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Abstract 

The marriage of a highly parallel supercomputer with FPGA presents new 
opportunities for high performance computing. We implement and analyze an 
important scientific application called the N-body problem on an SGI Altix 4700 
machine, a supercomputer which is coupled with two Xilinx Virtex 4 LX200 FPGAs. We 
analyze the tradeoff space for implementing the N-body problem as a highly parallel 
algorithm versus adding hardware support. We also consider combining a parallel 
implementation with hardware support. Our results show that a new computation 
workload assignment policy on software and hardware should be taken into 
consideration to fully take advantage of both CPU and FPGA computation power. We 
propose one hybrid approach to combine computational capabilities of the SGI CPU 
cores and the FPGAs together to calculate gravitational forces to improve the latency 
of the N-body simulation. Results show that our hybrid scheme can achieve 36X and 
42X speedup respectively comparing to 8X and 13X with only a pure hardware 
offload. 

1. Introduction 

Computing technology has increased exponentially in complexity and power over 
the last 50 years. In accordance with Moore’s law, the size of a computer chip shrinks 
by roughly half about every eighteen months, meaning we can theoretically pack 
double the amount of power and performance in the same size chip. Modern desktops 
now have more raw power than the powerful supercomputers of the 1970s and 1980s.  

However, supercomputing hasn’t taken a backseat to the more prevalent desktop and 
laptop market. Supercomputers are still needed to run very complex and 
computationally expensive applications ranging from stock market simulations to 
protein folding.  

Consequently, much research has been performed to be able to deal with the 
increased complexity in the software being run. Modern supercomputers can support 
thousands of processors, using a number of different interconnection schemes, bus 
structures, memory hierarchies, and topologies.  There are limits to the amount of 
performance that can be achieved by simply adding more processors to the computer 
running the problem.  



Taking cues from the hardware/software partitioning community, modern 
supercomputers are starting to integrate hardware support in the form of field 
programmable gate arrays (FPGA) to allow offloading of computationally intensive 
kernels and functions. Extensive research has shown that partitioning critical software 
functions and loops to hardware can result in substantial performance and energy 
benefits[3,5,6,8,9,10]. The SGI Altix 4700 [20], a 64 processor supercomputer, 
includes two Xilinx Virtex 4 LX200 FPGAs that are directly connected to the memory 
substructure of the main system. The integration of a large number of processors and 
FPGA on a single platform presents unprecedented and untapped opportunities for high 
performance computing.  

There exist many problems domains which would benefit greatly from both a highly 
parallel computing cluster coupled with sufficient FPGA resources.  In this paper, we 
investigate the performance benefits from implementing the N-body problem, a 
technique that is widely used to study formation and evolution of particles in galaxies, 
molecular biology, cellular automata, etc. We analyze the feasibility of combining 
parallel implementation of the N-body problem with hardware support. We show that 
to fully take advantage of the computational power on a highly parallel supercomputer, 
a new computation workload assignment policy on software and hardware should be 
taken into consideration. We will propose one hybrid approach to accelerate the 
gravitation force calculation (the heart of the N-body computation), which combines 
computational power of both the SGI’s CPU cluster and the FPGA, instead of leaving 
CPU cluster idle to waste their cycles. Results from our conducted experiments show 
that our hybrid scheme can achieve 36X and 42X speedup respectively comparing to 
8X and 13X with pure hardware offload. Our results also show that to accelerate 
parallel scientific applications more efficiently in future, either more FPGAs or larger 
FPGAs directly connected to the memory system might be required. The main 
contributions of our paper mainly consist of: 

 Implement and analyze the scalability of N-body problem on SGI Altix 4700, 
which is a cache coherent non-uniform memory access (CC-NUMA) machine. 

 Identify the highly computational function (gravitation force calculation) for 
hardware implementation and implement using Virtex 4 FPGAs, associated 
with the SGI machine. 

 Design a hybrid algorithm for the N-body problem and analyze the scalability 
for fully utilizing both CPU and FPGA cores. 

