
Parallel Hardware/Software Implementation of
the N-body Problem on a Supercomputer

CS 213 Report

Guangdeng Liao and Scott Siowry

Abstract

The marriage of a highly parallel supercomputer with FPGA presents new
opportunities for high performance computing. We implement and analyze an
important scientific application called the N-body problem on an SGI Altix 4700
machine, a supercomputer which is coupled with two Xilinx Virtex 4 LX200 FPGAs. We
analyze the tradeoff space for implementing the N-body problem as a highly parallel
algorithm versus adding hardware support. We also consider combining a parallel
implementation with hardware support. Our results show that a new computation
workload assignment policy on software and hardware should be taken into
consideration to fully take advantage of both CPU and FPGA computation power. We
propose one hybrid approach to combine computational capabilities of the SGI CPU
cores and the FPGAs together to calculate gravitational forces to improve the latency
of the N-body simulation. Results show that our hybrid scheme can achieve 36X and
42X speedup respectively comparing to 8X and 13X with only a pure hardware
offload.

1. Introduction

Computing technology has increased exponentially in complexity and power over
the last 50 years. In accordance with Moore’s law, the size of a computer chip shrinks
by roughly half about every eighteen months, meaning we can theoretically pack
double the amount of power and performance in the same size chip. Modern desktops
now have more raw power than the powerful supercomputers of the 1970s and 1980s.

However, supercomputing hasn’t taken a backseat to the more prevalent desktop and
laptop market. Supercomputers are still needed to run very complex and
computationally expensive applications ranging from stock market simulations to
protein folding.

Consequently, much research has been performed to be able to deal with the
increased complexity in the software being run. Modern supercomputers can support
thousands of processors, using a number of different interconnection schemes, bus
structures, memory hierarchies, and topologies. There are limits to the amount of
performance that can be achieved by simply adding more processors to the computer
running the problem.

Taking cues from the hardware/software partitioning community, modern
supercomputers are starting to integrate hardware support in the form of field
programmable gate arrays (FPGA) to allow offloading of computationally intensive
kernels and functions. Extensive research has shown that partitioning critical software
functions and loops to hardware can result in substantial performance and energy
benefits[3,5,6,8,9,10]. The SGI Altix 4700 [20], a 64 processor supercomputer,
includes two Xilinx Virtex 4 LX200 FPGAs that are directly connected to the memory
substructure of the main system. The integration of a large number of processors and
FPGA on a single platform presents unprecedented and untapped opportunities for high
performance computing.

There exist many problems domains which would benefit greatly from both a highly
parallel computing cluster coupled with sufficient FPGA resources. In this paper, we
investigate the performance benefits from implementing the N-body problem, a
technique that is widely used to study formation and evolution of particles in galaxies,
molecular biology, cellular automata, etc. We analyze the feasibility of combining
parallel implementation of the N-body problem with hardware support. We show that
to fully take advantage of the computational power on a highly parallel supercomputer,
a new computation workload assignment policy on software and hardware should be
taken into consideration. We will propose one hybrid approach to accelerate the
gravitation force calculation (the heart of the N-body computation), which combines
computational power of both the SGI’s CPU cluster and the FPGA, instead of leaving
CPU cluster idle to waste their cycles. Results from our conducted experiments show
that our hybrid scheme can achieve 36X and 42X speedup respectively comparing to
8X and 13X with pure hardware offload. Our results also show that to accelerate
parallel scientific applications more efficiently in future, either more FPGAs or larger
FPGAs directly connected to the memory system might be required. The main
contributions of our paper mainly consist of:

 Implement and analyze the scalability of N-body problem on SGI Altix 4700,
which is a cache coherent non-uniform memory access (CC-NUMA) machine.

 Identify the highly computational function (gravitation force calculation) for
hardware implementation and implement using Virtex 4 FPGAs, associated
with the SGI machine.

 Design a hybrid algorithm for the N-body problem and analyze the scalability
for fully utilizing both CPU and FPGA cores.

