk centers. Among all of the



subgraphs, the optimal solution tries to find the best syddgra In the experiments, the network topology is generated with a
G in S with minimized maz(G). In the algorithm presented GT-ITM generator [25] which can efficiently generate Transi
above, we test in each iteration whether th;é* contains a Stub models that accurately reflect the topological prégeert
subgraphG’ € S. of the real internet. TS models the networks using a twolleve

Lemma 5.3: If G = (V, E) contains a feasible subgraph inhierarchy of routing domains, with transit domains interco
S for Clustered K-Center problem, every vertex if must necting the lower level stub domains. By default, the lagenc
have degree more than — 1. of intra-transit domain links, stub-transit links and @stub

Proof: Let g1, o, ..., gm denote the groups of thé domain links are set to 20ms, 5ms and 2ms respectively[18].

centers as a feasible solution for the Clustered K-Center'© highlight the effectiveness and efficiency of our al-
problem. By the definition of K-Center , every vertexin 90rithm, we compare our algorithm against two other ap-
V is connected to its nearest center. Thus, unieissa center Proaches, the optimal approach and a natural greedy agproac
itself, it will be connected to one center g, i = [1,m]. That [N the optimal approach, we identify the optimal solution
is to say, for any vertex € g;, it is connected to at least oneusSing a brute force search which systematically enumerates

node in each group except the one it belongs to. Thus, & Possible candidates for the solution. As we showed in
vertex must be connected ta — 1 nodes inG. m sectionlll, the Cluster K-Center problem is a NP-complete

problem which indicates that it cannot be solved in polyradmi
time. Therefore, the optimal solution can only be achieved b
evaluating all the possible configurations whose time com-
*exity is exponential to the network size With the greedy
approach, then clusters of centers are identifies one by one.
or the first cluster oft centers, we compute the bekt
S X ) enters using a greedy approximation algorithm for the k-
Clustered K-Center problem whilé’" ™" contains a feasible center problem [9] and remove the cluster from the original

solution. graph. In the remaining graph, the second cluster is idegtifi

¢ ':Ir?w Webgljrovestha'Gi dotehs tn?r: conj[aln ? fee}z:ble Slol[yt'or}/vith the same mechanism and vice versa. The time complexity
o the problem. Suppose that there is a feasible solution fgr, greedy approach 8 (n*logn).

someC;, then according to lemma 5.3, every vertexinmust Approximation algorithm is an approach to attacking diffi-

have direct neighbors more than— 1. That means any vertex cult optimization problems efficiently. The approximatiatio

's in a connected component with size at leastHowever, an[d time complexity are two important metrics to evaluate
any G; produced by the procedure at least has one vertex e S .

; : ! o the performance of approximation algorithms. In the foitogv
contained in a connected component. This contradictiongsro

that any graph beforé&'; cannot be grouped inta groups of supsecuons, we study th? performance of our algorlthrrnsga}
. - various network topologies and compare the approximation
k centers. This actually indicates that

ratio and time complexity of various approaches.

Theorem 5.4: For any network topologys = (V, E') with
triangle inequality metricdg < (m — 1) * dope.

Proof: Suppose the procedure in Fig.1 terminates
round s where the graph i€/;. In order to prove this result,
we show that any grapl’; (i < s) before the termination
does not contain a subgraph which is a feasible solutioneo t

Vi<s ey < dopt 3)

_ A N :
Next, we show thatz™~! contains a subgraph of the fea- Approximation Ratio

sible solution. Letl, V4, ..., V,, denote the disjoint connected In this subsection, we examine how well our algorithm
components inG,. From the procedure, we know that theapproximate the optimal solution of the Clustered K-Center
size of V; is ensured to ben. By the definition of the power problem by depicting the approximation ratio of our aldumit
of graph, the graph induced ovi in G™~! is a clique on  The Transit-Stub network topology is used here since it is
|Vi| vertices as every vertex in arly; needsm — 1 edges proven to be correlate well with the internet structure. The
to reach each other. Now, we choose one vertex from eaolmber of duplications of objects are automatically insezh
clique to form a group of centers exclusively, thus we geis the network size increase to achieve the target perfagnan
non-overlapping groupg , g=, gs, ..., gm Where each group is For easy comparison among different schemes, we set the
a dominant set ofs,. The worst case latency in our solutiomumber of duplication# to ben /4 in our experiment. That is
dc is actually one of the edge i@™~!. The longest edge in to say, the number of groups is four by default. As we
Gy is c.,. By Fact 5.2, the grapt¥~! has edges no longerproof in section Ill, Clustered K-Center problem is a NP-
than (m — 1) * ¢.,. From equation 3, we get the followingcomplete problem which cannot be solved in polynomial time.
result. do < (m—1)%ce, < (m—1) % dopt In other words, it is very computgtion intensive even for a
small scale topology. For comparison, we compute a tight
lower bound for the optimal solution for any graph wittin?)
VI. PERFORMANCEEVALUATION time complexity.

In this section, we evaluate the performance of our ap-As shown in Fig.2(a), our algorithm approximates the
proximation algorithm for the Clustered K-Center problenoptimal solution with ratio less than three consistentligisT
Extensive experiments are conducted under various netwerkifies our analysis in section V which claims that our
topologies and a wide range of network size. approach is an — 1 approximation algorithm with arbitrary
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