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Abstract

The overall increase in traÆc on the World Wide Web causes a lengthening of client requests
to popular Web sites, especially in conjunction with special events. Single node platforms
that do not replicate information content cannot provide the needed scalability to handle large
traÆc volumes and to match rapid and dramatic changes in the number of clients. The need to
improve the performance of Web-based services has produced a variety of novel content delivery
architectures. This paper will focus on locally distributed Web systems, where the server nodes
reside at a single location. After years of proposals of new routing mechanisms, policies and
system solutions (the �rst dated back to 1994 when the NCSA Web site had to face the �rst
million of requests per day) many problems concerning multiple server architectures for Web
sites have been solved. Other issues remain to be addressed especially at the network application
level, but the principle techniques and methodologies for building scalable Web content delivery
architectures placed in a single location are settled now. This paper classi�es and describes main
mechanisms to split the traÆc load among the server nodes, discussing both the alternative
architectures and the load sharing policies. To this purpose, it focuses on architectures, internal
routing mechanisms, and dispatching request algorithms for designing and developing scalable
Web-server systems and identi�es some of the open research issues associated with the use of
distributed systems for highly accessed Web sites.
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1 Introduction

Demands placed on Web services continue to grow and Web server systems are becoming more

stressed than ever. Because of the complexity of the Web infrastructure, performance problems

may arise in many points during a Web transaction. For instance, they may occur at network

level because of congested Internet routers, as well as at server level either because of under-

provisioned capacity or unexpected surge of requests. Although both network and server capacity

have improved in recent years, and new architectural solutions have been deployed, response time

continues to challenge Web system related research. In this paper, we focus on architecture solutions

that aim to reduce the delays due to the Web server site assuming that network issues are examined

elsewhere. Increasing demand and immediate applicability of the considered methodologies are the

main motivation and guideline of this survey, respectively.

In a completely distributed control system such as Internet, the Web site is the only component

that can be under the direct control of the content provider administration. Web clients, Internet

backbones and routers, DNS system, and proxy servers are not controllable by a single organization,

and any intervention on these components is hard to be applicable because it requires an agreement

among multiple organizations.

Another motivation for focusing on Web system architecture is due to the growing complexity of

Web applications and services. Web performance perceived by end users is increasingly dominated

by server delays, especially when contacting busy servers [15]. Recent measures suggest that the

Web servers contribute for about 40% of the delay in a Web transaction [58] and it is likely that

this percentage will increase in the near future. As a consequence of the changes transforming the

Web from a simple communication and browsing infrastructure to a complex medium for conduct-

ing personal businesses and e-commerce, the computational load placed by network applications

on Web servers will continue to grow. A prediction made in 1995 regarding network bandwidth

estimated that it would triple every year for the next 25 years. So far, this prediction seems to

be approximately correct [55], while the Moore law estimates \just" a doubling of system capac-

ity every 18 months. Other network improvements, such as private peering agreements between

backbone providers, the deployment of Gigabit wide-area networks, the rapid adoption of ISDN

networks, xDSL lines, and cable modems contribute to reduce network latency. With the net-

work bandwidth increasing about twice faster than the server capacity, and increased complexity

of Web-based applications, the future bottleneck is likely to be more on the server side.

1.1 Scalable Web-server systems

Web site administrators constantly face the need to increase server capacity. In this paper, Web

system scalability is de�ned as the ability to support large numbers of accesses and resources while

still providing adequate performance.

The �rst option used to scale Web services is to upgrade the Web server to a larger, faster

machine. This strategy, referred to as hardware scale-up [43], simply consists in expanding a system

4



by incrementally adding more resources (e.g., CPUs, disks, network interfaces) to an existing node.

While hardware scale-up relieves short-term pressure, it is neither a cost-e�ective nor a long-term

solution, considering the steep growth in the client demand curve which characterizes the Web (the

number of online users is growing at about 90% per annum).

Many e�orts have also been directed at improving the performance of a Web server node at

the software level, namely software scale-up. This includes the operating system and also the Web

server application [14, 12, 57, 75, 80]. The Flash Web server ensures that its threads and processes

are never blocked by using an asymmetric multiprocess event-driven architecture [80]. Nahum et

al. [75] have analyzed how a general-purpose operating system and the network protocol stack can

be improved to provide support for high-performing Web servers. Hu et al. [57] have proposed

some techniques to improve the performance of the Apache Web server.

However, the approach of improving the power of a single server will not solve the Web scalability

problem in a foreseeable future. A more appealing solution to keep up with ever increasing request

load and provide scalable Web services is to deploy a distributedWeb system architecture composed

by multiple server nodes where some system component under the control of the content provider

can route incoming requests among di�erent servers. Load sharing is instrumental in obtaining

high performance server systems. Hence, the load reaching the Web site must be evenly distributed

among the server nodes belonging to the system, so as to reduce user-perceived latency time and

to achieve the highest performance.

The approach in which the system capabilities are expanded by adding more nodes, complete

with processors, storage, and bandwidths, is typically referred to as scale-out [43]. We further

distinguish between local scale-out when the set of server nodes resides at a single network loca-

tion, and global scale-out when the nodes are located at di�erent geographical locations. Figure 1

summarizes the di�erent approaches to achieve system scalability.

This survey presents and discusses the various approaches for managing locally distributed Web

systems (the focused topics are written in bold in Figure 1). We describe a series of architectures,

routing mechanisms, and dispatching algorithms to design local Web-server systems and identify

some of the issues associated with setting up and managing such systems for highly accessed Web

sites. We examine how locally distributed architectures and related management algorithms satisfy

the scalability and performance requirements of Web services. We also analyze the eÆciency and

the limitations of the di�erent solutions and the tradeo� among the alternatives with the aim of

identifying the characteristics of each approach and their impact on performance.

1.2 Basic architecture and operations

A scalable Web-server system needs to appear as a single host to the outside world, so that users

need not be concerned about the names or locations of the replicated servers and they can interact

with the Web-server system as if it were a single high performance server. Hence, the basic model

must adhere to the architecture transparency requirement by providing a single virtual interface to

the outside world at least at the site name level. (Throughout this survey, we will use www.site.org
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Figure 1: Architecture solutions for scalable Web-server systems.

as example name for the Web site.) This choice excludes from our analysis some architectures

such as the mirrored-server system, a simple solution that lets users manually select alternative

names for a Web site, thereby violating the transparency requirement. Unlike the users, the client

applications might be aware of the e�ects of some dispatching mechanisms. However, in our survey

the clients do not need any modi�cation to interact with the scalable Web system. Hereafter,

we refer either to client (or Web browser) as to the software entity that acts as a user agent and

is responsible for implementing all the interactions with the Web server, including generating the

requests, transmitting them to the server, receiving the results from the server and presenting them

to the user.

From these premises, the basic Web system architecture consists of multiple server nodes, dis-

tributed on a local area with one or more mechanisms to spread client requests among the nodes.

Each Web server can access all site information, independently of the degree of content replication.

The Web system includes also one authoritative Domain Name System (DNS) server for translating

the Web site name into one or more IP address(es) and, if necessary, one or more internal routing

devices. A high-level view of the basic architecture is shown in Figure 2. A router and other net-

work components belonging to the Web system could exist in the way between the system and the

Internet. Moreover, it has to be noted that an architecture for modern Web sites consists also of

back-end nodes that typically act as data servers for dynamically generated information. The main

focus of this survey is on the Web server layer while the techniques concerning content distribution

at the back-end layer are outlined in Section 8.

We analyze now the main phases to serve a user request to a Web site. Although a user issues

one request at a time for a Web page, he causes multiple client-server interactions because typically
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Figure 2: Model architecture for a locally distributed Web system.

a Web page is a multi-part document consisting of a collection of objects. A static Web object is a

�le in a speci�c format (e.g., an HTML �le, a JPEG image, a Java applet, an audio clip), which

is addressable by a single URL (e.g., http://www.site.org/pub/index.html). A URL has two

main components: the symbolic name of the server that houses the object (e.g., www.site.org)

and the object's path name (e.g., /pub/index.html). To retrieve all the Web objects composing

a Web page, a browser issues multiple requests to the Web server. We refer to a Web transaction

as the complete interaction that starts when the user sends a request to a Web site and ends when

his client receives the last object related to the requested URL. A session is a sequence of Web

transactions issued by the same user during an entire visit to a Web site.

Summing up, a Web transaction starts when the user makes a request to a Web server, by

either typing an URL or clicking on a link, for example http://www.site.org/pub/index.html.

First, the client extracts the symbolic site name (www.site.org) from the requested URL and

asks its local domain name server to �nd out the IP address corresponding to that name. The

local name server obtains the IP address by eventually contacting a well-known root of the domain

name server hierarchy and ultimately querying the site's authoritative name server. The local

name server returns the obtained IP address to the client that establishes a TCP connection with

the server or device corresponding to that IP address. After that, the client can send the HTTP

request for /pub/index.html to the Web server that sends the requested object back. Most Web

pages consist of a base HTML �le describing the page layout and a number of objects referenced

by the HTML �le; the page is intended to be rendered to the user as a single unit. Once obtained

the base HTML page from the Web server, the client parses it. If the client �nds that embedded

objects are related to the base page, it sends a separate request for each object. Depending on the
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HTTP protocol used for the client/server interactions, the subsequent requests can use the same

TCP connection (protocol HTTP/1.1) or di�erent TCP connections (protocol HTTP/1.0).

1.3 Request routing mechanisms and scope of this paper

We have seen in the previous subsection that each client request for a Web page involves several

operations even when the Web site is hosted on a single server. Moreover, the basic sequence for a

Web transaction seen in the previous subsection can be altered by several factors, such as caching of

the IP address corresponding to the site name at the client browser or at some intermediate name

servers, the version of HTTP protocol being used in the client/server interaction (i.e., support or

not for persistent TCP connections), the presence of the requested Web object either in the client

local cache or in intermediate proxy servers located on the path between the client and the Web

server.

When the Web site is hosted on multiple servers, another alternative is to decide which server

of the distributed Web system has to serve a client request. This decision might occur in several

places along the request path from the client to the Web site. We identify four possible levels for

deciding how to route a client request to one server of the locally distributed Web-server system.

All the cited components are shown in Figure 2.

� At the Web client level, the entity responsible for the request assignment can be any client

that originates a request.

� At the DNS level, during the address resolution phase, the entity in charge of the request

routing is primarily the authoritative DNS server for the Web site.

� At the network level, the client request can be directed by router devices and through multi-

cast/anycast protocols.

� At the Web system level, the entity in charge for the request assignment can be any Web

server or other dispatching device(s) typically placed in front of the Web site architecture.

Only a subset of the presented alternatives are considered in this paper. Indeed, the basic

premise of this survey is the compatibility of all proposed solutions with existing Web standards

and protocols so that any considered architecture, algorithm and mechanism could be immediately

adopted without any limiting assumption and without requiring modi�cations to existing Internet

protocols, Web standards, and client code. Therefore, we will focus on dispatching solutions that

occur at system components that are under the direct control of the content provider management,

i.e., the authoritative DNS, the Web servers, and some internal devices in the Web system. On

the other hand, we do not consider client-based routing mechanisms [11, 74, 94, 99] because they

may require some modi�cations of the client software [24]. Also, we do not investigate dispatching

at the network level that is meaningful when the multiple nodes of the Web site architecture are

distributed over a geographical area.
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It is worth observing that the design and implementation of a Web site architecture consisting of

multiple servers is not the only way for improving response time as perceived by the user. Basically,

there are two important categories for which we provide just some references for additional reading.

They are external caching and outsourcing solutions.