The rest of the paper is organized as follows: Section 2 presents a brief overview of
the N-body problem. Section 3 discusses related work in the domain of the N-body
problem, as well as hardware/software partitioning. Section 4 presents an overview of
the SGI Altix 4700 supercomputer. Section 5 presents techniques for accelerating the
N-body problem with hardware. Section 6 discusses experiments and results of
N-body on the SGI Altix 4700 supercomputer. Section 7 presents a hybrid design to
fully take advantage of CPU and FPGA computation power. Section 8 concludes.

2. N-body Problem Description

N-body simulation is one of the most widely used techniques to investigate
formation and evolution of particles in various fields of science, including physics,
astronomy, chemistry, and molecular biology [12][13]. A wide range of physical
systems have been studied by modeling those systems with the N-body problem.
 The N-body problem simulates the evolution of a system of N bodies, where the
force exerted on each body arises due to its interaction with all the other bodies in the
system. The simulation proceeds over time steps, each time computing the net force
on every body and thereby updating its position and other attributes. Currently there
are many computation methods and implementations to simulate the N-body problem.
The straightforward approach is to directly compute pair-wise forces between bodies
in each time step, described in the Figure 1. In each step, the net force on each body is
calculated through combining all Newton gravitational forces between that body and
all the other bodies in the system. The system is then updated by moving each body to
it’s new position.

Figure 1 Pseudocode for the Naive algorithm of N-body

The time complexity of naïve approach is O(n2). Unfortunately, most problems
modeled as the N-body problem usually consist of a large volume of particles.
Consequently, the naïve algorithm incurs a heavy performance overhead and will not
suffice for any large model, which accounts for most of the astronomical, biological,
and physical problems. Fortunately, hierarchical tree-based algorithms [14][15][16]
reduce the complexity from O(n2) to O(nlogn). In the following section, we introduce
and summarize one of the more popular one of hierarchical tree-based schemes, the
Barnes Hut algorithm.

3. Related Work

In order to speed up the particles simulation, hierarchical tree-based algorithms
[14,15,16,21] and their parallel implementations have been developed to reduce the
calculation cost, including Barnes-Hut algorithm, Greengard's Fast Multipole
algorithm and the Multipole Tree algorithm. Furthermore, the emergence of FPGA
technology has spawned efforts to integrate hardware support into the different

For each timestep
 For each body i
 For all other bodies j
 Calculate Pairwise force F(I,j)

 3 3 3
* * *) , () / , () /(,) ((/)i j i j i j i jF i j G M M X X r Y Y r Z Z r− − −=

 Move body for each step
 End
 End

N-body implementations. In this section, we will present an overview of one of the
more popular hierarchical tree-based algorithms, Barnes Hut. We will also summarize
recent work being done in the field of hardware/software partitioning.

3.1 Barnes Hut

Barnes Hut algorithm [14], one of hierarchical tree-based algorithms, reduces the
calculation cost from O(n2) to O(nlogn). Barnes-Hut works by organizing particles in
the form of a tree, where each node of the tree represents a group of particles. The force
from a distance node is replaced by the force from its center of mass.
 Barnes-Hut uses the divide-and-conquer method to find clusters of particles in the
N-body problem. If we consider the particles within an N-body simulation being
contained within a 3 dimensional cube, we can imagine constructing an octtree by
recursively subdividing the cube into eight smaller cubes. If a cube does not contain a
particle then that cube is discarded. A cube that contains exactly one particle becomes a
leaf cube. All other cubes are further subdivided. This subdivision process results in an
incomplete tree, where each node in the tree has up to 8 children. Leaf nodes in the tree
are cubes that contain exactly one particle. After building the octtree, the Barnes-Hut
algorithm computes the center of mass and total mass for all the particles it contains for
each sub-cube in the octtree, through a post order traversal. For each particle, the
algorithm traverses the tree to compute the force on it for each particle. We note that
the the Barnes Hut algorithm saves time because it only needs to compute the force due
to all the particles in the box just by using the mass and center of mass of the particles in
the box if the ratio of diameter of box and distance from particle to center of mass of
box is below a defined threshold. Otherwise, particle-to-particle force using Newton
gravitation law should be computed.