The rest of the paper is organized as follows:  Section 2 presents a brief overview of 
the N-body problem. Section 3 discusses related work in the domain of the N-body 
problem, as well as hardware/software partitioning. Section 4 presents an overview of 
the SGI Altix 4700 supercomputer. Section 5 presents techniques for accelerating the 
N-body problem with hardware. Section 6 discusses experiments and results of 
N-body on the SGI Altix 4700 supercomputer. Section 7 presents a hybrid design to 
fully take advantage of CPU and FPGA computation power. Section 8 concludes. 



2. N-body Problem Description 

N-body simulation is one of the most widely used techniques to investigate 
formation and evolution of particles in various fields of science, including physics, 
astronomy, chemistry, and molecular biology [12][13]. A wide range of physical 
systems have been studied by modeling those systems with the N-body problem.  
  The N-body problem simulates the evolution of a system of N bodies, where the 
force exerted on each body arises due to its interaction with all the other bodies in the 
system. The simulation proceeds over time steps, each time computing the net force 
on every body and thereby updating its position and other attributes. Currently there 
are many computation methods and implementations to simulate the N-body problem. 
The straightforward approach is to directly compute pair-wise forces between bodies 
in each time step, described in the Figure 1. In each step, the net force on each body is 
calculated through combining all Newton gravitational forces between that body and 
all the other bodies in the system. The system is then updated by moving each body to 
it’s new position.  

Figure 1 Pseudocode for the Naive algorithm of N-body  
 
 

 
 
 
 
 
 
 

The time complexity of naïve approach is O(n2). Unfortunately, most problems 
modeled as the N-body problem usually consist of a large volume of particles. 
Consequently, the naïve algorithm incurs a heavy performance overhead and will not 
suffice for any large model, which accounts for most of the astronomical, biological, 
and physical problems. Fortunately, hierarchical tree-based algorithms [14][15][16] 
reduce the complexity from O(n2) to O(nlogn). In the following section, we introduce 
and summarize one of the more popular one of hierarchical tree-based schemes, the 
Barnes Hut algorithm.  

3. Related Work 

In order to speed up the particles simulation, hierarchical tree-based algorithms 
[14,15,16,21] and their parallel implementations have been developed to reduce the 
calculation cost, including Barnes-Hut algorithm, Greengard's Fast Multipole 
algorithm and the Multipole Tree algorithm. Furthermore, the emergence of FPGA 
technology has spawned efforts to integrate hardware support into the different 

For each timestep 
  For each body i 
   For all other bodies j   
   Calculate Pairwise force F(I,j) 
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  Move body for each step 
      End  
   End  



N-body implementations. In this section, we will present an overview of one of the 
more popular hierarchical tree-based algorithms, Barnes Hut. We will also summarize 
recent work being done in the field of hardware/software partitioning.

3.1 Barnes Hut 

Barnes Hut algorithm [14], one of hierarchical tree-based algorithms, reduces the 
calculation cost from O(n2) to O(nlogn). Barnes-Hut works by organizing particles in 
the form of a tree, where each node of the tree represents a group of particles. The force 
from a distance node is replaced by the force from its center of mass. 
  Barnes-Hut uses the divide-and-conquer method to find clusters of particles in the 
N-body problem. If we consider the particles within an N-body simulation being 
contained within a 3 dimensional cube, we can imagine constructing an octtree by 
recursively subdividing the cube into eight smaller cubes. If a cube does not contain a 
particle then that cube is discarded. A cube that contains exactly one particle becomes a 
leaf cube. All other cubes are further subdivided. This subdivision process results in an 
incomplete tree, where each node in the tree has up to 8 children. Leaf nodes in the tree 
are cubes that contain exactly one particle. After building the octtree, the Barnes-Hut 
algorithm computes the center of mass and total mass for all the particles it contains for 
each sub-cube in the octtree, through a post order traversal. For each particle, the 
algorithm traverses the tree to compute the force on it for each particle.  We note that 
the the Barnes Hut algorithm saves time because it only needs to compute the force due 
to all the particles in the box just by using the mass and center of mass of the particles in 
the box if the ratio of diameter of box and distance from particle to center of mass of 
box is below a defined threshold. Otherwise, particle-to-particle force using Newton 
gravitation law should be computed.  