Probably, the most popular approach for reducing latency time and Web traÆc is based on

caching of the Web objects that might occur at di�erent levels. An accurate examination of

caching solutions would require a dedicated survey because they are the �rst techniques proposed

in literature and can be deployed at di�erent scales: from server disk caching to proxy caching to

browser caching with all possible combinations [97]. In this paper, we consider some internal caching

techniques occurring inside the Web-server system, such as Web server accelerators [29, 91] and

other techniques for improving cache hit rate [8, 79], while we exclude external caching solutions,

such as proxy servers and cooperative proxies [16, 95], virtual servers (or reverse proxies) [71], Web

proxy accelerators [87].

In this survey, we also exclude solutions where the content provider delegates scalability for its

Web services to other organizations. For example, many Web sites contract with third-party Web

hosting and co-location providers. Interesting research and implementation issues come from Web-

server systems that store and provide access to multiple Web sites [3, 7, 32, 70]. More recently,

Content Delivery Network (CDN) organizations undertake to serve request traÆc for Web sites

from caching sites at various Internet borders [1, 2, 53].

1.4 Organization of this paper

The rest of this paper is organized as following.

� Section 2 discusses and classi�es locally distributed architectures for Web sites, by distin-

guishing cluster-based Web systems or simply Web clusters, and distributed Web systems.

� Section 3 and Section 4 cover the mechanisms that can be used to route requests in a Web

cluster and in a distributed Web system, respectively.

� Section 5 presents the policies for load sharing and dispatching requests in the class of Web

cluster systems. We present a taxonomy of the policies that have been developed in recent

years by focusing on the issues that each policy addresses.

� Section 6 classi�es various academic prototypes and commercial products according to the

routing mechanism that is used to distribute the client requests among the servers.

� Section 7 presents some extensions of the basic system architecture to improve scalability.

� Section 8 deals with the problem of Web content placement among multiple front-end and

back-end servers.

� Section 9 concludes the paper and presents some open issues for future research.
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2 A taxonomy of locally distributed architectures

The basic premise of the proposed taxonomy is the compatibility of all analyzed solutions with

existingWeb standards and protocols so that any considered architecture, algorithm and mechanism

could be immediately adopted without any limiting assumption.

Distributed architectures can be di�erentiated depending on the name virtualization being

extended at IP level or not. Given a set of server nodes that host a Web site at a single location,

we can identify two main classes of architectures:

Cluster-based Web System (orWeb clusters) where the server nodes mask their IP addresses

to clients. The only client-visible address is a Virtual IP (VIP) address corresponding to one

device which is located in front of the set of servers.

Distributed Web System where the IP addresses of the Web server nodes are visible to client

applications.

Making visible or masking server IP addresses is a key feature, because each solution implies

quite di�erent mechanisms and algorithms for distributing the client requests among the server

nodes. In particular, the distributed Web system architecture is the oldest solution, where the

request routing is decided by the DNS system with the possible integration of some other naming

entity. The cluster-based Web system architecture is a more recent solution where request routing

is entirely carried out by the internal components of the Web cluster. We can anticipate that the

cluster systems are preferable to a locally distributedWeb site because they can provide �ne-grained

control on request assignment and better availability and security. In this survey, we give more

attention to cluster-based Web systems than on distributed Web systems because we consider that

a \visible" architecture is more suitable to geographically dispersed servers.

The main components of a typical multi-node Web system include a request routing mechanism

to direct the client request to a target server node, a dispatching algorithm to select the Web server

node that is considered best suited to respond, and an executor to carry out the dispatching algo-

rithm and support the routing mechanism. In this survey we will distinguish routing mechanisms

from dispatching policies for the two main classes of locally distributed Web system architectures.

2.1 Cluster-based Web systems

A cluster-based Web system (briey, Web cluster) refers to a collection of server machines that

are housed together in a single location, are interconnected through a high-speed network, and

present a single system image to the outside. Each server node of the cluster usually contains its

own disk and a complete operating system. Cluster nodes work collectively as a single computing

resource. Massive parallel processing systems (e.g., SP-2) where each node satis�es all previous

characteristics can be assimilated to a cluster-based Web system. In literature some alternative

terminology is used to refer to a Web cluster architecture. One common term is also Web farm,

meaning the collection of all the servers, applications, and data at a particular site [43]. We prefer
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the term Web cluster, as Web farm is typically used to denote an architecture for Web site hosting

or co-location.

Although a Web cluster may consist of tens of nodes, it is publicized with one site name (e.g.,

www.site.org) and one virtual IP (VIP) address (e.g., 144.55.62.18). Thus, the authoritative DNS

server for the Web site always performs a one-to-one mapping by translating the site name into the

VIP address, which corresponds to the IP address of a dedicated front-end node(s). It interfaces

the rest of the Web cluster nodes with the Internet, thus making the distributed nature of the

site architecture completely transparent to both the user and the client application. The front-end

node, hereafter calledWeb switch, receives all inbound packets that clients send to the VIP address,

and routes them to some Web server node. In such a way, it acts as the centralized dispatcher of

a distributed system with �ne-grained control on client requests assignments.

A high-level view of a basic Web cluster comprising the Web switch and N servers is shown

in Figure 3. It is to be noted that the response line does not appear here because the two main

alternatives will be described in Section 3.

Web switch
144.55.62.18

servers
Back−end

Cluster−based Web system
www.site.org

Authoritative DNS server
for www.site.org

Client

Local DNS server

HTTP request

Web server 1

Web server 2

LAN

Web server N

144.55.62.18

www.site.org

INTERNET

Figure 3: Architecture of a cluster-based Web system.

TheWeb switch can be implemented on either special-purpose hardware devices plugged into the

network or software modules running on a special-purpose or general-purpose operating system. In

this paper, we use the term Web switch to refer to the dispatching entity in general. This de�nition

does not imply that the Web switch is a hardware device that forwards frames based on link layer

addresses, or packets based on layer-3 and layer-4 information. Moreover, we prefer not to call the

Web switch through the functionality it implements, for example network/server load balancer, as

it can be found in some literature.
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2.2 Distributed Web systems

A distributed Web system consists of locally distributed server nodes, whose multiple IP addresses

may be visible to client applications. A high-level view of a locally distributed architecture is shown

in Figure 4. Unlike the cluster-based Web system, this architecture does not have a front-end Web

switch, so the client request assignment to a target Web server is typically carried out during the

address resolution of the Web site name (lookup phase) by the DNS mechanism. In some systems,

there is also a second-level routing which is typically carried out through some re-routing mechanism

activated by a Web server that cannot ful�ll a received request. The dispatching mechanisms in a

distributed Web system will be examined in Section 4.

Distributed Web system
www.site.org

Authoritative DNS server
for www.site.org

servers
Back−end

Web server 1
144.55.62.20

Web server 2
144.55.62.21

Web server N
144.55.62.25

LAN

Client

Local DNS server

HTTP request

144.55.62.21

www.site.org

INTERNET

Figure 4: Architecture of a distributed Web system.

3 Request routing mechanisms for cluster-based Web systems

The Web switch is able to identify uniquely each node in the system through a private address

that can be at di�erent protocol levels, depending on the architecture. More speci�cally, the server

private address may correspond to either an IP address or a lower-layer (MAC) address. There

are various techniques to deploy Web clusters, however the key role is always played by the Web

switch. For that reason, we �rst classify the Web cluster architecture alternatives according to the

OSI protocol stack layer at which the Web switch routes inbound packets to the target server, that

is layer-4 or layer-7 Web switches. The choice of the routing mechanism has also a big impact on

dispatching policies because the kind of information available at the Web switch is quite di�erent.
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� Layer-4 Web switches perform content-blind routing (also referred to as immediate binding),

because they determine the target server when the client asks for establishing a TCP/IP

connection, upon the arrival of the �rst TCP SYN packet at the Web switch. As the client

packets do not reach the application level, the routing mechanism is eÆcient but the dis-

patching policies are unaware of the content of the client request.

� Layer-7 Web switches can execute content-aware routing (also referred to as delayed binding).

The switch �rst establishes a complete TCP connection with the client, examines the HTTP

request at application level and then relays it to the target server. This routing mechanism

is much less eÆcient, but it can support more sophisticated dispatching policies. (We refer to

layer-7 Web switches according to the ISO/OSI protocol layers, where the application layer

is the seventh. Other authors refer to switches that perform content-aware routing as layer-5

or application-layer switches.)

Web cluster architectures based on layer-4 and layer-7 Web switches can be further classi�ed

on the basis of the data ow between the client and the target server, the main di�erence being in

the return way of server-to-client. Indeed, all client requests necessarily have to ow through the

Web switch. On the other hand, the target server can either respond directly to the client (namely,

one-way architectures) or return its response to the Web switch, that in its turn sends the response

back to the client (referred to as two-way architectures). Figure 5 summarizes the taxonomy for

Web clusters that we have examined so far. Typically, one-way architectures are more complex

and more eÆcient because the Web switch processes only inbound packets, while the opposite is

true for two-way architectures because the Web switch has to process both inbound and outbound

packets.

Web system
Cluster−based

Layer−4
Web switch

architecture
One−way

architecture
Two−way

Layer−7
Web switch

architecture
One−way

architecture
Two−way

Figure 5: Taxonomy of cluster-based architectures.
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3.1 Solutions based on layer-4 switches

Layer-4 Web switches work at TCP/IP level. Since packets pertaining to the same TCP connection

must be assigned to the same Web server node, the client assignment is managed at TCP session

level. The Web switch maintains a binding table to associate each client TCP session with the

target server.

Upon receiving an inbound packet, the Web switch examines its header and determines, on the

basis of the bits in the ag �eld, whether the packet pertains to a new connection, a currently

established one, or none of them. If the inbound packet is for a new connection (i.e., the SYN

ag bit is set), the Web switch selects a target server through the dispatching policy, records the

connection-to-server mapping in an entry of the binding table, and routes the packet to the selected

server. If the inbound packet is not for a new connection, the Web switch looks up the binding

table to verify whether the packet belongs or not to an existing connection. If it does, the Web

switch routes the packet to the server that is in charge for that connection. Otherwise, the Web

switch drops the packet.

To improve Web switch performance, the binding table is typically kept in memory and accessed

through a hash function. Each entry contains the tuple <IP source address, source port, IP

destination address, destination port>, and other information (e.g., beginning time) that

may be relevant for some dispatching algorithm.

Layer-4 Web clusters can be classi�ed on the basis of the mechanism used to route inbound

packets to the target server and outbound packets to the client. The main di�erence is in the

return way, i.e., server-to-client. In two-way architectures both inbound and outbound packets

pass through the Web switch, while in one-way architectures only inbound packets ow through

the Web switch.

3.1.1 Two-way architectures

In two-way architectures, each server in the cluster is con�gured with a unique IP address, i.e., the

private address is at IP level. Both inbound and outbound packets are rewritten at TCP/IP level

by the Web switch, as shown in Figure 6.

Packet rewriting is based on the IP Network Address Translation approach [46]. The Web

switch rewrites inbound packets by changing the VIP address to the IP address of the target server

in the destination address �eld of the packet header. Outbound packets from the servers to clients

must also pass back through the switch. As the source address in the outbound packets is the

address of the server that has served the request, the Web switch needs to rewrite the server IP

address with the VIP address, so as not to confuse the client. Furthermore, the Web switch has to

recalculate the IP and TCP header checksums for both packet ows.

3.1.2 One-way architectures

In one-way architectures inbound packets pass through the Web switch, while outbound packets

ow directly from the servers. This requires a separate high-bandwidth network connection for
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Figure 6: Layer-4 two-way architecture.

outbound packets. Figure 7 shows an example where the outbound packets ow back to the client

from the Web server 1. In this �gure, the level of the server private address is intentionally not

speci�ed as it can be either at IP level (layer-3) or MAC level (layer-2).

Routing to the target server can be done by means of several mechanisms, such as rewriting

the IP destination address and recalculating the TCP/IP checksum of the inbound packet (packet

rewriting), encapsulating each packet within another packet (packet tunneling), forwarding the

packet at MAC level (packet forwarding). Let us describe how each mechanism works.