3.2 Parallel Barnes Hut

Since most of scientific applications operate on large data sets, they are often
rewritten as parallel applications running on large CPU clusters with parallel
computation capability. Singh et. al. [17] parallelizes the Barnes-Hut algorithm,
attempting to parallelize the execution of each of the phases within a time step, and not
exploiting the parallelism across time-steps. Although the force calculation for a
particle requires the communication of position and mass information from other
particles, the information is not modified during the force calculation phase.
Therefore, task of force computation can be parallelized without extra communication
in each time step [18]. The parallel implementation of Barnes-Hut is illustrated in
Figure 2.

Figure 2 Parallel Barnes Hut

 The parallel implementation employs two types of threads: control and data. The
control threads are responsible for global tree-building and data set partition, and the
data threads are responsible for the net force computation on the data assigned to it by
the control thread. The control thread is bound to one physical node and is initialized
to build up the octtree according to the current particles’ position. The control thread
then partitions the data set and assigns sub-sets to each independent data thread. In each
time step, the data threads operate concurrently to compute net forces on its particles.
Finally, the control thread updates the octree after all the data threads have finished
computation on their own data set, and the process is repeated for the next time step.

3.3 Hardware/Software Co-design

Extensive research has been published regarding taking critical software loops and
converting them to hardware representations, in a process known as hardware/software
partitioning. Such partitioning has been shown to achieve substantial performance and
energy benefits, often orders of magnitude better than the original software application
[2,3,5,6,7,8,9,10].

Hardware/software partitioning typically takes two forms in the literature, one
concentrating on multi-processing oriented software, and one concentrating on
sequential software. In the multi-processing oriented form, often labeled system
synthesis, maps a task graph to a set of concurrently executing (and communicating)
microprocessors and coprocessors. The sequential form creates custom circuits to
execute commonly executed functions (or loops) found in a single sequential program
running on one microprocessor[10].

We focus on the sequential form of hardware/software partitioning. In this form, the
custom circuits can be thought of as accelerators, which can dramatically improve the
performance of the software application. In the sequential form of partitioning, the
microprocessor will call the accelerator when it reaches the function call within the
software application. The microprocessor will block remaining execution until the
accelerator generates a result.

The close proximity of FPGA fabric on state-of-the-art platforms [3] has made
hardware/software partitioning even more important. The FPGA can be placed on the
FPGA bus to communicate with the host microprocessor, and current architectures
(like the SGI Altix) give the onboard FPGA access to the entire memory space through
shared memory. The marriage between CPU and FPGA presents a new opportunity
for extraordinary performance gains by partitioning critical software functions and
kernels onto the FPGA.

While much research has focused on developing tools to automatically partition an
application for the best performance and energy consumption, many others are
focusing on other aspects, including developing novel hardware implementations of
software algorithms that couldn’t be automatically synthesized or that resulted in
inferior hardware.

4. SGI Altix 4700 Architecture Overview

The SGI Altix 4700 series is a family of multiprocessor distributed shared memory
(DSM) computer systems that initially scale from 16 to 512 Intel 64-bit processors as a
cache-coherent single system image (SSI). The system uses a global-address-space,
cache-coherent multiprocessor that scales up to sixty four Intel 64-bit processors in a
single rack. The system architecture for the Altix 4700 system is a fourth-generation
NUMAflex DSM architecture known as NUMAlink 4. The SHub(Super-Hub)ASIC is
the heart of the processor and memory node blade technology. This specialized ASIC
acts as a crossbar between the processors, local SDRAM memory, and the network
interface. The SHub ASIC memory interface enables any processor in the system to
access the memory of all processors in the system.