3.2 Parallel Barnes Hut 

Since most of scientific applications operate on large data sets, they are often 
rewritten as parallel applications running on large CPU clusters with parallel 
computation capability. Singh et. al. [17] parallelizes the Barnes-Hut algorithm, 
attempting to parallelize the execution of each of the phases within a time step, and not 
exploiting the parallelism across time-steps. Although the force calculation for a 
particle requires the communication of position and mass information from other 
particles, the information is not modified during the force calculation phase.  
Therefore, task of force computation can be parallelized without extra communication 
in each time step [18]. The parallel implementation of Barnes-Hut is illustrated in 
Figure 2. 

Figure 2 Parallel Barnes Hut



 

   The parallel implementation employs two types of threads: control and data. The 
control threads are responsible for global tree-building and data set partition, and the 
data threads are responsible for the net force computation on the data assigned to it by 
the control thread.  The control thread is bound to one physical node and is initialized 
to build up the octtree according to the current particles’ position. The control thread 
then partitions the data set and assigns sub-sets to each independent data thread. In each 
time step, the data threads operate concurrently to compute net forces on its particles. 
Finally, the control thread updates the octree after all the data threads have finished 
computation on their own data set, and the process is repeated for the next time step. 

3.3 Hardware/Software Co-design  

Extensive research has been published regarding taking critical software loops and 
converting them to hardware representations, in a process known as hardware/software 
partitioning. Such partitioning has been shown to achieve substantial performance and 
energy benefits, often orders of magnitude better than the original software application 
[2,3,5,6,7,8,9,10]. 

Hardware/software partitioning typically takes two forms in the literature, one 
concentrating on multi-processing oriented software, and one concentrating on 
sequential software. In the multi-processing oriented form, often labeled system 
synthesis, maps a task graph to a set of concurrently executing (and communicating) 
microprocessors and coprocessors.  The sequential form creates custom circuits to 
execute commonly executed functions (or loops) found in a single sequential program 
running on one microprocessor[10]. 

We focus on the sequential form of hardware/software partitioning. In this form, the 
custom circuits can be thought of as accelerators, which can dramatically improve the 
performance of the software application. In the sequential form of partitioning, the 
microprocessor will call the accelerator when it reaches the function call within the 
software application. The microprocessor will block remaining execution until the 
accelerator generates a result.  



The close proximity of FPGA fabric on state-of-the-art platforms [3] has made 
hardware/software partitioning even more important.  The FPGA can be placed on the 
FPGA bus to communicate with the host microprocessor, and current architectures 
(like the SGI Altix) give the onboard FPGA access to the entire memory space through 
shared memory.  The marriage between CPU and FPGA presents a new opportunity 
for extraordinary performance gains by partitioning critical software functions and 
kernels onto the FPGA.  

While much research has focused on developing tools to automatically partition an 
application for the best performance and energy consumption, many others are 
focusing on other aspects, including developing novel hardware implementations of 
software algorithms that couldn’t be automatically synthesized or that resulted in 
inferior hardware.  

4. SGI Altix 4700 Architecture Overview 

The SGI Altix 4700 series is a family of multiprocessor distributed shared memory 
(DSM) computer systems that initially scale from 16 to 512 Intel 64-bit processors as a 
cache-coherent single system image (SSI). The system uses a global-address-space, 
cache-coherent multiprocessor that scales up to sixty four Intel 64-bit processors in a 
single rack. The system architecture for the Altix 4700 system is a fourth-generation 
NUMAflex DSM architecture known as NUMAlink 4. The SHub(Super-Hub)ASIC is 
the heart of the processor and memory node blade technology. This specialized ASIC 
acts as a crossbar between the processors, local SDRAM memory, and the network 
interface. The SHub ASIC memory interface enables any processor in the system to 
access the memory of all processors in the system. 

