
Evaluating Performance of the SGI Altix 4700 via Scientific Benchmark 
and Micro-Benchmarks 

 
Mariam Salloum 

University of California, Riverside 
Computer Science Department 

msalloum@cs.ucr.edu 
 

ABSTRACT 
 
I evaluated the performance of the SGI Altix 4700 by using several well-known benchmarks. In 
performing these experiments we hope to gain a better understanding of the capabilities and 
limitations of the system, and thus be able improve upon the design in future generations or 
develop tools that enhance the performance of the system.  
 
INTRODUCTION 
 
Micro-benchmarking is a popular technique used as a basis for application performance 
predication or to evaluate the performance of a particular system in comparison to other systems, 
or to be used as a predictor for real application performance. There are several benchmarks that 
have been developed to measure various aspects of the system. In the following sections I will (1) 
describe the target system, (2) list and describe the benchmarks used to evaluate the system, (3) 
provide results and analysis for each benchmark, (4) conclude and summarize the results.  
 
TARGET SYSTEM 
 
The system we are evaluating is the SGI Altix 4700. The following are the specs for this 
system[1]: 
• cc-NUMA Distributed Shared Memory (DSM) with distributed cache directory, 
• 64 1.5 GHz Itanium 2 processors, 
• Deploys a modified version of the SUSE Linux 2.6.16 kernel, 
• Fat-tree topology utilizing the NUMAlink 4 interconnect, which offers 3200 MB/s per link, 
• gcc and Intel C compiler , 
• Utilizes a first-touch memory placement policy and highest priority first cpu scheduling. 
 
BENCHMARKS 
 
In the following section I will provide a brief description of the benchmarks used to evaluate the 
performance of the Altix. One thing to note is that some of the information provided by the 
benchmarks is similar; however, each benchmark is unique in how it obtains that particular 
information.  
 
Stream 
 
Sustainable Memory Bandwidth in High Performance Computers (STREAM) was developed by 
John McCalpin at the University of Virginia [2]. STREAM measures the sustainable memory 
bandwidth in MB/s. This information can also give us an idea about the memory latency.  
STREAM has become an industry standard, as a result, performance results for many other 
systems are available on the web for comparison.   
 



Memperf 
 
Memperf [3] is yet another benchmark developed by Kurmann and Stricker, which measures 
memory performance using access bandwidth by varying the strides and using different work 
loads. It measures the memory bandwidth in a 2D way. First it varies the block size information 
of the throughput in different memory system hierarchies (different cache levels). Secondly it 
varies the access pattern from contiguous block to different stride accesses [1].  
 
CacheBench 
 
CacheBench is a benchmark designed to evaluate the performance of the memory hierarchy of the 
system. The benchmark includes eight different cases: Cache Read, Cache Write, Cache 
Read/Modify/Write, Hand tuned Cache Read, Hand tuned Cache Write, Hand tuned Cache 
Read/Modify/Write, memset(), and memcpy(). Each case performs repeated access to data on 
varying vector lengths. Timings are taken for each vector length over a number of iterations and 
the bandwidth (megabytes per second) is calculated. The first three provides information about 
the performance of the compiler, while the second three are provided as points of comparison as 
they include hand tuned code. The benchmark provides the user with feedback about memory 
performance of the machine. For additional information regarding the CacheBench please refer to 
[4].       
 
LMbench 
 
LMBench is yet another benchmark that includes bandwidth and latency measurements. In terms 
of bandwidth, it measures cached file read, memory copy, memory read, memory write, pipe, and 
TCP. In terms of latency, it measures context switching, networking (connection establishment, 
pipe, TCP, UDP, and RPC hot potato), file system creates and deletes, process creation, signal 
handling, system call overhead, and memory latency.  LMbench has become a popular 
benchmark, and as a result many measurements from different machines are posted online as a 
point of reference.  
 
RESULTS 
 
In this section I will present the results of each benchmark.  
 
Stream 
I compiled my application using the following options: gcc –fopenmp –D_OPENMP stream.c –o 
stream. I ran the Stream benchmark using array size of 18000000 of a 412 MB total memory. 
Each test was run 10 times, but the best result is reported below.  
 