The SGI Altix 4700 also adopts SGI RASC™ (Reconfigurable Application Specific
Computing) technology and is coupled
with the SGI RASC RC100 blade[19].
As illustrated in Figure 3, the RASC
hardware blade contains two high
performance Xilinx Virtex 4 LX200
FPGA chips with 160K logic cells, two
TIO ASICs, and a loader FPGA for
loading bitstreams onto the FPGAs.
The FPGAs connect directly into the
NUMAlink fabric via RASC Scalable
System Port called SSP on the TIO
ASICS and gives the FPGA access to
the entire memory space with a

bandwidth 3.2GB/s. The new RASC blade with two FPGAs also increases memory
resources with 10 synchronous static RAM dual in-line memory modules. Each of
SRAM is 16M bytes. The memory modules also provide a high-speed bandwidth of
6.4GB/s to each FPGAs.

Figure 3 RASC Blade Hardware

 Figure 4 shows a block diagram of RASC Scalable System Port (SSP) Field
Programmable Gate Array (FPGA). The FPGA contains two major functional blocks:
The reprogrammable Algorithm Block and the Core Services Block that facilitates
running the algorithm. The Algorithm Block sees memory resources, each with
independent read and write ports: up to 1M words deep and 128-bits wide per bank
(up to 16MBtotal per port per bank). The Core Service Block offers the following
services to facilitate the FPGA algorithm block: independent direct memory access
(DMA) engines for read and write data, host and FPGA process synchronization
capabilities, including interrupts and atomic memory operations (AMOs), and two
sets of independent read and write ports to each of the two random access memories
(SRAMs) etc.

5. Implementation of N-Body Acceleration

Because of the utility of the N-body problem across different domains, much
research has been developed to increase its performance. As earlier sections described,
the research community developed the Barnes Hut algorithm which solves the
problem in O(nlogn), trading off accuracy for greater performance. Similarly,
researchers have devised methods to parallelize the Barnes Hut algorithm, so it might
be mapped onto a highly parallel architecture like the SGI Altix.

Perhaps the best opportunity for N-body speedup is with the force calculation itself.
The complex gravity force equation is computed for every single pair of bodies in the
simulation, which accounts for a large percentage of the execution time. Since the
gravity force equation includes several multiplications, a division, and a square root, a
typical software implementation of the equation might consist of hundreds, if not
thousands of cycles on a typical microprocessor architecture.

The notion of offloading the gravity
equation to hardware on an FPGA thus
becomes very attractive. The host CPU
would feed the hardware gravity
equation data in the form of coordinates
in the x, y, and z planes, and the
hardware would handle calculating the
forces for the data points. A
well-designed circuit could be
implemented as a long “gravity
pipeline” such that the circuit is able to
sustain one force calculation/clock cycle.
This is possible since each force
calculation is completely independent of all other force calculation within the system.
Such throughput would result in a performance gain of up to three orders of
magnitude.

Figure 4 Block Diagram of the RASC
algorithm FPGA

 Figure 5 shows the gravity pipeline we designed to implement the force gravity

equation:
3 3 3

* * *) , () / , () /(,) ((/)i j i j i j i jF i j G M M X X r Y Y r Z Z r− − −= . Although similar design has been

introduced in the [1], it only considers particles with unit mass and simply ignored
mass parameter. Out component consists of seven different memory structures where
the mass and x, y, and z coordinates are maintained for each body in the simulation.
On each clock cycle, the memories output values that are then fed through a tree of
multipliers. Each multiplier is in fully pipelined, meaning delays need to be inserted
to ensure the correct values of the subtraction are matched to the result of the tree of
multipliers and adders. The square root component is also fully pipelined, and
accounts for thirty-four stages of the entire sixty-seven stage pipeline. We omit the
control logic required to initialize the particle and mass memories for brevity and
clarity. The control logic would be responsible for communicating with a host
processor in determining where the required data is to complete the force calculation.

6. Experiments and Results

In this section, we implemented two algorithms of N-body problem on SGI Altix
4700 supercomputer: the naïve N-body algorithm with quadratic time complexity and
Barnes-Hut algorithm with time complexity of O(nlogn). We also implemented the
hardware gravity pipeline described in Section 5 using Xilinx ISE 9.1 design suite,
and targeted it towards the FPGAs available on the SGI machine. We integrated the
gravity pipelined into the two algorithms and ran both on SGI machine. We present
results for running the naïve algorithm (for purposes of comparison) and the
Barnes-Hut algorithm on the SGI Altix 4700 machine both with and without hardware
support. We note that although
the SGI machine is furnished
with sixty-four powerful
Itanium CPUs, our experiment
environment consisted of only
thirty-two configured CPUs to
minimize the impact from
other applications running on
SGI machine.