The SGI Altix 4700 also adopts SGI RASC™ (Reconfigurable Application Specific 
Computing) technology and is coupled 
with the SGI RASC RC100 blade[19].  
As illustrated in Figure 3, the RASC 
hardware blade contains two high 
performance Xilinx Virtex 4 LX200 
FPGA chips with 160K logic cells, two 
TIO ASICs, and a loader FPGA for 
loading bitstreams onto the FPGAs. 
The FPGAs connect directly into the 
NUMAlink fabric via RASC Scalable 
System Port called SSP on the TIO 
ASICS and gives the FPGA access to 
the entire memory space with a 

bandwidth 3.2GB/s. The new RASC blade with two FPGAs also increases memory 
resources with 10 synchronous static RAM dual in-line memory modules. Each of 
SRAM is 16M bytes. The memory modules also provide a high-speed bandwidth of 
6.4GB/s to each FPGAs. 

Figure 3 RASC Blade Hardware 

  



 Figure 4 shows a block diagram of RASC Scalable System Port (SSP) Field 
Programmable Gate Array (FPGA). The FPGA contains two major functional blocks: 
The reprogrammable Algorithm Block and the Core Services Block that facilitates 
running the algorithm. The Algorithm Block sees memory resources, each with 
independent read and write ports: up to 1M words deep and 128-bits wide per bank 
(up to 16MBtotal per port per bank). The Core Service Block offers the following 
services to facilitate the FPGA algorithm block: independent direct memory access 
(DMA) engines for read and write data, host and FPGA process synchronization 
capabilities, including interrupts and atomic memory operations (AMOs), and two 
sets of independent read and write ports to each of the two random access memories 
(SRAMs) etc. 

5. Implementation of N-Body Acceleration 

Because of the utility of the N-body problem across different domains, much 
research has been developed to increase its performance. As earlier sections described, 
the research community developed the Barnes Hut algorithm which solves the 
problem in O(nlogn), trading off accuracy for greater performance. Similarly, 
researchers have devised methods to parallelize the Barnes Hut algorithm, so it might 
be mapped onto a highly parallel architecture like the SGI Altix.  

Perhaps the best opportunity for N-body speedup is with the force calculation itself.  
The complex gravity force equation is computed for every single pair of bodies in the 
simulation, which accounts for a large percentage of the execution time. Since the 
gravity force equation includes several multiplications, a division, and a square root, a 
typical software implementation of the equation might consist of hundreds, if not 
thousands of cycles on a typical microprocessor architecture.  

The notion of offloading the gravity 
equation to hardware on an FPGA thus 
becomes very attractive.  The host CPU 
would feed the hardware gravity 
equation data in the form of coordinates 
in the x, y, and z planes, and the 
hardware would handle calculating the 
forces for the data points.  A 
well-designed circuit could be 
implemented as a long “gravity 
pipeline” such that the circuit is able to 
sustain one force calculation/clock cycle. 
This is possible since each force 
calculation is completely independent of all other force calculation within the system. 
Such throughput would result in a performance gain of up to three orders of 
magnitude. 

Figure 4 Block Diagram of the RASC 
algorithm FPGA               

  



 Figure 5 shows the gravity pipeline we designed to implement the force gravity 

equation:
3 3 3

* * * ) , ( ) / , ( ) /( , ) (( / )i j i j i j i jF i j G M M X X r Y Y r Z Z r− − −= . Although similar design has been 

introduced in the [1], it only considers particles with unit mass and simply ignored 
mass parameter. Out component consists of seven different memory structures where 
the mass and x, y, and z coordinates are maintained for each body in the simulation. 
On each clock cycle, the memories output values that are then fed through a tree of 
multipliers. Each multiplier is in fully pipelined, meaning delays need to be inserted 
to ensure the correct values of the subtraction are matched to the result of the tree of 
multipliers and adders. The square root component is also fully pipelined, and 
accounts for thirty-four stages of the entire sixty-seven stage pipeline.  We omit the 
control logic required to initialize the particle and mass memories for brevity and 
clarity. The control logic would be responsible for communicating with a host 
processor in determining where the required data is to complete the force calculation. 