Packet single-rewriting. The routing to the target server is achieved by rewriting the destination

IP address of each inbound packet: the Web switch replaces its VIP address with the IP

address of the selected server and recalculates the IP and TCP header checksum. Thus, the

private addresses of the server nodes are at IP level.

The di�erence from two-way architectures is in the modi�cation of the source address of

outbound packets. The Web server, before sending the response packets to the client, replaces

its IP address with the VIP address and recalculates the IP and TCP header checksum [44].

To di�erentiate packet rewriting operations, we call double-rewriting those performed by two-

way architectures and single-rewriting those carried out by one-way architectures.

Packet tunneling. IP tunneling (or IP encapsulation) is a technique to encapsulate IP datagrams

within IP datagrams, thus allowing datagrams destined to one IP address to be wrapped and

redirected to another IP address [82]. The e�ect of IP tunneling is to transform the old

headers and data into the payload of the new packet. The Web switch tunnels the inbound

packet to the target server by encapsulating it within an IP datagram. The header of this

15



144.55.62.18
Layer−4 Web switch

Back−end
servers

Authoritative DNS server
for www.site.org

Cluster−based Web system
www.site.org

Client

Local DNS server

Web server 1

Web server 2

Web server N

144.55.62.18

www.site.org

INTERNET

LAN

HTTP request

Web object

Figure 7: Layer-4 one-way architecture.

datagram contains the VIP address and the server IP address as source and destination

address, respectively. The server private addresses are at IP level as in packet rewriting.

This mechanism requires that all servers support IP tunneling and have one of their tunnel

devices con�gured with the VIP address. When the target server receives the encapsulated

packet, it strips the IP header o� and �nds that the inside packet is destined to the VIP

address con�gured on its tunnel device. Then, the server processes the request and returns

the response directly to the client.

Packet forwarding. This approach assumes that the Web switch and the server nodes are on

the same local network. More speci�cally, the switch and the servers must have one of their

network interfaces physically linked by an uninterrupted LAN segment.

The virtual IP address is shared by the Web switch and all of the servers in the cluster through

the use of primary and secondary IP addresses. That is, each server is con�gured with the

VIP address as secondary address. This may be done through the use of loopback interface

aliasing, for example by using the ifconfig Unix command.

Even if all nodes share the VIP address, the inbound packets reach the Web switch because

the server nodes have disabled the Address Resolution Protocol (ARP) mechanism (otherwise,

a collision would occur). Hence, the Web switch can forward the inbound packet to the target

server by using its physical address on the LAN (i.e., the MAC address) without modifying

the TCP/IP header. The packet forwarding is achieved by letting the Web switch rewrite the

layer-2 destination address to the MAC address of the server and retransmitting the frame on

the network. For this reason, packet forwarding is also referred to asMAC address translation.
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Unlike packet single-rewriting and packet tunneling mechanisms, the server private addresses

are now at MAC level.

When the server receives the forwarded packet, it processes it as a packet destined for itself,

since it shares the VIP address. Then, it returns the response directly to the client.

3.2 Solutions based on layer-7 switches

Layer-7 Web switches work at application level, thus allowing content-aware request distribution.

The mechanisms for layer-7 routing are more complex than those for content-blind routing, because

the HTTP request is inspected before any dispatching decision. To this purpose, the Web switch

must �rst establish a TCP connection with the client (i.e., the three-way handshake for the TCP

connection setup phase must be completed between the client and the Web switch) and then receive

the HTTP request at the application level. On the other hand, a layer-4 Web switch determines

the target server as soon as it receives the initial TCP SYN packet, before the client sends out the

HTTP request. Figure 8 shows the di�erent instants in which the request decision is made by a

Web switch that routes new connections at layer-4 or layer-7.

Web client Layer−7
Web switch

Target
Web server

SYN

SYN, ACK

ACK

HTTP request

Web switch Web server

SYN

SYN, ACK

ACK

HTTP request

Web client TargetLayer−4

Request
parsing

Figure 8: Operations of layer-4 routing (left) and layer-7 routing (right).

Similarly to layer-4 solutions, Web cluster architectures based on a layer-7 Web switch can be

further classi�ed on the basis of the mechanism used to send outbound packets from server to

client. If we consider the data ow through the Web switch, we can distinguish among one-way

architectures and two-way architectures.

3.2.1 Two-way architectures

In two-way architectures outbound traÆc must pass back through the Web switch, as shown in

Figure 9.

The proposed approaches basically di�er over the mechanism the Web switch uses to route

requests to the target server.
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Figure 9: Layer-7 two-way architecture.

TCP gateway. In this architecture, an application level proxy running on the Web switch medi-

ates the communication between the client and the server. This proxy accepts client connec-

tions and maintains TCP persistent connections with all the server nodes. When a request

arrives on a client connection, the proxy forwards the client request to the target server

through the corresponding TCP persistent connection. When the response arrives on the

persistent connection back from the server, the Web switch forwards it to the client through

the other connection.

TCP splicing. This mechanism aims to improve the TCP gateway approach that is computation-

ally expensive. Now, packet forwarding occurs at network level between the network interface

driver and the TCP/IP stack and is carried out directly by the operating system [34].

Once the TCP connection between the client and the Web switch has been established and the

persistent TCP connection between the switch and the target server has been chosen, the two

connections are spliced together. In such a way, IP packets are forwarded from one endpoint

to the other without having to cross the TCP layer up to the application layer on the Web

switch. Once the client-to-server binding has been determined, the Web switch handles the

subsequent packets by changing the IP and TCP packet headers (IP addresses and checksum

recalculations), so that both the client and the target server can recognize these packets as

destined to them.

The TCP splicing mechanism can be also implemented by hardware-based switches (e.g., [5]).
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3.2.2 One-way architectures

In one-way architectures the server nodes return outbound packets directly to clients, without

passing through the Web switch, as illustrated in Figure 10.
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Figure 10: Layer-7 one-way architecture.

TCP hando�. Once the Web switch has established the TCP connection with the client and

selected the target server, it hands o� its endpoint of the TCP connection to the server [79].

The hando� protocol is layered on top of TCP and runs on the Web switch and the servers,

thus requiring changes in the operating systems of both components. The TCP hando�

mechanism remains transparent to the client, as data sent by the servers appear to be coming

from the Web switch. Any acknowledgment packets sent by the client to the switch are

forwarded to the target server by a module running at the bottom of the switch protocol

stack.

The hando� mechanism allows also to handle HTTP persistent connections by letting the Web

switch assign HTTP requests in the same connection to di�erent target servers [8]. There are

two mechanisms to support persistent connections: the hando� protocol can be extended by

allowing the Web switch to migrate a connection between servers (multiple hando�), the �rst

target server forwards the request it cannot serve to a second server that sends the response

back to the client (back-end forwarding).

TCP connection hop. This a software-based proprietary solution implemented by Resonate [86].

Once the Web switch has established the TCP connection with the client and selected the

target server, it hops the TCP connection to the server. This is achieved by encapsulating
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the IP packet in an RPX packet and sending it to the server [86]. Since the server shares the

same VIP address, it can reply directly to the client. Acknowledgment packets and persistent

session information from clients are managed by the Web switch.

3.3 Comparison of routing mechanisms for Web clusters

Figure 11 summarizes the taxonomy for Web cluster by further detailing the taxonomy previously

shown in Figure 5. We �rst discuss the di�erent solutions for layer-4 and layer-7 routing, and then

we compare the two classes of routing mechanisms.

Web cluster
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Web switch

Layer−7
Web switch

One−wayOne−way Two−way Two−way

Packet
tunneling

Packet
forwarding double−rewriting

Packet TCP
handoff connection hop

TCP
single−rewriting

Packet TCP
splicing

TCP
gateway

Figure 11: Detailed taxonomy of Web cluster architectures.

3.3.1 Layer-4 routing mechanisms

In two-way solutions, the server nodes may be in di�erent LANs, with the only constraint that

both inbound and outbound traÆc ow through the Web switch. The main problem of these

mechanisms is that the Web switch must rewrite inbound as well as outbound packets, and outbound

packets typically outnumber inbound packets. Thus, the scalability (in terms of throughput) of Web

clusters that use a two-way architecture is limited by the Web switch ability to rewrite packets and

recalculate their checksums, even if a dedicated hardware support can be provided for the checksum

operations. On the other hand, a layer-4 Web switch that uses a one-way solution can sustain a

larger throughput before becoming the system bottleneck. Thus, the system performance is only

constrained by the ability of the switch to set up, look up, and delete entries in the binding table.

If we consider the di�erent mechanisms for one-way architectures, we see that packet single-

rewriting causes the same overhead as packet double-rewriting, but it reduces switch operations

because the more numerous outbound packets are rewritten by the Web servers and not by the

Web switch. However, this requires modi�cations in the kernel of the server operating system.
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Packet forwarding mechanisms aim to limit the overhead of packet rewriting. As the Web switch

processes only inbound packets and, beside that, at MAC level that avoids expensive checksum

recalculations, the cluster scalability is primarily limited by the capacity of the cluster network link

to Internet. The drawback of packet forwarding is that it requires the same network segment to

connect the Web switch and all the Web server nodes. However, this restriction has a very limited

practical impact since the Web switch and the servers are likely to be connected through the same

LAN.

Solutions that employ packet tunneling have good scalability, although lower than packet for-

warding. Moreover, they require the servers to support IP tunneling which is not yet a standard

for current operating systems.

3.3.2 Layer-7 routing mechanisms

An advantage of two-way architectures combined with a layer-7 Web switch is that caching can be

implemented on the Web switch. This allows such device to reply directly to a request if it can be

satis�ed from the cache with a consequent load decrease on server nodes.

A simple implementation is the main advantage of the TCP-gateway approach that can be

implemented on any operating system. The main drawback is the cost of this solution as both

request and response data ows through the Web switch up to the application level. TCP splicing

reduces TCP gateway overhead, because it eliminates the expensive copying and context switching

operations that result from the use of an application-level proxy. However, even in this instance,

the Web switch can easily become the bottleneck of the cluster as it needs to modify the TCP/IP

headers.

Layer-7 Web switches that use one-way solutions enable the server nodes to respond directly to

the clients, thus o�ering higher scalability than two-way solutions. In particular, the TCP hando�

approach scales better than TCP splicing as shown in [9]. The main drawback of one-way solutions

at layer-7 lies in that they require modi�cations in the operating system of both the Web switch

and the servers.

3.3.3 Layer-4 vs. layer-7 routing

The main advantage of layer-7 routing mechanisms over layer-4 solutions is the possibility of using

content-aware dispatching algorithms at the Web switch. We will see in Section 5.3 that through

these policies it is possible to achieve high disk cache hit rates, partition the Web content among

the servers, employ specialized server nodes, assign subsequent SSL sessions to the same server,

and achieve a �ne grain even with HTTP/1.1 persistent connections.

On the other hand, layer-7 routing mechanisms introduce severe processing overhead at the Web

switch to the extent that may cause the dispatcher to severely limit the Web cluster scalability [9,

91]. As an example, Aron et al. show in [9] that the peak throughput achieved by a layer-

7 switch that employs TCP hando� is limited to 3500 conn/sec, while a software based layer-4

switch implemented on the same hardware is able to sustain a throughput up to 20000 conn/sec.
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To overcome this drawback, alternative solutions for scalable Web server systems, which combine

content-blind and content-aware request distribution, have been proposed. They are described in

Section 7.

Table 1 outlines the main features and tradeo�s of the various mechanisms we have discussed

for Web cluster architectures.