Table 1a: SGI Altix 4700 – 64 threads 
Function Rate (MB/s) Avg time Min time Max time 
Copy 662.5549 0.4348 0.4347 0.4350 
Scale 601.9713 0.4786 0.4784 0.4788 
Add 610.8624 0.7073 0.7072 0.7075 
Triad 567.2530 0.7617 0.7616 0.7619 

 
 
 
 
 



Table 1b: SGI Altix 4700 – 4 threads 
Function Rate (MB/s) Avg time Min time Max time 
Copy 668.2600 0.4311 0.4310 0.4313 
Scale 602.8461 0.4778 0.4777 0.4781 
Add 600.0067 0.7201 0.7200 0.7203 
Triad 560.0540 0.7715 0.7714 0.7716 

 
 
I reran this two cases by increased the array size to 180000000 which requires 4119.9MB . The 
results are shown in the following two tables.  
 
Table 1c: SGI Altix 4700 – 64 threads 
Function Rate (MB/s) Avg time Min time Max time 
Copy 664.1074 4.3375 4.3366 4.3383 
Scale 602.9207 4.7801 4.7767 4.7896 
Add 617.5283 6.9969 6.9956 6.9979 
Triad 566.6657 7.6418 7.6235 7.7631 

 
Table 1d: SGI Altix 4700 – 4 threads 
Function Rate (MB/s) Avg time Min time Max time 
Copy 667.2964 4.3162 4.3159 4.3165 
Scale 606.4606 4.7490 4.7489 4.7493 
Add 618.6444 6.9833 6.9830 6.9836 
Triad 566.8759 7.6211 7.6207 7.6214 

 
This information will hold more value if we compare the results to another multiprocessors.  
Unfortunately, the STREAM website only lists results from systems with very large number of 
processors and as a result its difficult to compare the performance of our system to theirs. The 
bandwidth only changed slightly when we increased the array size and the bandwidth between 
spawning 64 vs. 4 threads showed only slight difference. I think the reason for this is that I did 
not test a very large array size. I think, if I were to test large array sizes versus small array the 
difference in bandwidth will be visible. Also, given the fact that other users are utilizing the 
machine at the time the accuracy of the results are influenced.  
 
 
Memperf Micro-Benchmark 
 
I ran the Memperf benchmark with varying workloads and stride sizes. The first figure plots the 
varying strides, workload, and the bandwidth achieved for load sum test case. The load sum test 
measures the memory load performance for all the block-sizes and access patterns.  As can be 
seen by the figure, increasing the load and the stride size decreases the bandwidth.   
 
 
 
 
 
 
 
 
 



  Figure 2a: Memperf (1 thread) 

2 3 4 5 6 7 8
12 15 16 24 31 32 48 63 64 96

12
7

12
8

19
2

1 K4 K16 K

64 K

256 K

1 M4 M

0

5000000

10000000

15000000

20000000

25000000

30000000
B
an

dw
id

th
 [M

B
yt

e/
s]

Stride

Workload

 
 Figure 2b: Memperf (4 thread) 

1 2 3 4 5 6 7 8
12 15 16 24 31 32 48 63 64 96

12
7

12
8

19
2

0.5 K

4 K32 K

256 K

2 M

0

5000000

10000000

15000000

20000000

25000000

30000000

B
an

dw
id
th

 [M
B
yt
e/
s]

Stride
Workload

 
Figure 2c: Memperf (16 threads) 

1 2 3 4 5 6 7 8
12 15 16 24 31 32 48 63 64 96

12
7

12
8

19
2

0.5 K

4 K32 K

256 K

2 M

0

5000000

10000000

15000000

20000000

25000000

30000000

B
an

dw
id

th
 [M

B
yt

e/
s]

Stride
Workload

 



As can be seen by the above three figures, the bandwidth pattern is the same fro 1, 4 and 16 
threads. The only visible difference is the peak achieved with small workload and stride. For one 
thread measurements, we see one clear peak. For four threads, we see two distinct peaks. For 16 
threads we see a larger peak.  
 