6. Experiments and Results 

In this section, we implemented two algorithms of N-body problem on SGI Altix 
4700 supercomputer: the naïve N-body algorithm with quadratic time complexity and 
Barnes-Hut algorithm with time complexity of O(nlogn). We also implemented the 
hardware gravity pipeline described in Section 5 using Xilinx ISE 9.1 design suite, 
and targeted it towards the FPGAs available on the SGI machine. We integrated the 
gravity pipelined into the two algorithms and ran both on SGI machine. We present 
results for running the naïve algorithm ( for purposes of comparison) and the 
Barnes-Hut algorithm on the SGI Altix 4700 machine both with and without hardware 
support. We note that although 
the SGI machine is furnished 
with sixty-four powerful 
Itanium CPUs, our experiment 
environment consisted of only 
thirty-two configured CPUs to 
minimize the impact from 
other applications running on 
SGI machine.  

6.1 N-body Naïve 

Algorithm Results 

 We first ran the naïve 
implementations of both the 
sequential and parallel versions 
of the N-body problem. Recall 
that the naïve version calculates pair-wise interactions between every single body in 

Figure 5 N-body “Gravity Pipeline”  
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the system. We ran the sequential naïve algorithm for purposes of comparison only. 
The sequential implementation on SGI machine took over 35 hours to complete 
computing gravitation forces of 524288 bodies for just one time step because the 
naive algorithm has a quadratic time complexity.  

Figure 7 Parallel Naive Algorithm Speedup. 
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Figure 7 shows speedups attained when we implemented a parallel version of the 
N-body problem varying the number of threads. Even for the smallest test case, the 
parallel naïve algorithm was able to achieve almost a 23X speedup over the 
single-threaded sequential version implementation.  
  The onboard FPGAs presented even more opportunity for speedup over the naïve 
single threaded implementation. We implemented and integrated the N-body gravity 
pipeline into the single threaded and multithreaded versions using either one or both 
of the onboard SGI FPGAs. The naïve algorithm coupled with a single board of 
FPGA support attained 7.5X speedup over the pure software algorithm. When both 
FPGAs were configured with the gravity pipeline, the algorithm ran 12X faster.  

The multithreaded naïve algorithm implemented on the SGI Altix 4700 without 
hardware support and with hardware support were able to attain 23X and 13X 
speedups respectively, which means that computing power from CPUs on SGI 
machine is as roughly twice as powerful as completely offloading all computation to 
the FPGA. Thus, simply offloading all the entire workload to the FPGA heavily 
underutilizes the rest of the SGI’s highly parallel resources.  

6.2 Barnes Hut Algorithm Results  

Although the naïve algorithm with hardware support attained more than 13x 
speedups, the computation still took more than one hour real time to compute gravity 
force at each time step. To speed up the calculation, we also implemented the 
Barnes-Hut algorithm on the SGI machine, one of the hierarchical tree-based 
algorithms with O(nlogn) time complexity. 

Figure 8 Barnes Hut Speedups   Figure 9 Speedup & Time of HW support 
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We also implemented a parallel implementation of Barnes-Hut, and then augmented 
both versions to work with the support of the FPGA gravity pipeline. Figure 8 
illustrates the preliminary experiment results. 

While not shown, the single threaded version of the Barnes Hut algorithm was 
superior to the naïve implementation of the N-body problem, as expected.  For 
instance, Barnes Hut algorithm took 138 seconds to compute gravitational forces of 
524288 bodies at each time step while the naïve algorithm took 35 hours. As 
illustrated in the Figure 9, the integration of one gravity pipeline into the Barnes-Hut 
algorithm yielded 12X performance speedups comparing to 27X speedup of parallel 
Barnes-Hut implementation, which indicates that FPGA is also an attractive approach 
to accelerate Barnes Hut algorithm on a highly parallel supercomputer. However, as 
mentioned in the section 6.1, a offloading the entire workload to FPGA might 
sacrifice massive CPU computing power on SGI machine.  