Approach Routing Data ow Pros Cons

Layer-4 Content-blind Inbound/outbound Flexible, portable Switch throughput,
(two-way) TCP connection grain control
Layer-4 Content-blind Inbound Simple, Network topology,
(one-way) fast routing TCP connection grain control
Layer-7 Content-aware Inbound/outbound Simple, caching, Switch bottleneck,
(two-way) server specialization, slowest routing

HTTP grain control,
content partition,
SSL session reuse

Layer-7 Content-aware Inbound Server specialization, Switch bottleneck,
(one-way) HTTP grain control, complex routing

content partition,
SSL session reuse

Table 1: A summary of local routing mechanisms for Web clusters.

4 Request routing mechanisms for distributed Web systems

In this section, we analyze the routing mechanisms that apply to distributed Web systems. We

distinguish the mechanisms according to the level at which the decision on client request routing

occurs along the path from the client to the Web site. Therefore, we analyze in Section 4.1

DNS-based mechanisms where the routing takes place during the address resolution phase, and

in Section 4.2 (re-)routing mechanisms that are carried out by the Web servers. DNS-based level

mechanism is used only for the �rst-level routing and is typically centralized at a single entity, while

mechanisms deployed at the Web system are typically distributed and used for the second level of

routing or re-routing.

4.1 DNS routing mechanisms

DNS-based routing is the �rst solution that has been proposed in 1994 to handle multiple Web

servers hosting a Web site. It was originally conceived for locally distributed Web systems even

if now it is commonly used in geographically distributed Web systems [64]. DNS-based routing

intervenes during the address lookup phase at the beginning of the Web transaction when the

name of the Web site must be mapped to one IP address of a component of the Web system.

Through this simple mechanism, the authoritative DNS server (A-DNS) for the Web site can select

a di�erent server for every address resolution request reaching it [19]. The A-DNS replies to address

requests with a tuple <IP address, TTL>, where the �rst entry is the IP address of one of the nodes

in the distributed Web-server system, and the second entry is the Time To Live (TTL) denoting
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the period of validity of the name-address mapping that can be cached in the name servers along

the path from the A-DNS to the local DNS of the client. In fact, address caching limits the A-DNS

control on dispatching of the client requests as it reduces to a small percentage the address requests

that actually need the A-DNS server to handle address resolution [36, 44]. (Measures on real traces

indicate that the requests under direct control of the A-DNS responsible for a highly accessed Web

site are less than 5% of the total requests reaching the system.) Indeed, along the resolution chain

between the client and the A-DNS there are several name servers which can hold a valid mapping

for the site name. When this mapping is found in one of the name servers on this path and the

TTL is not expired, the address request is resolved, thus bypassing the name resolution decision

provided by the A-DNS. Only address mapping requests made after the expiration of the TTL in

all the name server caches on the path reach the A-DNS. The number of address lookups resolved

by the A-DNS is further reduced because of caching at the browser level. As a consequence of both

network- and client-level address caching, the DNS-based approach permits a very coarse grain

request dispatching.

To limit the e�ects of address caching at network level and allow for a �ner grain request

distribution, the A-DNS can specify a very low value for the TTL. However, this approach has its

own drawbacks and limits. First of all, it increases the Internet traÆc for address resolutions that

might overwhelm the A-DNS to the extent that, if not replicated among multiple name servers, the

A-DNS becomes the system bottleneck. Moreover, if any user request needs an address resolution,

the response time perceived by users is likely to increase [88]. Finally, the TTL period chosen by

the A-DNS does not work on browser-level caching and, beside that, low TTL values might be

overridden by non-cooperative intermediate name servers that impose their minimum TTL when

the suggested value is considered too low.

4.2 Web server routing mechanisms

Some routing mechanisms can be implemented also by the Web servers that can (re)direct a client

request to another node. Speci�cally, we consider the triangulation mechanism implemented at

TCP/IP level, and HTTP redirection and URL rewriting mechanisms that work at application

level.

4.2.1 Triangulation

When triangulation routing is used, the client continues to send packets to the �rst contacted server

even if the request is actually serviced by a di�erent node. The �rst node routes client packets to

the second server at the TCP/IP level. The routing mechanism is based on packet tunneling [10],

which has been described in Section 3.1. Upon the arrival of a new TCP connection request from

the Web switch, the Web server decides to serve it locally or to redirect it. In the latter instance, the

server encapsulates the original datagram from the client into another datagram. The target node

recognizes that the datagram has been re-routed and responds directly to the client. Subsequent

packets from the client pertaining to the same TCP connection continue to reach the �rst contacted

23



node, which re-routes them to the target server until the connection is closed.

4.2.2 HTTP redirection

The HTTP protocol standard, starting from version 1.0, allows a Web server to respond to a client

request with a 301 or 302 status code in the response header that instructs the client to resubmit

its request to another node [17, 50]. The built-in HTTP redirection mechanism supports only per

URI-based redirection. The status code 301 (\Moved Permanently") speci�es that the requested

resource has been assigned a new permanent URI and any future reference to this resource will

use the returned URI. The status code 302 (corresponding to \Moved Temporarily" in HTTP/1.0

and to \Found" in HTTP/1.1 protocol speci�cations) noti�es the client that the requested resource

resides temporarily under a di�erent URI. Figure 12 shows the ow of requests and response when

HTTP redirection is activated.
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Figure 12: HTTP redirection.

An advantage of HTTP redirection is that replication can be managed at a medium granularity

level, down to individualWeb pages. Furthermore, HTTP redirection allows content-aware routing,

as the �rst server receiving the HTTP request can take into account the content of the request in

selecting another appropriate node.

The main drawback is that this mechanism adds an extra round-trip time to the request pro-

cessing, as every HTTP redirection requires the client to initiate a new TCP connection with the
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destination node. This extra round-trip time increases the network component of the response

time; however, it is not automatic that the end user experiences a slower response time for the

requested page. Indeed, the increased network time could be compensated by a sensible reduction

in the server response time, especially when the �rst contacted Web node is highly loaded.

A minor drawback of HTTP redirection is due to the fact that most Web browsers do not

handle redirection as speci�ed by HTTP standard that requires the browser to display the originally

requested URL instead of the redirected URL. Instead, most browsers display and bookmark the

name of the new server to which the client has been redirected, thus defeating the routing mechanism

when HTTP redirection is implemented by system entities di�erent from Web servers.

4.2.3 URL rewriting

URL rewriting is a quite di�erent mechanism to implement Web server re-routing. Now, the �rst

contacted node changes dynamically the links for the embedded objects within the Web page that

it serves to point to another node [67]. Such a mechanism integrated with a multiple-level DNS

routing technique is also used by Content Delivery Networks, such as Akamai [2]. The drawback

of URL rewriting is that it introduces additional load on the redirecting Web node because each

Web page has to be dynamically generated in order to contain the modi�ed object references.

Furthermore, it may cause a considerable DNS overhead, as an additional address resolution is

necessary to map the new URL into the corresponding IP address. It has been demonstrated that

address lookup might take substantially longer than network round-trip time [35].

4.3 Comparison of routing mechanisms for distributed Web systems

DNS-based routing determines the server destination of client requests during the address resolution

phase that is typically activated at most once for each Web session. The request distribution among

the Web nodes is very coarse because all client requests in a session will reach the same server.

Moreover, address caching at intermediate name servers and client browsers further limits the

necessity of contacting the A-DNS. Setting TTL to low values allows for a �ner grain request

distribution, but it might limit general applicability because of the presence of non-cooperative

name servers, make the A-DNS a potential bottleneck, and increase the latency time perceived by

users.

Although initially conceived for locally distributed architectures (NCSA's Web site), DNS-based

routing can scale well geographically. The popularity of this approach for wide-area Web systems

and for Content Delivery Networks is increasing due to the seamless integration with standard DNS

and the generality of the name resolution process, which works across any IP-based application.

A solution to address DNS issues is to add a second-level routing carried out by the Web

servers through a Web system-based re-routing mechanism operating at TCP or HTTP level. The

main disadvantage of triangulation is the overhead imposed on the �rst contacted server, as it

must continue to forward client packets to the destination node. That is to say, the triangulation

mechanism does not allow the �rst server to completely get rid of the redirected requests. Moreover,
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as triangulation is a content-blind routing mechanism, it requires full content replication, and does

not allow �ne grain dispatching when the Web transaction is carried out through a HTTP/1.1

persistent connection.

Unlike triangulation-based solutions, application-level Web system mechanisms, such as HTTP

redirection and URL rewriting, do not require the modi�cation of packets reaching or leaving the

Web-server system. This allows to take into account the requested content in the dispatching

decision thus providing also �ne grain re-routing. The HTTP redirection is fully compatible to

any client software, however its use limits the Web service to HTTP requests only and may cause

an increase in response time and network traÆc, since a redirected Web page request requires two

TCP connections prior to be serviced.

Application-level Web system mechanisms can avoid ping-pong e�ects that occur when an

already re-routed request is further selected for reassignment. A cookie is set when the request is

redirected for the �rst time, so prior to decide about reassignment the server inspects if a cookie

is present or not. The triangulation mechanism is free from these side e�ects as the destination

node can deduce if the request has already been re-routed by simply inspecting the source packet

address.

Table 2 outlines and summarizes the features and tradeo�s of the various routing mechanisms

for distributed Web systems.

Approach Data ow Pros Cons

DNS Direct Simple, Coarse-grained control,
general applicability content-blind,

limited scalability

Triangulation Triangular Simple Redirecting node overhead,
TCP-grained control,
content-blind

HTTP redirection Redirection Simple, Transmission overhead,
medium-grained control, HTTP requests only
content-aware

URL rewriting Redirection Fine-grained control, Server overhead,
content-aware HTTP requests only,

multiple address lookups

Table 2: A summary of routing mechanisms for distributed Web systems.

5 Dispatching algorithms for cluster-based Web systems

After the analysis of the mechanisms for routing requests, in this section we describe the policies

that can be used to select the target server node in a cluster-based Web system. The dispatching

policy has an immediate e�ect on both performance experienced by the users and scalability of the

system.

In a Web cluster the dispatching policy is carried out by the Web switch that acts as a global

scheduler for the system1. Global scheduling policies have been classi�ed in several ways, following
1We use the de�nition of global scheduling given in [28] and dispatching as synonymous.
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di�erent criteria [28, 89, 90, 96]. There are several alternatives, such as load balancing vs. load

sharing, centralized vs. distributed, and static vs. dynamic algorithms, but only a subset of them

can be actually applied in a Web cluster. This architecture with a single Web switch that receives

all incoming requests drives the choice to centralized dispatching policies. Moreover, if we consider

that the main load sharing objective is to smooth out transient peak overload periods while load

balancing algorithms strive to equalize the loads on all the server nodes [63, 90], it is clear that a

Web switch should aim to share rather than to balance cluster workload. Absolute stability is not

always necessary and sometime impossible to achieve in a highly dynamic system such as a Web

cluster hosting a popular Web site.

The real alternative is therefore among static vs. dynamic algorithms, although the Web switch

cannot use highly sophisticated dispatching algorithms because it has to make fast decision for

hundreds or thousands of requests per second. Static algorithms are the fastest solution to prevent

the Web switch from becoming the primary bottleneck of the Web cluster because they do not rely

on the current state of the system at the time of decision making. However, these algorithms can

potentially make poor assignment decisions. Dynamic algorithms have the potential to outperform

static algorithms by using some state information to help dispatching decisions. On the other hand,

dynamic algorithms require mechanisms that collect and analyze state information, thereby incur-

ring in potentially expensive overheads. The requirements listed below summarize the constrains

for dispatching algorithms that we will analyze in this section.

1. Low computational complexity, because dispatching decisions are required to be made in

real-time.

2. Full compatibility with existing Web standards and protocols.

3. All state information needed by a dispatching policy has to be actually accessible on the Web

switch. In particular, the switch and servers of the Web cluster are the only entities that can

collect and exchange load information. We do not consider any state information that needs

active cooperation from other components that do not belong to the content provider.