Copy bandwidth decreases for simultaneous access with 1, 4, and 16 processors. For small 
working sets that reside in caches the performance bandwidth remains the same for various 
threads, however, large working sets in memory generates interesting differences.   
 
 
CacheBench 
 
I ran CacheBench testing all cases, and varying the accessed vector length. The results are shown 
in the following figure.  

 
LMbench 
 
I ran the LMbench selecting to evaluate the OS and hardware. I selected to allow the scheduler to 
place jobs, instead of manually assigning each test thread to a processor. Also I set the benchmark 
to operate on only 4000MB (note the larger the rage of memory the more accurate the results, 
however, as I did not want to over load the system when others are utilizing it I opted for 
4000MB). The following tables show the results for various tests. Unfortunately, its very hard to 
evaluate this type of data because we having nothing to compare it to. However, I have requested 
that the LMbench send me the results of other systems so that I will have an idea about the 
performance of the Altix (They acknowledged by request by have not sent the data yet).   
 
Table 4a: Memory latencies (nanoseconds) 
Host OS Mhz L1 L2 Main 

mem 
Rand 
mem 

sgi-2 Linux 2.6.16 1595 1.2720 3.7620 151.4 181.2 

 



The above table shows the latencies to L1, L2, and main memory. We are able to compare these 
results to that of the SGI Challenge. The SGI challenge has a L1 latency of 8 nanoseconds, L2 
latency of 64 nanoseconds, and memory latency of 1189 nanoseconds. As we can see, the SGI 
Altix performs much better.   
 
Table 4b: Basic integer operations ( nanoseconds) 
Host OS Intgr 

bit 
Intgr 
add 

Intgr 
mul 

Intgr 
div 

Intgr 
mod 

sgi-2 Linux 2.6.16 0.6300 0.0100 3.2600 23.2 26.3 

 
Table 4c: Basic float operations (nanoseconds) 
Host OS Float 

add 
Float 
 mlt 

Float  
div  

float 
bogo 

sgi-2 Linux 2.6.16 2.4800 2.5100 19.9 31.0 

 
Table 4d: Basic double operations (nanoseconds) 
Host OS Double 

add 
Double 
 mlt 

Double 
div  

double 
bogo 

sgi-2 Linux 2.6.16 2.5100 2.5100 22.5 32.1 

 
The previous three tables show the latencies for integer, float and double operations. The results 
look accurate. Its interesting to note the large difference between integer and float/double 
operations.  
 
Table 4e: Local Communication latencies (microseconds) 
 
Host OS Pipe AF 

UNIX 
UDP RPC/UDP TCP RPC/TCP TCP 

conn. 
Sgi-2 Linux 

2.6.16 
17.2 8.87 27.3 32.2 31.4 101.0 78 

 
Table 4f: Context Switching (microseconds) 
Host OS 2p/OK 

ctzsw 
2p/16K 
ctzsw 

2p/64K 
ctxsw 

8p/16K 
ctxsw 

8p/64K 
ctzsw 

16p/16K 
ctxsw 

16p/64K 
ctzsw 

Sgi-2 Linux 
2.6.16 

.501 1.160 1.9300 2.3100 4.3800 2.780 4.7800 

 
The above table shows the latency for context switching. The benchmark performed test with 2, 
8, and 16 processors and varying data size. Comparing these results with that of the SGI 
Challenge we see that Alix performs much better. The SGI Challenge results are 2p/0KB 
63microseond, 2p/32KB 80microseond, and 8p/32KB 93microsecond. As we can see, even when 
the amount of data transferred was less the Challenge performed worse than the Atlix.  
 