Figure 10 Time Cost Analysis 
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In order to gain some insight into the makeup of the total execution time with 

FPGA support, we measured the data communication cost from the main memory 
system to FPGA and the force computation cost on the FPGA. Figure 10 illustrates 
that the time delay transferring data between FPGA and main memory is comparable 
to FPGA computation time and almost takes up to 70% of total execution time due to 
state-of-the-art data transfer bandwidth limit between memory and FPGA. Therefore 
although our system does not suffer from the costs of data transfer overhead heavily, 
special care of data transferring cost must be taken to design a more effective parallel 



algorithm on the SGI machine. In addition, since execution time on the FPGA is only 
relevant to the number of bodies, the parallel algorithm with hardware support would 
not gain much more speedup than a sequential version when all gravitation force 
calculation workload is offloaded to hardware. Thus, massive CPU computing power 
on highly parallel supercomputer would be wasted significantly.  

We have already shown that both a pure software approach and pure hardware 
offload approach do not fully utilize all of the computing resources to accelerate 
N-body problem aggressively. To further accelerate parallel scientific applications, we 
believe that both a combination of more FPGAs directly connected to memory 
systems might be require, as well as a new workload assignment policy to fully utilize 
the thirty-two CPUs and the 2 FPGAs on the SGI machine. In the next section, we 
propose a hybrid computation of the two algorithms to achieve even greater 
performance and utilization on the SGI supercomputer. 

7. Hybrid Computation of CPU and FPGA 

We have shown that while the inclusion of FPGA support presents significant 
performance speedup over pure software implementations, offloading the entire 
computational workload to shared FPGA not only makes FPGAs a potential 
bottleneck, but also leaves the all the CPUs underutilized, especially when pure 
parallelized software speedup is comparable to hardware acceleration, a complex 
system like the SGI would be heavily underutilized. In order to fully take advantage 
of the massive computing power of CPUs and FPGAs, we propose a new 
hardware/software co-design for highly parallelizable scientific applications which 
balances the workload between processors and FPGAs. 
     Figure 11 Implementation of hybrid design 

  
  Given the speedup X from hardware support, n processors and m FPGAs on a 
machine, we deduce a workload assignment policy for the machine, which is an 
approximate approach to optimal assignment for a highly parallel scientific 
application and can be used to guide us to design a more efficient highly parallel 

algorithm. Suppose cD  with C percent of workload is assigned to CPU and others 

fD  are assigned to FPGA. And also assume that their computing time per unit is tc  



and tf  when workload is assigned to CPU and FPGA respectively, and the data 

transfer latency per byte from memory to SRAM attached to FPGA is represented by l . 

We denote the execution time on CPU and FPGA as cT and fT . Additionally, we 

denote the speedup from n processors and m FPGAs as ( )S c n and ( )S f m . 
Therefore we can formulate them as followings: 
 

        cT = / ( )cD t c S c n       fT = / ( )f f fD t S f m l D+  

 
In order to fully utilize both the CPU and FPGA computing power, we attempt to 
achieve the following object function: 
     { { / ( ), / ( ) }}c f f fMin Max D tc Sc n D t Sf m lD+   

In order to achieve the above object function, cT should be equal to fT , which means 

it balances the load between processors and FPGA. Through the above equation, it is 
easy to deduce the following workload assignment policy.  