5.1 A taxonomy of dispatching algorithms

We have seen that in Web clusters the only practical choice among all global scheduling policies

lies in the static vs. dynamic algorithms. A third class of load sharing policies that has been widely

investigated in literature is the class of adaptive algorithms, where the load sharing policy as well

as the policy parameters can change on the basis of system and workload conditions [90]. However,

to the best of our knowledge, no existing Web switch uses adaptive algorithms.

Static dispatching algorithms do not consider any state information while making assignment

decisions. Instead, dynamic algorithms can take into account a variety of system state information

that depends also on the OSI protocol stack layer at which the Web switch operates. Because of the

importance of this factor, we prefer to �rst classify the dispatching algorithms among content-blind
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dispatching, if the Web switch works at TCP/IP level, and content-aware dispatching, if the switch

works at application level.

We then use the literature classi�cation by distinguishing static and dynamic algorithms. It is

to be noted that we assume that static algorithms are deployed only by Web switches that operate

at TCP/IP level because the use of a sophisticated architecture such as a layer-7 switch is motivated

only if its bene�ts are fully exploited by the dispatching algorithm. Dynamic algorithms can be

further classi�ed according to the level of system state information being used by the Web switch.

We consider the following three classes.

Client state aware policies. The Web switch routes requests on the basis of some client infor-

mation. Layer-4 Web switches can use only network-level client information such as client

IP address and TCP port. On the other hand, layer-7 Web switches can examine the entire

HTTP request and make decisions on the basis of more detailed information about the client.

Server state aware policies. The Web switch assigns requests on the basis of some server state

information, such as current and past load condition, latency time, and availability. Further-

more, in content-aware dispatching, the switch can also take into account information on the

content of the server disk caches.

Client and server state aware policies. The Web switch routes requests by combining client

and server state information. Actually, most of the existing client state aware policies belong

to this class, because they always use some more or less precise information about the server

loads (at least server availability).

Figure 13 summarizes the taxonomy for dispatching algorithms that we have examined so far.

We recall that static algorithms as well as server state aware policies are meaningful only for

content-blind Web switches operating at TCP/IP level.

5.2 Content-blind dispatching policies

In this section, we describe the main content-blind dispatching policies according to the taxonomy

shown in Figure 13, and detailed in Figure 14 with some representative algorithms for each category

at the bottom level.

5.2.1 Static algorithms

Static policies do not consider any system state information. Typical examples are Random and

Round-Robin (RR) algorithms. Random distributes the incoming requests uniformly through

the server nodes with equal probability of reaching any server. RR uses a circular list and a pointer

to the last selected server to make dispatching decisions, that is, if Si was the last chosen node, the

new request is assigned to Si+1, where i+ 1 = (i+1)modN and N is the number of server nodes.

Therefore, RR utilizes only information on past assignment decision.
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Figure 13: Taxonomy of dispatching policies in Web clusters.

Both Random and RR policies can be easily extended to treat servers with di�erent processing

capacities by making the assignment probabilistic on the basis of the server capacity [36]. To this

purpose, if Ci indicates the server capacity, the relative server capacity �i (0 � �i � 1) is de�ned

as �i = Ci=max(C), where max(C) is the maximum server capacity among all the server nodes.

It is to be noted that the server capacity is a con�guration parameter, thus a static information.

For Random policy, heterogeneous capacities can be taken into account by assigning di�erent

probabilities to the servers according to their capacity. The RR policy can treat heterogeneous

server nodes in the following way. A random number % (0 � % � 1) is generated, and, assuming Si

was the last chosen node, the request is assigned to Si+1 only if % � �i. Otherwise, Si+2 becomes the

next candidate and the process recurs, that is another random number is generated and compared

with the relative capacity of Si+2.

Di�erent processing capacities can be also treated by using the so-called static Weighted RR

(for short, static WRR), which comes as a variation of the Round-Robin policy. Each server is

assigned an integer weight wi that indicates its capacity. Speci�cally, wi = Ci=min(C), where

min(C) is the minimum server capacity among all the server nodes. The dispatching sequence will

be generated according to the server weights [68]. As an example, let us assume that S1, S2, and S3

have the weights 3, 2, and 1, respectively. Then, a dispatching sequence can be S1 S1 S2 S1 S2 S3.
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5.2.2 Client state aware algorithms

As layer-4 Web switches are content information blind, the type of information regarding the client

is limited to that contained in TCP/IP packets, i.e., IP source address and TCP port numbers.

These coarse client information can be used to provide a simple method to statically partition the

server nodes and to assign groups of clients identi�ed through their IP address to di�erent servers.

5.2.3 Server state aware algorithms

Client information is immediately available at the Web switch because it receives all requests for

connection. On the other hand, when we consider dispatching algorithms that use some server

state information we have to address several issues: which server load index? How and when to

compute it? How and when to transmit it to the Web switch? These are well known problems in

networked system [40, 49]. The note in Section 5.4.2 is devoted to the analysis of some alternatives

in Web clusters.

Once a server load index is selected, the Web switch can apply di�erent dispatching algorithms.

A common scheme is to have the new connection assigned to the server with the lowest load

index (the so-called Least Loaded policy). For example, in the Least Connections policy,

which is usually adopted in commercial products (e.g., Cisco's LocalDirector [33], F5's Networks'

BIG/ip [48]) the Web switch assigns the new request to the server with the fewest active connections.

A simple extension, which assigns static weights to the servers according to their capacity, allows

to take into account heterogeneity in server capacity [68]. The underlying idea is that servers

with greater capacity should support a larger number of active connections: this can be simply

achieved by dividing the number of active connections by the server weight. As a further example,

in the Fastest Response policy, the Web switch assigns the new connection to the server which

is responding faster, i.e., showing the smallest latency time in the last observation interval.

The Weighted Round-Robin (WRR) algorithm is a variation of the static WRR. WRR as-
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sociates each server with a dynamically evaluated weight that is proportional to the server load

state [59]. Periodically, the Web switch gathers load index information from the servers and com-

putes the weights, that are dynamically incremented for each new connection assignment.

5.2.4 Client and server state aware algorithms

Client information available at a layer-4 Web switch (e.g., the source IP address and the service

port number within the TCP header) is usually combined with some server state information to

provide the so called client aÆnity [59, 68]. Instead of assigning each new connection to a server

only on the basis of the server state regardless of any past assignment, consecutive connections from

the same client can be assigned to the same server for either performance or functional reasons. As

an example of performance reasons, consecutive SSL connections from the same client are assigned

to the same server during the life span of the SSL key, so as to avoid time- and resource-consuming

operations for SSL key negotiation and generation. An example of functional requirement for client

aÆnity is FTP, as this protocol uses two connections for the same client-server interaction. In

policies based on client aÆnity, the client and server information have a di�erent weight: the client

information, when available, usually overrides server information for assignment decisions.

5.2.5 Considerations on content-blind dispatching

For a layer-4 Web switch, static algorithms are the fastest dispatching solution because they do

not rely on any system state information in making the decision. Furthermore, they are very easy

to implement. However, these stateless algorithms might make poor assignment decisions due to

highly variable service times and resource consumption that characterize Web workload.

Dynamic algorithms have the potential to outperform static algorithms by using some state in-

formation in the process of dispatching decision. However, they require mechanisms that collect and

analyze state information, thereby incurring in potentially expensive overheads (see Section 5.4.2).

Furthermore, setting the right parameters of dynamic policies can be a diÆcult task in highly

variable systems such as Web clusters.

Server state aware algorithms seem to be the best choice, even if not all policies work �ne. For

example, the least loaded approach tends to drive servers to saturation as all requests are sent to

the same server until new information is propagated. This \herd e�ect" is well known in distributed

systems [40, 73], yet the least loaded approach is commonly used in commercial products. On the

other hand, many experiments and simulation results have demonstrated that the WRR policy

compromises simplicity with eÆcacy at best [27, 59].

5.3 Content-aware dispatching policies

The complexity of layer-7 Web switches that can examine the HTTP request motivates the use

of more sophisticated content-aware distribution policies. We detail the taxonomy for content-

aware dispatching shown in Figure 13 with an additional level that considers the main goal of the

dispatching policies. Figure 15 summarizes the taxonomy of the content-aware dispatching policies
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and shows at the bottom level the proposed algorithms that use information about the requested

URL for di�erent purposes, such as

� to improve reference locality in the server caches so to reduce disk accesses (cache aÆnity);

� to use specialized server nodes to provide di�erent Web services (specialized servers), such as

streaming content, dynamic content, and to partition the Web content among the servers, for

increasing secondary storage scalability;

� to increase load sharing among the server nodes (load sharing).

Furthermore, additional information regarding the HTTP request, such as cookies and SSL

identi�ers, can be also used to exploit client aÆnity algorithms. Indeed, the SSL protocol involves a

computationally expensive handshake procedure (certi�cates exchange, encryption and compression

negotiation, session ID setup), while subsequent SSL sessions can skip the handshake (by using

again the same session ID) for a limited period of time. However, it is to be noted that support

for stateful services can be also provided by Web switches that operate at TCP/IP level (although

with a lower degree accuracy as explained in Section 5.3). Indeed, stateful services can be identi�ed

through the service port (e.g., 443 for SSL) and a connection reuse timeout can be set [59].

Finally, when HTTP/1.1 persistent connections are used, a layer-7 Web switch can assign

requests traveling on the same TCP connection to di�erent servers, thus achieving a granularity

control down to individual HTTP requests. On the other hand, a layer-4 switch must assign the

entire TCP connection to the same server. It implies that multiple HTTP requests on the single

persistent connection reach the same server, that is the control granularity on which the assignment

is activated is at the level of the entire TCP connection. With HTTP/1.0, there is no di�erence for

the granularity control between layer-4 and layer-7 routing because a one-to-one correspondence

exists between an HTTP request and a TCP connection.

5.3.1 Client state aware algorithms

Let us �rst consider the left part of the taxonomy in Figure 15. In cache aÆnity policies, the �le

space is typically partitioned among the server nodes. A hash function can be used to perform a

static partitioning of the �les. The dispatching policy running on the Web switch (namely, Hash

algorithm) uses the same function. This scheme exploits at maximum the locality of references

in the server nodes and achieves the best cache hit rate. However, it can be applied to Web

sites providing static content only. Moreover, it ignores load sharing completely, as it is diÆcult

to partition the �le space in such a way that the requests are balanced out. Indeed, if a small

set of �les accounts for a large fraction of requests (a well-know characteristic of Web workload,

e.g., [6, 38]), the server nodes serving those critical �les will be more loaded than others.

For Web sites providing heterogeneous Web services, the requested URL can be used to statically

partition the servers according to the service type they handle. The goal is to employ specialized

servers for certain type of requests, such as dynamic content, multimedia �les, streaming video [98].
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We refer to this policy as to Service Partitioning. Most commercial content-aware switches

deploy this type of approach (e.g., F5's BIG-IP [48], Resonate's Central Dispatch [86]).

The third main goal of the content-aware dispatching algorithms is to improve load sharing

among the server nodes. These strategies do not require static partitioning of the �le space and

the Web services. Two policies belong to this class: Size Interval Task Assignment with

Equal load (SITA-E) [56] and Client-Aware Policy (CAP) [27]. The former is more oriented

to Web sites providing static information, the latter to sites providing Web services with di�erent

computational impact on system resources.

The SITA-E policy partitions dynamically Web content among the servers according to the �le

size distribution. It de�nes the size range associated with each server in such a way that the total

load directed to each server is the same [56]. The Web switch determines the size of the requested

�le and selects the target server on the basis of this information. The goal is to assign light tasks to

the nodes that only handle light tasks thus separating light from heavy tasks. The SITA-E policy

founds on the basic assumption that the service time of a request is proportional to its size; this

assumption is, however, valid for static content only.