Table 5g: Local Communication bandwidth in MB/s  
Host OS Pipe AF 

UNIX 
TCP File 

reread 
Mmap 
reread 

Bcopy 
(libc) 

Bcopy 
(hand) 

Mem 
read 

Meme 
write 

Sgi-2 Linux 
2.6.16 

1721 994 707 1498.0 318.5 654.2 351.6 615 655.4 



Table 5h: File and Virtual Memory system latencies (microseconds) 
0K file 10 K file Host OS 
Create  Delete Create Delete 

Mmap 
Latency 

Prot 
Fault 

Page 
fault 

Sig-2 Linux 2.6.16 470.1 541.4 343.1 424.6 49.0 0.144 1.02810 
 
Table 5g shows the local communication bandwidth, which includes inter-process 
communication and cache bandwidth. It evaluates the inter-process communication bandwidth, 
via evaluating several processes communicating through pipes or TCP sockets. It also evaluates 
cache bandwidth via read and mmap. Comparing these results with other systems we can see that 
SGI Altix performs much better. For example, other research posted the results for the SGI 
Challenge showing it has 17 MB/S for pipe and 31 MB/s for TCP bandwidth. In comparison, SGI 
Altix has 1721 MB/s for pipe and 707 MB/s for TCP bandwidth. Also, comparing the file and 
memory bandwidth for the two machines shows that SGI performs much better. For example, 
SGI Challenge has a Memory read bandwidth of 65 MB/s while the SGI Altix has a Memory read 
bandwidth 615 MB/S. 
 
CONCLUSIONS 
 
In this paper we ran several benchmarks to determine the performance of the SGI Altix system. 
The next step is to compare these results to other cc-NUMA systems and/or clusters to determine 
the level of performance we are receiving. This information can be used to better understand the 
limitations/capabilities of the Altix and thus design better applications. In addition, upon 
evaluating the performance we may be able to find ways to improve the design in the next 
generation. For example, the memperf and Stream benchmarks showed us that an automatic page 
migration/replication policy is desirable. Some the results obtained are hard to evaluate without 
having other results as a point of comparison. Thus, in the future I would like to compare some of 
these results with other systems.  
 
REFERENCES 
[1] SGI Alix Applications Development and Optimizations, Par No.: AAPPL-1.0-L2.4-S-SD-W, 
Release Date: August 1, 2003 
[2] Stream www.cs.virginia.edu/stream 
[3] Memory System Performance Characterization http://www.cs.inf.ethz.ch/cops/ECT/ 
[4] CacheBench  http://icl.cs.utk.edu/projects/llcbench/cachebench.html 
[5] LMbench www.bitmover.com/lmbench/ 
 

Memory Management Study on the SGI Altix 
 

Mariam Salloum 
University of California, Riverside 

Computer Science Department 
msalloum@cs.ucr.edu 

 
ABSTRACT 
 
The SGI Altix 4700 memory management policy is by default allocated on a ‘first-touch’ basis. 
Unlike the SGI IRIX machines, the Linux version of the SGI does not employ additional policies 
(such as page migration & replication) to improve data locality. In this study we would like to 
investigate whether the user can employ some tools to improve the data locality of a given 



application versus settling for the default ‘first-touch’ policy. In this paper, we also look at 
research that have been done on this area and evaluate their results.  
 
INTRODUCTION 
 
The SGI Altix is a cc-NUMA system that employs distributed shared memory (DSM). Memory 
management plays an important role in achieving the best performance. Physical memory of the 
system is allocated on a “first-touch’ basis, i.e. the thread that first referenced a memory location 
will maintain hold of that memory location throughout the application runtime. Although, ‘first-
touch’ produces better results in comparison with round-robin, we would like to investigate 
whether there are other directives that can improve on data-locality without a high overhead cost.  
 
The Linux OS on the SGI Altix, as mentioned above, employs “first-touch” policy which does a 
fairly good job of allocating memory close to where it will be referenced -- at least initially. 
However, even if we assume that the first-touch policy provides the best data locality, the Linux 
scheduler does not consider this factor and its load balancing policy may distort the initial 
assignment.  The Linux scheduler takes no note of NUMA locality when migrating tasks between 
nodes. 
 