6.1 N-body Naïve

Algorithm Results

 We first ran the naïve
implementations of both the
sequential and parallel versions
of the N-body problem. Recall
that the naïve version calculates pair-wise interactions between every single body in

Figure 5 N-body “Gravity Pipeline”

Delay

*
+

-

-

- Delay

Delay

*

*

+

*

√

Acm.

Acm.

Acm.

*

*

 Mass *

the system. We ran the sequential naïve algorithm for purposes of comparison only.
The sequential implementation on SGI machine took over 35 hours to complete
computing gravitation forces of 524288 bodies for just one time step because the
naive algorithm has a quadratic time complexity.

Figure 7 Parallel Naive Algorithm Speedup.

N-body multiprocessor speedup(compared to one processor)

0

5

10

15

20

25

2 4 8 16 32

Number of Processors

Sp
ee

du
p 131072

262144
524288

Figure 7 shows speedups attained when we implemented a parallel version of the
N-body problem varying the number of threads. Even for the smallest test case, the
parallel naïve algorithm was able to achieve almost a 23X speedup over the
single-threaded sequential version implementation.
 The onboard FPGAs presented even more opportunity for speedup over the naïve
single threaded implementation. We implemented and integrated the N-body gravity
pipeline into the single threaded and multithreaded versions using either one or both
of the onboard SGI FPGAs. The naïve algorithm coupled with a single board of
FPGA support attained 7.5X speedup over the pure software algorithm. When both
FPGAs were configured with the gravity pipeline, the algorithm ran 12X faster.

The multithreaded naïve algorithm implemented on the SGI Altix 4700 without
hardware support and with hardware support were able to attain 23X and 13X
speedups respectively, which means that computing power from CPUs on SGI
machine is as roughly twice as powerful as completely offloading all computation to
the FPGA. Thus, simply offloading all the entire workload to the FPGA heavily
underutilizes the rest of the SGI’s highly parallel resources.

6.2 Barnes Hut Algorithm Results

Although the naïve algorithm with hardware support attained more than 13x
speedups, the computation still took more than one hour real time to compute gravity
force at each time step. To speed up the calculation, we also implemented the
Barnes-Hut algorithm on the SGI machine, one of the hierarchical tree-based
algorithms with O(nlogn) time complexity.

Figure 8 Barnes Hut Speedups Figure 9 Speedup & Time of HW support

Barnes Hut Speedup(compared to one processor)

0

5

10

15

20

25

30

2 4 8 16 32

Number of Processors

Sp
ee

du
p 131072

262144
524288

Speedup & Time of HW Support

0

2

4

6

8

10

12

14

131072 262144 524288

#Bodies

S
pe

ed
up

0
10
20
30
40
50
60
70
80

E
xe

cu
tio

n
Ti

m
e(

s)

CPU Baseline

FPGA Speedup

Two FPGAs Speedup

Ex Time of CPU

Ex time of FPGA

Ex time of 2
FPGAs

We also implemented a parallel implementation of Barnes-Hut, and then augmented
both versions to work with the support of the FPGA gravity pipeline. Figure 8
illustrates the preliminary experiment results.

While not shown, the single threaded version of the Barnes Hut algorithm was
superior to the naïve implementation of the N-body problem, as expected. For
instance, Barnes Hut algorithm took 138 seconds to compute gravitational forces of
524288 bodies at each time step while the naïve algorithm took 35 hours. As
illustrated in the Figure 9, the integration of one gravity pipeline into the Barnes-Hut
algorithm yielded 12X performance speedups comparing to 27X speedup of parallel
Barnes-Hut implementation, which indicates that FPGA is also an attractive approach
to accelerate Barnes Hut algorithm on a highly parallel supercomputer. However, as
mentioned in the section 6.1, a offloading the entire workload to FPGA might
sacrifice massive CPU computing power on SGI machine.