Most load sharing problems occur when the Web site provides heterogeneous services that make

an intensive use of di�erent Web server resources. Previously described policies do not consider this

issue as they either focus on the provision of static content or address multiple services through a

static server partitioning. To improve load sharing in Web clusters that provide multiple services,

the CAP policy takes into consideration the requested service [27]. Web requests are classi�ed on

the basis of their impact on main Web server resources, such as static, lightly dynamic, intensive

dynamic (or disk bound services, CPU bound services, disk and CPU bound services). Although
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the Web switch cannot estimate the service time of a client request accurately, it can distinguish

the class of the request from the URL and estimate its impact on main Web server resources. The

Web switch manages a circular list of server assignments for each class of Web services. CAP does

not require a hard tuning of parameters, which is typical of most dynamic policies, because the

service classes are decided in advance and the dispatching choice is determined statically once the

requested URL has been classi�ed.

The last type of client information that the Web switch can use to select a server is the so-called

session identi�er, like cookies and SSL identi�ers. Based on this information, the Web switch

can assign all Web transactions from the same client to the same server. Session identi�ers provide

a powerful means to maintain client aÆnity at the individual client granularity. In particular,

they avoid the limitations of the client IP address identi�cation at a layer-4 Web switch, when

Web proxies in the client-server path can squeeze a large number of users into a small number of

di�erent IP addresses.

5.3.2 Client and server state aware algorithms

Dispatching algorithms implemented at application level can also use a combination of client and

server state information. In this section, we describe two policies that have been speci�cally de-

signed to consider both client and server information. Other client aware policies (e.g., CAP) can

be easily integrated with some server state information. In the taxonomy in Figure 15, the proposed

policies belong to two classes because they use client information for cache aÆnity purposes and

server information for load sharing goals.

The Locality-Aware Request Distribution (LARD) policy is a content-aware request dis-

tribution that considers both locality and load balancing [8, 79]. The basic principle of LARD is

to direct all requests for the same Web object to the same server node as long as its utilization is

below a given threshold. By so doing, the requested object is more likely to be found into the disk

cache of the server node. Some check on the server utilization is useful to avoid overloading servers

and, indirectly, to improve load sharing. When a server utilization reaches a given watermark, the

dispatcher assigns the request to a lowly loaded node, if it exists, or to the least loaded server. A

scheme similar to the LARD policy has been implemented also in the HACC cluster [101].

While in LARD policy the Web switch maintains the mapping from a given �le to a set of

nodes that serve that �le, the Cache manager dispatching policy relies on a cache manager that

is aware of cache content of all Web servers [20]. Each server provides periodically this information

to the cache manager. If the requested object is not cached in any server, the Web switch selects

the least loaded server. Otherwise, it selects the lightest loaded server having the object cached,

provided that its load is within a threshold over the least loaded server [20].

5.3.3 Considerations on content-aware dispatching

Content-aware dispatching policies based only on client information provide better performance

when they take into account the impact of the service being requested, as in the CAP policy [27].
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On the other hand, static partitioning algorithms can saturate the capacity of some servers while

others are underloaded.

Pure client state aware policies have a great advantage over policies that use also server informa-

tion, as they do not require expensive and hard to tune mechanisms for monitoring and evaluating

the load on each server, gathering the results, and combining them to make dispatching decisions

(see Section 5.4.2). However, even client state aware policies should take into account at least

a binary server information in order to avoid routing the requests to temporarily unavailable or

overloaded servers.

Dispatching policies that aim to improve cache hit rates, such as LARD, give best results for

Web sites providing static information and some simple database information. On the other hand,

when we consider Web clusters that provide highly heterogeneous content, only policies, such as

CAP, that aim to share the load among all (or most) of server components, can provide satisfactory

performance [26].

5.4 Analysis of dispatching algorithms

In this section, we �rst compare content-blind and content-aware dispatching. Then, we give some

considerations about pros and cons of using server state information in Web clusters.

5.4.1 Content-blind vs. content-aware dispatching

Content-aware dispatching policies can potentially outperform the content-blind algorithms as they

rely on more detailed client information in making the assignment decision. For example, the LARD

algorithm shows substantial performance advantages over the WRR strategy when considering

static content [8, 27].

On the other hand, operations at layer-7 are expensive, hence client state aware policies must

limit the parsing of client information not to cause excessive overhead on the Web switch. For ex-

ample, a cookie might be 4096 characters long and this information would be carried on many TCP

segments. If the Web switch has to inspect every cookie before assigning the corresponding client

request, the latency time increases and the Web switch can easily become the system bottleneck.

It is important that new content-aware dispatching algorithm consider also the heterogeneity of

Web services and do not focus only on improving cache hit rate of static content. The motivation

is that the complexity of services and applications provided by Web sites is ever increasing as

demonstrated by the integration of traditional Web publishing sites with e-commerce and Web-

based information systems requiring dynamic and secure services. .

5.4.2 A note on server state information

Various issues need to be addressed when we consider dispatching policies based on some server

state information: �rst of all, the choice for one or more server load index(es); then the way to

compute the load state information and the frequency of the samples; �nally, due to the cluster

architecture, some indexes may not be immediately available at the Web switch, so we have to
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decide how to transmit them and how frequently. Any of these choices can have a strong impact

on �nal performance of the dispatching algorithms, to the extent that the same policy can behave

much better or much worse of other algorithms depending on the quality of the chosen load indexes.

The three main factors that a�ect the latency time of a Web request are loads on CPU, disk,

and network resources of the Web server nodes. Typical server state information includes the

CPU utilization evaluated over a short interval, the instantaneous CPU queue length periodically

observed, the amount of available memory, the disk or I/O storage utilization, the instantaneous

number of active connections, the number of active processes, and the object latency time, i.e., the

completion time of an object request in the Web cluster.

Load indexes can be further classi�ed into three classes according to the way they are evalu-

ated: input indexes, server indexes, and forward indexes. Input indexes are computed by the Web

switch and do not require any server cooperation. Server indexes are evaluated by each server and

transmitted to the Web switch. Forward indexes are information got directly by the Web switch

that emulates HTTP requests to the Web servers.

The Web cluster architecture determines the feasibility and convenience of using some load

indexes instead of others. For example, input indexes and server indexes can be used in one-way

and two-way architectures while forward indexes are meaningful in one-way architectures only,

because in two-way architectures the Web switch can keep track of each connection without the

need of generating additional traÆc in the Web cluster.

Both server and forward indexes typically take longer than input indexes to acquire. However,

input index information is limited to the number of active connections that provides a rough

estimate of the state of the Web servers as seen by the binding table of the Web switch.

On the other hand, server indexes can provide detailed information such as CPU and disk

utilization, object latency time, number of active connections, and the number of processed packets.

This last information can be the most useful load index when the number of transferred packets

varies greatly from connection to connection, for example, when large �les can be transmitted or

when HTTP/1.1 persistent connections are used. In one-way architecture, server indexes have to

be computed by a process monitor running on each server and periodically transmitted to (or get

by) the Web switch. In two-way cluster architectures the same mechanism can be used, otherwise

a subset of server indexes (e.g., number of active connections, transmitted packets, object latency

time) can be inferred by the Web switch that has a full control on the data ow. Other server

indexes, such as CPU and disk utilization, always need a process monitor on the servers and a

communication mechanism from the servers to the Web switch.

It is to be noted the combination of a set of load indexes into a single index that reects the

server load is an interesting research issue that has not yet been investigated in the context of Web

clusters.

In addition to the choice of the server load index, all server state aware policies face the problem

of updating the load information. The intervals between updates of the load indexes need to

be evaluated carefully to make sure that the system remains stable. If the interval is too long,

performance may be poor because the system is responding to old information about the server
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loads. On the other hand, too short intervals can result in system overreaction and instability. A

simple strategy for interpreting stale load information that can apply to layer-4 Web switches has

been proposed in [40].

6 Classi�cation of products and prototypes

In the last years, the size of Web-server systems market has rapidly expanded: in 1996 it was

close to $0 worth, while in 2000 it reached $580M. Therefore, there is a large number of companies

that investigate solutions and propose products in this �eld. In this section, we classify research

prototypes and commercial products that implement cluster-based Web systems according to the

architecture taxonomy outlined in the Section 3 and illustrated in Figure 11. We can anticipate that

commercial products typically use simple dispatching policies, whereas research prototypes have

investigated more sophisticated solutions. It is also important to observe that the names of the

companies and products tend to change frequently because of continuous merges and acquisitions

in this �eld. For example, in June 2000 Cisco Systems [33] acquired ArrowPoint, one of the

�rst companies to commercialize layer-7 Web switches, while in January 2001 NortelNetworks [76]

entered content-aware dispatching market by acquiring Alteon WebSystems that was one of the

market leaders.

6.1 Products based on a layer-4 Web switch

Table 3 classi�es some commercial products and research prototypes that work at TCP/IP level.

Some products, such as Linux Virtual Server [68], appear in the table multiple times as they can

be con�gured to support more than one request routing mechanism.

In the remaining part of this subsection we describe some of research prototypes and commercial

products based on a layer-4 Web switch. Speci�cally, we focus on one-way architectures which use

packet forwarding (i.e., IBM Network Dispatcher [59, 61] and ONE-IP [41]) as it turns out to be

a scalable solution. We also consider some two-way architectures that use packet double-rewriting.

This routing mechanism is implemented either by a special-purpose hardware (i.e., Cisco's Lo-

calDirector [33]) or by a software running on a common operating system (i.e., Magicrouter [4]).

LocalDirector. The LocalDirector product from Cisco Systems [33] is an early commercial imple-

mentation of a layer-4 Web switch based on the NAT approach. It o�ers various dispatching

policies, among which the least connections that selects the server with the least number

of active connections, and the fastest response algorithm that dispatches the request to the

server that was fastest in responding to the previous connection requests.

Through the use of a sticky ag, this device can also support some stateful services, such as

SSL. This is accomplished by directing multiple connections from the same client to the same

server within a period of time that is set by default to 5 minutes.

Magicrouter. Magicrouter, developed at the University of California at Berkeley, implements

a layer-4 Web switch with packet double-rewriting [4]. It uses a mechanism of fast packet
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Two-way One-way

Packet double-rewriting Packet single-rewriting Packet tunneling Packet forwarding

Cisco's TCP Router [44] Linux Virtual IBM Network
LocalDirector [33] Server [68] Dispatcher [59, 61]
Magicrouter [4] Linux Virtual

Server [68]
Linux Virtual ONE-IP [41]
Server [68]
LSNAT [92] LSMAC [54]
F5 Networks' Intel's NetStructure
BIG/ip [48] TraÆc Director [62]
Foundry Networks' Nortel Networks'
ServerIron [51] Alteon 780 [76]
Cyber IQ's Foundry Networks'
HyperFlow [39] ServerIron [51]
HydraWEB's Radware's WSD
Hydra2500 [60] Pro [85]
Coyote Point's
Equalizer [37]

Table 3: Layer-4 Web clusters.

interposing, where a user level process, acting as a switchboard, intercepts client-to-server and

server-to-client packets and modi�es them by changing the addresses and checksum �elds. To

share the load among the Web-server nodes, three dispatching algorithms are considered:

round-robin, random and incremental load. The last is similar to selecting the least loaded

server and is based on the current server load plus an adjustment related to the number of

active connections.

Network Dispatcher. IBMNetwork Dispatcher [59, 61] is an extension of the basic TCP router [41]

and it is now a component of IBM WebSphere Edge Server. Network Dispatcher provides a

packet forwarding mechanism, where all the server nodes share the same VIP address. The

switch forwards packets, destined to the Web cluster, to a selected server by using its MAC

address on the LAN, hence without modifying the TCP/IP headers. The dispatching policy

implemented by the Web switch can be dynamically based on server load and availability.

Speci�cally, the Network Dispatcher uses a weighted round-robin algorithm to distribute con-

nections among the server nodes. The Network Dispatcher is able to support stateful services

through a client aÆnity mechanism that is similar to Cisco's sticky ag.