If the user is familiar with the application memory accesses, he/she can employ the dplace, 
dmove, and cpuset commands to assign a give cpu/node to a memory slot.  However, if the user 
does not have this specific information or the application exhibits a changing memory access 
pattern then this approach is not desirable. What we are seeking is an automatic method that does 
not rely on the user for any information. In the following section I will summarize of the papers 
published regarding this topic. 
 
PREVIOUS WORK 
 
One option to solve the locality problem is to develop an automatic page migration and 
replications policy embedded into the Linux kernel; this policy seeks to complement the first-
touch memory placement policy not replace it. This idea was first proposed by Vergles et. al. at 
the Stanford FLASH group[3]. Their goal was to minimize the runtime of the user’s application 
in a cc-NUMA system by converting remote misses to local misses through migration and 
replication of pages. They maintained a ‘counter’ for each page that tracked the cache miss rate. 
They also defined the ‘threshold’ for a page migration and replication (tolerance value that 
triggers page migration/replication). When a cache miss occurs, the controller looks at the ‘page 
miss rate’ and decides whether it’s a good candidate for this policy. If the cache miss rate is low 
then there is no reason to apply these polices. Second, the controller looks at the type frequency 
and type of sharing. If the page is not shared by many then it’s a good candidate for migration, 
otherwise, if the page is read shared by many then it’s a good candidate for replicating. In 
addition, they take into consideration the cost of page migration and replication; if the cost of 
these two polices are high (above the defined threshold) then no policy is applied. Although this 
policy shows 30% performance improvement in simulations, this feature has not been added to 
the Linux OS because in real applications the overhead cost of page migration and replication is 
too high.  
 
The FLASH team presented another paper titled “Flexible Use of Memory for 
Replication/Migration in Cache-Coherent DSM Multiprocessors[5].” In this paper, they 
compared the performance of Remote-Access-Cache (RAC), OS based page migration / 
replication, and MIGRA a kernel-based migration / replication that handles coarse-grain locality 
decisions. The RAC policy utilizes part of local memory to perform remote-caching. This policy 



is said to perform 14% better than standard CC-NUA base protocol, however, the performance is 
heavily dependent on the size of the RAC and many take away memory from the OS. 
 
The OS based page migration/replication (the policy presented in the previous mentioned paper) 
is said to perform 30% better however, this policy is strict in terms of which types of sharing can 
occur. Thus, they proposed a scheme called MIIGRAC which includes kernel-based migration 
and replication and RAC protocol.  The idea behind MIGRAC is as follows: the RAC can capture 
fine-grain sharing and short-term locality (thus temporarily solving the cache miss problem) and 
Mig/Rep can move or replicate a page that has a high miss rate to local memory thus alleviating 
RAC from having to continue tracking these pages.  

 
The above figure was copied out of the paper. It shows a comparison of the three methods, RAC, 
MRAC, and Mig/Rep for four applications. As can be seen by the figure, MRAC performs better 
on most applications.  
 

RAC hit rate(%) Pages Replicated Workload 
RAC MRAC Mig/Rep MRAC 

Raytrace 48.0 55.5 2661 1083 
Splash 40.1 50.4 2982 1460 
Engr 34.6 46.7 3494 2083 

Pmake 25.5 24.8 664 160 
 
A more subtle advantage of MRAC can be seen by the above table. The MRAC policy is able to 
reduce the number of pages replicated compared with Mig/Rep and increase the RAC hit rate. 
Replicating fewer pages implies that there is more free memory for other uses and having a 
higher hit rate translate to better performance.  
 
However, none of the above policies have been implemented in Linux OS. Lee Schermerhorn at 
HP/Open Source & Linux Organization wrote a paper titled “Automatic Page Migration for 
Linux” and has developed patches to the Linux OS that implements automatic page migration 
(note: these patches do not support page replication as yet) [6]. The team utilized the STREAM 
benchmark to show that without manual intervention optimal data placement has low probability 
and that the probability decreases with increasing node count. Also, even with near optimal 
‘initial’ placement, transient workloads can distort locality. This problem occurs when the kernel 
is performing inter-node load balancing; the kernel is unaware of cc-NUMA data locality issues 
and thus it does not know where to best schedule threads as to optimize data locality. They 



proposed a policy called automatic lazy page migration which has the same idea as Vergles 
policy however they try to cut-down overhead.  
 