Figure 10 Time Cost Analysis

Communication & Computation Cost

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

131072 262144 524288

#Body

Ti
m

e

Communication Cost
w ith 1 FPGA

Computation cost
w ith 1 FPGA

In order to gain some insight into the makeup of the total execution time with

FPGA support, we measured the data communication cost from the main memory
system to FPGA and the force computation cost on the FPGA. Figure 10 illustrates
that the time delay transferring data between FPGA and main memory is comparable
to FPGA computation time and almost takes up to 70% of total execution time due to
state-of-the-art data transfer bandwidth limit between memory and FPGA. Therefore
although our system does not suffer from the costs of data transfer overhead heavily,
special care of data transferring cost must be taken to design a more effective parallel

algorithm on the SGI machine. In addition, since execution time on the FPGA is only
relevant to the number of bodies, the parallel algorithm with hardware support would
not gain much more speedup than a sequential version when all gravitation force
calculation workload is offloaded to hardware. Thus, massive CPU computing power
on highly parallel supercomputer would be wasted significantly.

We have already shown that both a pure software approach and pure hardware
offload approach do not fully utilize all of the computing resources to accelerate
N-body problem aggressively. To further accelerate parallel scientific applications, we
believe that both a combination of more FPGAs directly connected to memory
systems might be require, as well as a new workload assignment policy to fully utilize
the thirty-two CPUs and the 2 FPGAs on the SGI machine. In the next section, we
propose a hybrid computation of the two algorithms to achieve even greater
performance and utilization on the SGI supercomputer.

7. Hybrid Computation of CPU and FPGA

We have shown that while the inclusion of FPGA support presents significant
performance speedup over pure software implementations, offloading the entire
computational workload to shared FPGA not only makes FPGAs a potential
bottleneck, but also leaves the all the CPUs underutilized, especially when pure
parallelized software speedup is comparable to hardware acceleration, a complex
system like the SGI would be heavily underutilized. In order to fully take advantage
of the massive computing power of CPUs and FPGAs, we propose a new
hardware/software co-design for highly parallelizable scientific applications which
balances the workload between processors and FPGAs.
 Figure 11 Implementation of hybrid design

 Given the speedup X from hardware support, n processors and m FPGAs on a
machine, we deduce a workload assignment policy for the machine, which is an
approximate approach to optimal assignment for a highly parallel scientific
application and can be used to guide us to design a more efficient highly parallel

algorithm. Suppose cD with C percent of workload is assigned to CPU and others

fD are assigned to FPGA. And also assume that their computing time per unit is tc

and tf when workload is assigned to CPU and FPGA respectively, and the data

transfer latency per byte from memory to SRAM attached to FPGA is represented by l .

We denote the execution time on CPU and FPGA as cT and fT . Additionally, we

denote the speedup from n processors and m FPGAs as ()S c n and ()S f m .
Therefore we can formulate them as followings:

 cT = / ()cD t c S c n fT = / ()f f fD t S f m l D+

In order to fully utilize both the CPU and FPGA computing power, we attempt to
achieve the following object function:
 { { / (), / () }}c f f fMin Max D tc Sc n D t Sf m lD+

In order to achieve the above object function, cT should be equal to fT , which means

it balances the load between processors and FPGA. Through the above equation, it is
easy to deduce the following workload assignment policy.

()(()) /(()(()) ())f f cC Sc n t Sf m l Sc n t Sf m l Sf m t= + + + This means C percent of

computational workload is still in CPU, and other (1-C) percent would be offloaded to
FPGA. Although not all systems suffer from a heavy data transfer overhead, we can’t
simply ignore memory-to-FPGA latency in the N-body problem in our case, since
memory-to-FPGA latency in N-body problem costs more than half of total hardware
execution time. In order to assign the workload based on the equation described above,
speedup of hardware and multi-processors, execution time of CPU and FPGA and
data transfer cost are required to partition the data set. We varied the parameters to
match the specifications of the SGI Altix 4700 machine and illustrated them using an
N-body simulation of 131072 bodies scenario in the Table 1. Table 2 shows the results
of partitioning the workload based on the equation above and using the particular
parameters of the SGI machine, shown in Table 1.
 Table 1 Parameters on SGI machine