( )( ( ) ) /( ( )( ( ) ) ( ) )f f cC Sc n t Sf m l Sc n t Sf m l Sf m t= + + +  This means C percent of 

computational workload is still in CPU, and other (1-C) percent would be offloaded to 
FPGA. Although not all systems suffer from a heavy data transfer overhead, we can’t 
simply ignore memory-to-FPGA latency in the N-body problem in our case, since 
memory-to-FPGA latency in N-body problem costs more than half of total hardware 
execution time. In order to assign the workload based on the equation described above, 
speedup of hardware and multi-processors, execution time of CPU and FPGA and 
data transfer cost are required to partition the data set. We varied the parameters to 
match the specifications of the SGI Altix 4700 machine and illustrated them using an 
N-body simulation of 131072 bodies scenario in the Table 1. Table 2 shows the results 
of partitioning the workload based on the equation above and using the particular 
parameters of the SGI machine, shown in Table 1. 
      Table 1 Parameters on SGI machine 

Parameters l  tc  tf  

Time(us) 0.0004 5.96E+04 8.0E+3 

     
    Table 2 Workload Assignment on SGI machine 

#CPU CPU Wordload with 1 FPGA CPU Workload with 2FPGA 

1  11.49% 7.49% 

2 20.13% 13.57% 

4 33.07% 23.55% 

8 50.71% 39.05% 

16 68.17% 57.18% 

32 77.8% 68.7% 



 

Figure 12 Hybrid design on Naive algorithm  Figure 13 Hybrid Design on Barnes Hut algorithm 
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It is clear that the partition is highly dependent on the number of CPUs and FPGAs so 
as to produce minimum execution time. Based on the proposed hybrid design and data 
set partition, we modified our implementation described in the previous section and 
ran experiments configured with one FPGA and two FPGAs.  In order to eliminate 
the contention cost of share FPGAs on SGI machine, we implemented the hybrid 
design where only one thread was assigned to access and manage gravitation force 
computation on FPGAs, and all the others ran their computation work on their 
corresponding microprocessor. The results are shown in Figure 12. Since our 
hardware acceleration design on one FPGA was able to attain around 8X speedup, the 
workload assignment policy guides the naïve algorithm to leave 73% of 
computational workload on 32 processors configured with one FPGA and 66% for 
two FPGAs. From Figure 12 the new hybrid design with a FPGA and two FPGAs was 
able to attain upward of 36X and 42X speedup over the sequential versions. Note this 
is a dramatic speedup compared to our original implementation where we offloaded 
all the computation to the FPGA gravity pipeline. This is most likely because our 
hybrid design guided gravitation force computation to approximately fully-utilize all 
of the computing resources on SGI machine rather than leave all CPUs idle while the 
FPGA operated on the data set. 
    We also integrated our workload assignment policy and hybrid design into our 
Barnes-Hut algorithm implementation. The workload assignment policy left 78% and 
70% of computing workload on all 32 processors when one FPGA and two FPGAs 
were configured respectively. Figure 13 illustrates that the new hybrid design was 
able to attain 40X and 45X speedup utilizing one and two FPGAs over the sequential 
implementation. Again this is a dramatic increase in speedup over the initial 
Barnes-Hut implementations which only attained 8X and 13X performance speedups 
with a pure hardware offload of the gravity computation. Obviously, a hybrid 
approach can offer an implementation that will come closer to fully utilizing all of the 
resources on a highly parallel supercomputer such as SGI Altix 4700, and thus is a 
more attractive approach to accelerate high performance computing. 



8. Conclusions and Future Work 

We have presented results that show we can attain speedups over 40X when 
implementing the N-body problem on a highly parallel SGI Altix 4700 machine. We 
implemented a gravity pipeline on the onboard FPGAs capable of sustaining one 
calculation per cycle that resulted in over 10X speedup over pure software sequential 
and parallel implementations of the N-body problem. However, we observed that 
many of the resources on the SGI machine were being underutilized with a pure 
offload of the gravity calculations. Therefore, we suggested that a new computation 
workload assignment policy on software and hardware should be taken into 
consideration to fully take advantage of both CPU and FPGA massive computation 
power. In order to further improve N-body implementation on SGI Altix 4700 
machine coupled only with two FPGAs, we proposed one hybrid approach to combine 
computation capabilities of FPGA and CPU together to calculate gravitation force to 
take into account our new workload policy. The marriage of a large CPU cluster with 
FPGAs presents a large opportunity for applications requiring very high performance, 
but we’ve shown that in order to gain the best performance, both resources must be 
fully utilized. 
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