I ran the STREAM benchmark several times initially binding the threads to a given cpu to 
provide optimal performance. But, as seen by the graph below, although the high initial 
performance showed that data placement was optimal, running the benchmark several times 
shows a decrease in perforce. This decrease in performance is attributed the Linux scheduler 
which tries to employ load balancing between cpus. Thus, this confirms that another method 
is required to improve data locality throughout the application execution time.  
 

 
 
This project is in its infancy and has yet not developed fully but shows great promise in the 
future. The team is currently working on perfecting the migration policies and are also working 
on adding the page replication. Their work is very much based on the paper by V…., however, at 
every step they try to minimize the overhead cost of maintaining the counter information.  
 
A paper by Corbalan, Martorell, and Labarta titled “Evaluation of the Memory Page Migration 
Influence in the System Performance: The Case of the SGI O2000” proposes yet another policy to 
minimize data locality[4]. In this paper they evaluate the SGI Origin 2000 IRIX memory 
management policy. They proposed to enhance the IRIX page migration and replication policy by 
coupling it with the process scheduler. The basic intuition behind this policy is that we should 
utilize the cache miss rate data by passing it to the process scheduling, that way, the scheduler can 
make a more informed decision on how to assign a given thread to a cpu. In this paper, they 
evaluated this policy using the IRIX native scheduling policy, equiparition, and Performance 
Driver – Processor Allocation (PDPA). Equiparition is a dynamic space-sharing policy which 
tries to allocate a equal amount of applications among the available processors. PDPA is a 
dynamic space-sharing policy which tries to allocate the maximum number of processors to the 
running applications that reach a given target efficiency. The PDPA decides the processor 
allocation based on the application request and the application performance ( measured at run-
time). Re-allocations are done a job arrival, job completion, and when jobs inform about their 
performance. And finally, they also evaluated the IRIX native scheduler that uses time-sharing 
approach.  They used four different benchmarks/applications including swim, hydro2d, apsi from 
specfp95, and bt from NAS parallel Benchmark suite. The results show that the memory page 
migration policy in IRIX does indeed improve the application performance, but aht the benefit or 
the level of performance depends on the application and on the scheduling policy. The 
performance was shown to improve by 10% with the IRIX schedule, 50% with the Equiparition, 
and 13% with the PDPA.   
 
FUTURE WORK 
 



All the paper presented raised interesting ideas. In the future, I would like to test the Linux 
‘patches’ presented by Lee Schermerhorn and compare the performance of various benchmarks 
with migration policy enabled and with the policy disabled. The MRAC policy presented by the 
FLASH group also looks very promising especially for the SGI Altix because the machine 
has sufficient memory to maintain RAC information. Implementing MRAC policy would be 
a interesting and promising project. Lastly, I’m interested in the work presented by Corbalan, 
Martorell, and Labart in their paper. I think their idea is correct in that we need a migration/ 
replication controller in addition to a good scheduling policy that takes data locality into 
consideration. For future research I would like to see if I can apply the modified Linux kernel 
presented by Schermerhorn with the idea presented by Corbalan et. al. One thing to note is that 
the IRIX scheduler differs from the Linux scheduling policy and we would need to conduct 
further work to evaluate the level of performance achieved.  
 
CONCLUSIONS 
 
In this paper we reviewed the various methods that have been proposed to improve data-
locality on cc-NUMA machines. The work performed by Lee Schermerhorn looks promising. 
However, the kernel patches proposed are still not complete and require the refinement of the 
lazy page migration policy to better identify the thresholds that trigger page migration. Also, 
Schemerhorn should also consider including page replication policies. The MRAC policy 
presented by the FLASH group looks very promising and it would be interesting to see this 
policy implemented on the SGI machine. The proposal put forth by Corbalan et. al. looks 
very promising and I think this is the path that SGI should consider in the future.  
 