Parameters l tc tf

Time(us) 0.0004 5.96E+04 8.0E+3

 Table 2 Workload Assignment on SGI machine

#CPU CPU Wordload with 1 FPGA CPU Workload with 2FPGA

1 11.49% 7.49%

2 20.13% 13.57%

4 33.07% 23.55%

8 50.71% 39.05%

16 68.17% 57.18%

32 77.8% 68.7%

Figure 12 Hybrid design on Naive algorithm Figure 13 Hybrid Design on Barnes Hut algorithm

Hybrid speedup on SGI machine compared to single processor

0

5

10

15

20
25

30

35

40

45

1 2 4 8 16 32

Thread Number

Sp
ee

du
p

4096 with 1 FPGA
8192 with 1 FPGA
16384 with 1 FPGA
4096 with 2 FPGAs
8192 with 2 FPGAs
16384 with 2 FPGAs

Hybrid CPU+FPGA Speedups

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32

Number of Processors

S
pe

ed
up 1 FPGA

2 FPGA

It is clear that the partition is highly dependent on the number of CPUs and FPGAs so
as to produce minimum execution time. Based on the proposed hybrid design and data
set partition, we modified our implementation described in the previous section and
ran experiments configured with one FPGA and two FPGAs. In order to eliminate
the contention cost of share FPGAs on SGI machine, we implemented the hybrid
design where only one thread was assigned to access and manage gravitation force
computation on FPGAs, and all the others ran their computation work on their
corresponding microprocessor. The results are shown in Figure 12. Since our
hardware acceleration design on one FPGA was able to attain around 8X speedup, the
workload assignment policy guides the naïve algorithm to leave 73% of
computational workload on 32 processors configured with one FPGA and 66% for
two FPGAs. From Figure 12 the new hybrid design with a FPGA and two FPGAs was
able to attain upward of 36X and 42X speedup over the sequential versions. Note this
is a dramatic speedup compared to our original implementation where we offloaded
all the computation to the FPGA gravity pipeline. This is most likely because our
hybrid design guided gravitation force computation to approximately fully-utilize all
of the computing resources on SGI machine rather than leave all CPUs idle while the
FPGA operated on the data set.
 We also integrated our workload assignment policy and hybrid design into our
Barnes-Hut algorithm implementation. The workload assignment policy left 78% and
70% of computing workload on all 32 processors when one FPGA and two FPGAs
were configured respectively. Figure 13 illustrates that the new hybrid design was
able to attain 40X and 45X speedup utilizing one and two FPGAs over the sequential
implementation. Again this is a dramatic increase in speedup over the initial
Barnes-Hut implementations which only attained 8X and 13X performance speedups
with a pure hardware offload of the gravity computation. Obviously, a hybrid
approach can offer an implementation that will come closer to fully utilizing all of the
resources on a highly parallel supercomputer such as SGI Altix 4700, and thus is a
more attractive approach to accelerate high performance computing.

8. Conclusions and Future Work

We have presented results that show we can attain speedups over 40X when
implementing the N-body problem on a highly parallel SGI Altix 4700 machine. We
implemented a gravity pipeline on the onboard FPGAs capable of sustaining one
calculation per cycle that resulted in over 10X speedup over pure software sequential
and parallel implementations of the N-body problem. However, we observed that
many of the resources on the SGI machine were being underutilized with a pure
offload of the gravity calculations. Therefore, we suggested that a new computation
workload assignment policy on software and hardware should be taken into
consideration to fully take advantage of both CPU and FPGA massive computation
power. In order to further improve N-body implementation on SGI Altix 4700
machine coupled only with two FPGAs, we proposed one hybrid approach to combine
computation capabilities of FPGA and CPU together to calculate gravitation force to
take into account our new workload policy. The marriage of a large CPU cluster with
FPGAs presents a large opportunity for applications requiring very high performance,
but we’ve shown that in order to gain the best performance, both resources must be
fully utilized.