ONE-IP. ONE-IP is one of the �rst implementations of a layer-4 Web switch based on packet

forwarding. Implemented at the Bell Labs [41], ONE-IP uses the if config alias option

to con�gure the aliasing interface of all Web-server nodes with the same VIP address (here

called ONE-IP). Two di�erent dispatching algorithms are supported. Through routing-based

dispatching, the Web switch selects the destination server based on a hash function, that maps

the client IP address into the primary IP address of a server, and then reroutes the packet

38



to the selected server. Through broadcast-based dispatching, the Web switch broadcasts the

packets having ONE-IP as destination address to every server in the cluster. A local �ltering

allows each server to evaluates whether it is the actual destination of the packets. This is

done by applying a hash function to the client IP address and comparing the result with its

assigned identi�er.

The main advantage of the ONE-IP approach is that the Web switch does not need to keep

track of any system state information, for example it does not need to maintain the active

connections in a binding table. Its weak point is the use of a hash function to select the server,

based on the client IP address. Although the hash function could be dynamically modi�ed

to provide fault tolerance, this approach is not able to adapt to dynamic conditions when

clients unevenly load the servers. Furthermore, the proposed hash function cannot take into

account heterogeneous capacity of the servers.

6.2 Products based on a layer-7 Web switch

In Table 4 we classify some commercial products and research prototypes that work at applica-

tion level. Some products listed herein, such as Foundry Networks' ServerIron [51], have already

been considered in Table 3 as they can be con�gured to support both layer-4 and layer-7 routing

mechanisms.

Two-way One-way

TCP gateway TCP splicing TCP hando� TCP connection hop

IBM Network [34] ScalaServer [8, 79] Resonate's
Dispatcher CBR [61] Central Dispatch [86]
CAP [27] Nortel Networks'

Web OS SLB [76]
HACC [101] Foundry Networks'

ServerIron [51]
Cisco's CSS [33]
F5 Networks'
BIG/ip [48]
Radware's WSD
Pro+ [85]
HydraWEB's
Hydra2500 [60]
Zeus's Load
Balancer [100]
[98]

Table 4: Layer-7 Web clusters.

We examine two research prototypes and two commercial products, as representative examples

of each routing mechanism shown in 4.

HACC. The Harvard Array of Cheap Computers (HACC) architecture [101] has been developed

at Harvard University with the goal of improving the locality of reference in request streams.
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The Web switch (here called Smart Router) performs the request routing by working as an

enhanced TCP gateway. The Smart Router is partitioned into two layers, the High Smart

Router (HSR) and the Low Smart Router (LSR), both layered on top of the TCP/IP stack.

The low-level LSR, implemented at kernel level, is in charge of the network Functionalities,

i.e., it manages connection setup and termination, forwards requests to server nodes, and

responds to the clients. The high-level HSR is responsible for selecting the target server node

on the basis of the locality properties and capacity of the nodes. To perform this task, the

HSR monitors not only the load on the servers but also the state of the �les stored by means

of a tree-based structure. Requests for new objects are assigned to the least loaded server and

the tree-based structure is updated. Subsequent requests for the same object are assigned to

the same server to improve locality of reference in disk cache.

WebOS SLB. Nortel Networks' WebOS SLB [76] performs content-aware dispatching by means

of a two-way architecture based on TCP splicing. The Web switch splices the connection

established with the client to a connection with a selected server. To this purpose, it modi�es

the TCP header of every packet that travels between the client and the server to perform

TCP/IP header recalculation and sequence number adjustments. To limit the bottleneck

risks at the Web switch, WebOS SLB relies on a dedicated network processor integrated with

a concurrency operating environment.

The dispatching policy is basically a service partitioning algorithm that allows specialized

servers to store speci�c object types. Hence, the client request is assigned by the Web switch

to a target server that is selected according to the type of the �le being requested.

ScalaServer. The ScalaServer prototype, developed at Rice University, implements a one-way

architecture based on TCP hando� [8, 79]. The request routing occurs at application level

and allows the server nodes to send the response packets directly to clients. The client request

is accepted by the Web switch that analyzes the URL content and dispatches the request to an

appropriate server, selected on the basis of the LARD policy described in Section 5.3. After

the server selection, the Web switch informs the target server of the status about the network

connection and the server takes over the connection, and communicates directly with the

client. Incoming traÆc on already established connections is forwarded to the target server

through an eÆcient forwarding module layered at the bottom of the Web switch's protocol

stack.

ScalaServer requires that the server operating system be modi�ed in order to support the

TCP hando� protocol. On the other hand, the hando� protocol is transparent to the Web

server application running on the server nodes, thus allowing the use of any o�-the-shelf Web

server.

To support HTTP/1.1 persistent connections and assign requests in the same connection to

di�erent servers, the ScalaServer prototype has been extended with a back-end forwarding

mechanism, that allows the original target node to forward a request to a second server

selected by the Web switch [8].
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Central Dispatch. To the best of our knowledge, Resonate's Central Dispatch [86] is the only

commercial product that implements a one-way architecture with a layer-7 Web switch. It

o�ers a proprietary solution called Connection Hop, which resembles the TCP hando� mech-

anism proposed in [8, 79]. Central Dispatch is a distributed software solution that is loaded

on the Web switch and on each Web server node. The connection hop operates at the network

layer between the network interface card and the TCP/IP stack, thus minimizing the latency

on incoming packets. Dispatching of requests that arrive at the Web switch is based on client

information and server availability and performance. Upon receipt of the HTTP request, the

switch parses the URL to determine the content being requested. If more than one server

is available to serve the request, the Web switch transfers the TCP connection to the least

loaded server.

7 Integrated dispatching mechanisms

One common objection raised against the Web cluster architecture concerns the Web switch that

represents a single point of failure and a potential system bottleneck. The former problem can

be solved only by a replication of the switch device integrated with some heartbeat technique [69]

or by a distributed dispatching mechanism [10]. This section focuses on the latter issues and

presents some extensions to the basic cluster architecture described in Section 2, with the main

goal of improving Web system scalability through a combination of request routing mechanisms.

Speci�cally, we examine the combination of DNS andWeb switch mechanisms and the integration of

caching mechanisms in the layer-7 Web switch to improve the system scalability. We also consider

the combination of layer-4 and layer-7 mechanisms and decoupling of the Web switch functions

among distinct nodes to address the scalability issue that may occur in the Web switch.

7.1 Solutions that improve Web cluster scalability

A simple solution to avoid a system bottleneck at the Web switch is to use multiple Web clusters,

each with a front-end switch and a visible IP address. During the address resolution phase, the

authoritative DNS can dispatch the client requests among the Web clusters through simple static

algorithms, such as round-robin. Each Web switch can use another dispatching algorithm to share

the load among the Web servers of each cluster. A similar architecture was �rst proposed by

Dias et al. where the Web switch operated at TCP level [44], and it is now adopted by several

geographically distributed Web systems.

Another approach for improving system throughput is to integrate a cache into a layer-7 Web

switch, to achieve the so called Web server accelerator [29]. The caches store frequently accessed

Web objects and respond to requests for these objects, thus relieving that workload from the Web

servers. The proposed system uses sophisticated mechanisms that allow caching of dynamic objects

too [65].

An evolution of the basic Web server accelerator architecture adds another layer of system
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components between the Web switch and the Web servers [91]. The additional layer consists of a

set of Web server accelerators, basically an array of caches with some dispatching functionality. The

goal is to improve Web cluster performance by increasing cache hit rates. The front-end switch can

be a layer-4 or a layer-7 Web switch. When a layer-4 switch receives incoming requests, it routes

them to the cache nodes regardless of the content of the request. Therefore, the request may be

sent to a wrong cache node that does not contain a cached copy of the object. If that happens when

the requested object is small, the �rst node gets the requested object from a node containing the

cached copy and sends the response back to the client. Instead, when the requested object is large,

the �rst node hands o� the TCP connection to a node containing a cached copy of it, and this node

responds directly to the client without passing through the �rst node or the layer-4 switch. The

use of a layer-7 Web switch as a front-end can reduce the work of the cache nodes and limit the

percentage of request redirection, however it achieves a lower aggregate throughput because of the

overhead of content-aware routing mechanisms.

Another proposal to improve Web cluster eÆciency through a global caching mechanism imple-

mented by the Web servers has been studied in [25]. The �rst dispatching level carried out by the

authoritative DNS or a layer-4 Web switch selects one Web server by means of a simple algorithm.

Depending on the size of the requested object, the presence of it in the local cache or in the caches

of other servers, the �rst contacted Web server always replies to the client immediately or after

having retrieved the �le from another server.

7.2 Solutions that improve Web switch scalability

The real risk of a system bottleneck in the front-end exists when the cluster uses a layer-7 Web

switch. Indeed, the additional overhead caused by content-aware routing can reduce the system

scalability by one order of magnitude with respect to layer-4 switches.

To overcome this drawback, design alternatives for high performance Web clusters propose the

combination of layer-4 and layer-7 switches. A layer-4 Web switch is the front-end node of the

cluster with its visible IP address. This switch receives all requests destined to the Web cluster

and distributes them between two or more layer-7 Web switches with some simple dispatching

algorithm. The layer-7 Web switches distribute the client requests received by the layer-4 switch

to the Web servers according to some content-aware policy.

Aron et al. [9] designed a prototype in which a front-end layer-4 switch receives client requests

and distributes them among the server nodes. In their turn, these nodes may forward the incoming

request to another server node based on the requested content. A distributor component resides

on each server node, in such a way that the HTTP server and the distributor processes are co-

located on the same node. Upon receiving a new TCP connection request, the layer-4 Web switch

selects one distributor on the basis of the server load. The distributor accepts the connection,

parses the client request, and contacts a dispatcher located on the internal LAN for the assignment.

If the dispatcher selects a di�erent server, the distributor hands o� the connection through the

TCP hando� protocol towards the server chosen by the dispatcher. Then, the server responds
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directly to the client without going through the layer-4 switch. When a TCP connection hando�

occurs, the distributor sends a message to the layer-4 switch by instructing it to route packets not

to the original server but to the node chosen by the dispatcher. In this architecture the second-

level dispatching decision is centralized and executed by a single dispatcher, while the second-level

routing is distributed and carried out by each distributor component running on the server nodes.

The motivation for this choice is that the processing overhead on a layer-7 switch is caused by the

routing mechanism and not by the server selection task. However, even if in [9] the authors show

that the dispatcher node is not the system bottleneck, a distributed dispatching algorithm carried

out by the server node could avoid the communication overhead caused by a centralized dispatcher.

The Multi-Node Load Balancing (MNLB) architecture from Cisco Systems [33] proposes an

alternative solution for improving Web switch scalability. To eliminate the scalability limitations

that occur in two-way layer-4 architectures (e.g., Cisco's LocalDirector [33]), MNLB separates

the packet-by-packet processing functions (changing addresses and port numbers, recalculating

checksums) from the server selection action. The front-end switches, called forwarding agents,

receive incoming packets from the clients. Multiple switches can be used to spread the load for

reliability and scalability reasons (the switch selection can be carried out by the authoritative

DNS server for the Web site or through the use of a multicast MAC address.) If the packet

belongs to a new connection, the agent forwards it to the service manager node which makes the

dispatching decision based on server information. The manager informs the agent about its decision,

so subsequent packets belonging to the same connection are forwarded directly to the target server

by the agent without passing through the service manager.

8 Placement of Web content and services

The scalability of a Web cluster depends also on the methods used to organize and access informa-

tion within the site. Data placement is a widely investigated research topic in distributed systems

and distributed databases and cannot be covered completely in one section. We outline main ideas

and give references for further reading by distinguishing static information from information that

is dynamically generated at the time of a client request.