REFERENCES 
[1] SGI Alix Applications Development and Optimizations, Par No.: AAPPL-1.0-L2.4-S-SD-W, 
Release Date: August 1, 2003 
[2] Mattew Dobson, Patricia Gaughen, Michael Hohnbaum, Erich Focht, “Linux Support for 
NUMA Hardware,” Proceedings of the Ottawa Linux Sumposium, Ottawa, Ontario, Canada July 
2003 
[3]  B. Verghese, S. Devine, A. Gupta, M. Rosenblum, “Operating System Support for Improving 
Data Locality on CC-NUMA Compute Servers,” ACM, 1996. 
[4] J. Corbalan, X. Marorell, J. Labarta, ”Evaluation of the Memory Page Migration Influence in 
the System Performance: The Case of the SGI O2000. ICS 2003.  
[5] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta, J. Hennessy, 
“Flexible Use of Memory for Replication/Migration in Cache-Coherent DSM Multiprocessors,” 
IEEE 1998. 
[6] L. Schermerhorn, “Automatic Page Migration for Linux,” HP/Open Source & Linux 
Organization 
 

CS213 Parallel Processing Homework 2 

Mariam Salloum 
 

 
1. OBJECTIVE 
 



The objective of this assignment is to compare the execution time of a well-known and 
tested benchmark on the SGI machine, varying the number of threads created, and the 
size of the simulated data. We would like to answer some of the following questions: 
Does the performance increase as we increase the number of threads? How does the 
number of threads relate to the actual number of processors available? At what point does 
the creation of multiple threads hinder performance?  
 
2. ENVIRONMENT 
 
We will perform the simulation on the SGI machine, which has the following specs:  
 
SGI Altrix 4700  
Dual Core Intel Itanium 2 Series 9000 
1600MHz, 24M L3 
 
3. BENCHMARK 
 
The benchmark chosen to perform the simulation is the SPLASH2 application Ocean.  
 
4. PERFORMACE METRICS 
 
To measure the performance of the SGI machine, I will look at the total execution time 
vs. the number of threads created, # instructions for each cpu, and the # cycles for each 
cpu.  All the SPLASH2 application produce output that specifies the total number of 
seconds taken by the program, however, I noted that this value was rounded. Thus, I 
decided to use the time command to get the exact execution time of the application. For 
each simulation, I will vary the grid size and the number of processors/threads used and 
plot the execution time of the application, # of instructions, and # of cycles.   I will also 
look at the cache misses and finally compare the gcc and icc results. 
 
 
5. RESULTS 
 
I ran the simulation on the SGI machine for the Ocean application. I ran each test case 
twice and averaged the execution time received; each time I varied the simulated data 
size and the number of threads created. To make sure that the threads were bind to a 
processor, I used the ‘taskset’ command with the 0xFFFFFFFFF option to specify that the 
application should distribute threads to all processors.   
 
 
Results – Ocean 
 
Table 1a: This table shows the Ocean application simulation on the sgi machine, varying 
the number of processors and the grid size and using the gcc compiler  

  Gird Size 

oc es   n=258 n=514 n=1026 n=2050 n=4098 n=8194 



1 0.701 3.404 14.685 59.449 240.712 1656.576 
2 0.354 1.558 7.245 29.42 123.514 926.321 
4 0.298 0.831 3.414 15.317 64.011 279.885 
8 0.383 0.987 2.476 8.167 34.642 152..093 
16 0.478 1.053 2.438 6.591 19.712 77.054 
32 0.641 1.226 2.927 7.132 15.204 53.913 
64 1.1.57 1.705 3.998 9.057 22.946 97.091 

 
As shown by Table 1, performance improves as we increase the number of threads 
created (processors allocated), however, for each simulation there is an optimal point and 
then the performance will converge. However, there seems to be a correlation between 
the grid size and performance receiving by increasing the number of threads. For grid 
size n=258, the optimal solution was achieved by 4 threads; for grid size n=1026 the 
optimal solution achieved was by 8 threads, for n=2050 the optimal solution achieved 
was by 16 threads, and for n=4098 the optimal solution achieved was by 32 threads. Thus 
as we increase the size of the simulation data creating threads and thus applying 
parallelize improves the overall execution time.  
 