9. References

[1] Tsoi, K.H.; Ho, C.H.; Yeung, H.C.; Leong, P.H.W. An arithmetic library and its
application to the N-body problem Field-Programmable Custom Computing
Machines, 2004. FCCM 2004

[2] Chattopadhyay, A. and Z. Zilic. GALDS: A Complete Framework for Designing
Multiclock ASICs and SoCs. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, Vol. 13, No. 6, June 2005

[3] [3] Eles, P., Z. Peng, K. Kuchcinsky, and A. Doboli. System Level
Hardware/Software Partitioning Based on Simulated Annealing and Tabu Search.
Design Automation for Embedded Systems, vol2, no 1, 5-32 January 1997.

[4] Excalibur. Altera Corp., http://www.altera.com
[5] Galanis, M.D, A. Milidonis, G. Theodoridis, D. Soudris,and C. E. Goutis. A

Partitioning Methodology for Accelerating Applications in Hybrid Reconfigurable
Platforms. Design Automation and Test in Europe (DATE), pp. 247-252, 2005.

[6] Gupta, R. and G. De Micheli. Hardware-Software Cosynthesis For Digital Systems.
IEEE Design and Test of Computers. Pages 29-41, September 1993

[7] Hauser, J.R. and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable
Accelerator. FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th
Annual IEEE Symposium on16-18 April 1997 Page(s):12 – 21

[8] Henkel, J. A low power hardware/software partitioning approach for core-based
embedded systems. In Proceedings of the 36th ACM/IEEE Design Automation
Conference, 122–127.1999

[9] Kalavade, A. and Subrahmanyam, P. A. 1997. Hardware/software partitioning for
multi-function systems. In Proceedings of the 1997 IEEE/ACM international
Conference on Computer-Aided Design

[10] Stitt, G., F. Vahid, and S. Nematbakshi. Energy Savings and Speedups From
Partitioning Critical Software Loops to Hardware in Embedded Systems. IEEE
Transactions on Embedded Computer Systems, January 2004.

[11] Suresh, D. C., W.A Najjar,, F. Vahid,., J. Villarreal., and G. Stitt.. Profiling tools
for hardware/software partitioning of embedded applications. In Proceedings of the
2003 ACM SIGPLAN Conference on Language, Compiler, and Tool For Embedded
Systems (San Diego, California, USA, June 11 - 13, 2003). LCTES '03. ACM Press,
New York, NY, 189-198. 2003.

[12] J. Makino and M. Taiji. Scientific simulation with specialpurpose computers - the
GRAPE systems. pages 41–48. John Wiley & Sons Ltd, 1998.

[13] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B. Elmegreen. Molecular
dynamics machine: Special purpose computer for molecular dynamics simulations. In
Molecular Simulation, pages 401–415, 1999.

[14] J.E. Barnes and P. Hut. A hierarchical O(N Log N) force calculation algorithm.
Nature, 324(4):446-449, December 1986

[15] J.A. Board, Z.S. Hakura, W.S. Elliot, D.C. Gray, W.J. Blanke, and J.F. Leathrum
Jr. Scalable implementations of multipole-accelerated algorithms for molecular
dynamics. Technical Report 94-002, Duke Univaersity, 1994

[16] L. Greengard. The rapid evaluation of potential fields in particle systems. The MIT
Press, 1987.

[17] J.P. Singh, W.D. Weber, and A. Gupta. Splash: Stanford parallel applications for
shared-memory. Computer Architecture News, 20(1):5-44, March 1987

[18] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer
Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995. © 1995 by the
ACM

[19] SGI SGI® RASC™ RC100 Blade: http://www.sgi.com/products/rasc/
[20] SGI Altix 4700 servers and supercomputers :

http://www.sgi.com/products/servers/altix/4000/
[21] J.A. Board, Z.S. Hakura, W.S. Elliot, D.C. Gray, W.J. Blanke, and J.F. Leathrum

Jr. Scalable implementations of multipole-accelerated algorithms for molecular
dynamics. Technical Report 94-002, Duke Univaersity, 1994