8.1 Distribution of static information

When we consider locally distributed Web systems that do not use a content-aware dispatching

mechanism, any server node should be able to respond to client requests for any part of the provided

content tree. This means that each server owns or can access a replicated copy of the Web site

content, unless internal re-routing mechanisms are employed. There are essentially two mechanisms

for distributing static information among the Web servers of the cluster. One is to replicate the

content tree across independent �le systems running on the servers; the other is to share information

by means of a distributed �le system such as Andrew File System (AFS) or Network File System

(NFS).
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The �rst technique requires that each server in the cluster maintains a local copy of the Web

documents on its local disk. In such a way, each server only has to access its own disk, without any

extra communication with the other servers of the cluster. However, content replication has a high

storage overhead and, even worse, it requires any content update to be propagated to all the nodes

in short periods of time. An eÆcient mechanism for updating and controlling the documents should

be implemented to maintain consistency among the data stored on the servers. For sites providing

stable information, the data updating could be executed during the night, not to overload the local

network and disks in peak hours; furthermore the majority of Web requests are for read-only access,

where maintenance of consistency is not crucial. However, if data are highly volatile and frequently

updated, the execution of the updating and controlling process may cause heavy network and disk

overheads.

The other technique for sharing information uses a distributed �le system such as AFS and

NFS: each document is divided into logical blocks, which are distributed across the servers disks.

The use of a distributed �le system ensures the consistency of information and does not require a

large amount of disk space. On the other hand, it introduces a communication overhead between

the servers and may increase the response time as the server nodes have �rst to obtain the �le

information from the �le server before sending it to the client. Each technique has its bene�ts and

drawbacks. The choice for the best solution depends on the size of Web content, the frequency

of documents updating, the required level of data integrity and security, and the possibility of

implementing an eÆcient caching mechanism.

Web clusters based on layer-7 Web switches can use the same two strategies, i.e., replicating

the content tree on each server node or shared it through a distributed �le system. However, they

can also use a third alternative by partitioning the content tree among the Web server nodes.

This technique has two main advantages. It increases secondary storage scalability without the

overhead due to a distributed �le system. It allows the use of specialized server nodes to improve

responses for di�erent �le types, such as streaming content, CPU-intensive requests, and disk-

intensive requests [48, 86, 98]. On the other hand, content partitioning can lead to load imbalance

produced by the uneven distribution of Web documents popularity, because the servers storing hot

documents can be overwhelmed by client requests. It is also true that suitable caching mechanisms

can alleviate server overload due to hot spots because frequently accessed documents are likely not

to require a disk access.

Full replication or full partition of Web content are two opposite choices. If we consider that

the access patterns to Web �les are highly skewed, a partial replication of the most popular objects

among all servers and a partition of the others could be the most cost-e�ective solution. By carrying

this approach to the extremes, Pierre et al. propose a sophisticated mechanism that simultaneously

use several strategies for replicating Web content [84]. Indeed, the traditional static placement of

(static) data has potential weaknesses as the access pattern might even change quickly. Hence, it

would be interesting to investigate dynamic placement approaches that keep statistics about the

workload composition and automatically move and/or replicate objects at di�erent Web servers.
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8.2 Distribution of dynamic services

Although at the beginning Web is largely based on static and read-only information, more and

more Web sites provide Web pages that are personalized for the client or created dynamically

by the execution of some application process. While a Web server node can typically deliver

several hundred static �les per second, dynamic pages often require orders of magnitude higher

costs. Nevertheless, dynamic pages and services are essential in modern Web sites where Web

technologies have emerged as a valid alternative to traditional client-server computing. Indeed, the

Web simplicity and its compatibility with existing protocol is making this technology the preferred

standard interface for accessing many services exploited through computer networks. The so called

Web-based information systems or Web-based enterprise applications are mainly based on complex

interaction of several processes that require dynamic services and computation.

Dynamic Web services, databases and other (legacy) applications are typically hosted on a set

of servers di�erent from the Web server nodes. Hence, the Web cluster architecture for e-commerce

Web sites and Web-based information systems tend to have a multi-tiered structure, where all

the machines providing the same services are connected by the same LAN segment. A typical

architecture is shown in Figure 16. A Web switch is located between the Internet and the �rst set

of Web server nodes (presentation layer). A so called application server layer can be interposed

between the Web servers and the back-end servers (data layer). (In less complex architectures

where the application layer is thin, application processes can run on the Web server nodes).

The Web server nodes run the HTTP daemons that listen on some network port for the client

requests assigned by the Web switch, prepare the content requested by the clients, send the response

back to the clients or to the Web switch depending on the cluster architecture, and �nally return

to the listen status. The Web server nodes are capable of handling requests for static content,

whereas they forward requests for dynamic content to back-end nodes. To this purpose, while

a Web server is preparing the requested content, it might call an application program running

on an application server. These application servers run the software that handles all operations

between browser-based clients and a company's back-end databases. The application server accepts

requests from Web servers, executes the business logic, and interacts with database servers or other

legacy applications. The database server layer hosts and maintains databases, and provide powerful

database manipulating functions to the application servers.

Strict security strategies are employed to protect the safety of these Web clusters. A boundary

�rewall typically connects the Web switch to Internet. Another �rewall interconnects the LAN

segment of the Web server layer with that of the application server layer. A third �rewall is

interposed between the database server layer and the application server layer. These �rewalls are

con�gured to �lter all traÆc among the server layers so that, for example, the database servers can

only be contacted by the application servers which, in their turn, can only be reached by the Web

servers.

The generation of dynamic content opens several new issues that are beyond the scope of this

paper. The alternative solutions depend also on the application software, the chosen middleware
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Figure 16: A multi-tier architecture for a Web cluster.

and database technology. For example, commercial Web service softwares such as BEA WebLogic

and IBM WebSphere have evolved from simple Web servers into complex Web application servers

that use CGI, Java Server Page, Microsoft Active Server Pages, XML, and other technologies.

Among them, CGI, Server Side Includes, Server API (e.g., Netscape NSAPI, Microsoft ISAPI) and

Java can be used for managing dynamic requests at the server layer. The software at the application

layer is basically a gateway fromWeb servers to databases and legacy applications. A wide spectrum

of new technologies is coming on the scene, such as Cold Fusion, Domino, WebBuilder, IBM DB2

WWW Connection, Oracle Web Application Server, Informix Universal Web Connect, and Sybase

Dynamo Netscape Application Server.

As a consequence, the operations for dynamic services might be highly sophisticated and in-

volve several processes. For example, with the Enterprise Java Beans (EJB) technology, used by

Persistence PowerTier and BEA WebLogic Server, processing one dynamic request might involve

the Web switch, Web server, servlet, session-bean, and entity-bean before reaching the database.

The level of multiple indirections in multi-tierWeb cluster architectures where each layer consists

of multiple server nodes allows request routing and dispatching to be implemented at di�erent

levels, from the Web switch to the Web server layer to the Web application server layer. For

example, application servers can support application partitioning by distributing application logic

among multiple servers. Similarly, the components of large-scale applications can be grouped to

facilitate partitioning and management. A multi-tier cluster architecture might use a second-level

Web switch, that is in charge of selecting an appropriate application server node for requests that
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need dynamic processing. This approach to request routing can be further extended to the third

level of server nodes, composed of back-end servers which respond to queries originated by the

application servers.

Zhu et al. [102] have studied the problem of request dispatching in a multi-tier architecture,

where the second-level switch is integrated in each Web server node, called master node. It selects

the appropriate slave node that has to process the dynamic request and sends the result back to

the master. The slave node selection is based on a prediction model that estimates the expected

cost for processing the dynamic request on each slave node. Similar multi-tier architectures have

been also analyzed in [52]. A di�erent solution for load balancing based on CORBA middleware

technology is proposed in [78] where several dispatching strategies have been also proposed and

evaluated.

We can summarize that request dispatching, load sharing and load balancing at the internal

layers are implemented in most commercial products, but they are not widely studied topics in the

research community. Indeed, probably due to the complexity of achieving an optimal dispatching,

all products prefer to use very simple algorithms, typically round-robin and least loaded. The

most original proposals in this �eld are not oriented towards load balancing, but rather they aim

to improve performance of the multi-tier systems through caching of query results and dynamic

content [21, 42, 83, 77].

9 Summary and research perspectives

Much e�ort has been devoted in recent years to improve the scalability of systems supporting Web

sites. Systems with multiple nodes are the leading architectures to build highly accessed Web sites

that have to guarantee scalable services and to support ever increasing request load. In this paper,

we have analyzed routing mechanisms and dispatching algorithms that are suitable for locally

distributed Web systems. We have proposed an original taxonomy of the architectures, the routing

mechanisms and dispatching algorithms. Based on this material, we have analyzed the eÆciency

and the limitations of the di�erent techniques and evaluated the tradeo� among the considered

alternatives. In this section we present some research topics that are likely to impact future Web

cluster architectures.

The Web is becoming the standard interface for accessing remote services and applications,

and there is no doubt that Web clusters will be the basic architecture for Web-based information

systems, Web hosting centers, and Application Service Providers. Hence, there is general consensus

that the research interest in this �eld is likely to increase. This conclusion is also motivated by the

observation that the performance problems of Web-based architecture will tend to become worse

because of the proliferation of heterogeneous client devices, the need of client authentication and

system security, the increased complexity of middleware and application software, and the high

availability requirements of corporate data centers and e-commerce Web sites.

One research path is in the direction of combining performance with fault-tolerance and security,

and accessibility from di�erent client devices, all topics that are still seen as separate issues in
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Web clusters. A step further is the objective of designing Web clusters that give guaranteed

performance or support quality of service (QoS). A signi�cant amount of QoS related research

has focused on the network infrastructure, however network QoS alone is not suÆcient to support

end-to-end QoS. To avoid that high priority traÆc may be dropped at the server, the Web-server

system should also have mechanisms and policies for delivering end-to-end QoS. Some proposals for

providing di�erentiated service qualities to di�erent classes of users have focused on single-nodeWeb

servers [13, 18, 31, 47, 66, 72, 81, 93] and this research topic has been moved towards Web cluster-

based platforms only recently. A multi-nodeWeb architecture integrated with admission control and

performance isolation mechanisms has been proposed in [7]. Some recent research e�orts focus on

how providing QoS support through the Web switch, by taking into account request information

at layer-4 switches [23] as well as at layer-7 switches [30, 103], where a detailed content-aware

information allows to achieve performance isolation in Web clusters at a server-level granularity. In

particular, resource utilization can be improved by dynamically adjusting server partitions based

on uctuating requests arrival rates and servers load conditions [22, 103].

While layer-4 Web cluster architectures may be considered a solved problem, the area of content-

aware architectures needs further research. Dispatching algorithms that combine e�ectively client

and server information, and adaptive policies are not yet fully explored. Some companies commer-

cialize layer-7 Web switches with very simple dispatching mechanisms that are mainly oriented to

a static partition of the Web content and services among the server nodes. Also, the scalability

problem posed by layer-7 routing has not been completely solved and non-centralized dispatching

algorithms can be a theme of in-depth investigation. A related issue is to avoid state information

inconsistency among the multiple dispatchers.

Even more challenging is the study of optimal resource management in multi-tier architectures

because the multitude of involved technologies and complexity of process interactions occurring

at the middle-tier let the vast majority of products prefer quite naive dispatching algorithms and

solutions. Combining load balancing and caching of dynamic content in multi-tier systems is also

worth of further investigation.

The actual improvement of the response time as perceived by the user comes from a com-

bination of technologies, where the multiplication of content provider servers is integrated with

geographically dispersed cache servers supported by the content providers themselves or by third-

party organizations. Techniques for solving the problems and taking advantage of the potentials

originated by the cooperation of multiple servers and multiple caches (e.g., dynamic placement of

content, data prefetching, consistency) are still in their infancy, as well as the analysis of the mutual

e�ects of content delivery caching and load distribution [45]. Finally, we observe that most of the

topics and algorithms analyzed in this paper change completely if we assume that the multiple

servers (or clusters) of the content provider are distributed on a geographic rather than on a local

area.
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