The following two graphs shows the performance for grid size n = 2050.  

Figure 1a: Ocean Simulation on SGI for n=2050
Execution Time vs. # Processors

0

10

20

30

40

50

60

1 2 4 8 16 32 64

# Processors

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

n=2050

 
 
 
 
 
 
 
Table 1b: # instruction vs # threads for n=2050 

   
Ocean- # of simulated 

particles 

    2050 

pr oc es 1 62726343296 



2 31365465169 
4 15691356926 
8 7851191381 
16 3932172795 
32 1968428500 
64 990438120 

   

 
Table 1c: # cycles vs # threads for n=2050 

   
Ocean - # of simulated 

particles 

    2050 
1 116950196762 
2 57860292901 
4 29958624771 
8 18406620724 
16 9813847799 
32 4232873095 # 

of
 p

ro
ce

ss
or

s 

64 2161704279 
 
The following table shows the cache miss/access for n=1026.  

Data p=64 p=16 p=4 p=1 
L1 data accesses are  288703 319368 502366 938747
L1 data misses are  80190 69026 82537 73951
L1 Insn accesses are  4209234 12349834 45889607 179263497
L1 Insn misses are  76057 55558 49934 18539
L2 data accesses are  2512665 9072628 35426940 140733375
L2 data misses are  58802 134930 1112225 4745652
L2 Insn accesses are  85524 63747 56337 21389
L2 Insn misses are  1062 1442 1441 1476

 
The results seem to be excepted. As we increase the number of processes the data access 
increase and the data misses decrease. It also shows that the L1 Insn access decrease with 
increasing number of processors, while the L2 Insn. access decrease with decreasing 
number of processes.  
 

Figure 1b: # instructions vs # threads

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

1 2 4 8 16 32 64

# threads

# instructions

n=2050 



 
 
I redid the results using the intel icc compiler and compared the execution time of the 
application using gcc versus using icc.  
 

Figure 1d: Gcc verus Icc Performace on the Ocean 
Application

0

50
100

150
200

250
300

350

1 2 4 8 16 32 64
# threads

E
xe

cu
tio

n 
Ti

m
e 

(s
)

n=1026 icc
n=2050 icc
n=4098 icc
n=1026 gcc
n=2050 gcc
n=4098 gcc

 
 
The lines in orange show the execution for varying threads using the gcc compiler. The 
blue lines shows the same data for the icc compiler. As can be seen, the icc compiler 
generates better results.  
 
Here is another graph that shows the performance of the ocean application with spawning 
64 threads. 
 

Figure 1c:# cycles vs # threads

0.0E+00
2.0E+10
4.0E+10
6.0E+10
8.0E+10
1.0E+11
1.2E+11
1.4E+11

1 2 4 8 16 32 64
# threads

n=2050



 

0

5

10

15

20

25

30

35

40

n-=1026 n=2050 n=4098

p=64 gcc
p=64 icc

 
 
6. CONCLUSION 
 
The simulation showed that increasing the number of threads or processors used does not 
always yield the optimal solution, however, for each test case there is an optimal number 
of threads which yields the optimal solution. We were also able to observe that when 
increasing the size of the simulation data, utilizing multiple threads yielded better results 
however when the size of the simulation data was small utilizing fewer threads yielded 
better results. This is expected because for a large data set we can create more parallelism 
and the delay caused by the thread dependency is minimal, but when the simulation data 
is small the delay caused by multi-processor communication is more obvious.  It seems 
since we are not using CC and OpenMp the application is not correctly portioning the 
simulated data among the processors memory modules, but rather storing it in only one 
memory. Thus evey processor must access that memory and that could be a cause for bad 
simulations at times. We also looked at the # of instructions and # of cycles as we 
increased the # of threads. All the simulations showed that as we increase the # of threads 
spawned the # of instructions/cycles decrease for each cpu. Also, we compared the 
performance of gcc versus icc, and as expected icc performed much better than gcc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 


