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1 – Kernel-based Message Passing Architecture

IP

TCP/UDP

Socket

User Applications

Kernel

User

Network Interface Controller

Driver

Figure 1: Traditional kernel-based mes-

sage passing architecture for intra-cluster

communication.

• User application initiates communi-

cation.

• Socket is the interface to user appli-

cation.

• TCP and UDP provide end-to-end

channel for users.

• IP is for routing.

• Driver/NIC perform transmit and

receive.
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User Applications:

s = socket(SOCK DGRAM)

bind(s,localAddr)

· · ·

Allocate 2 msg buf

· · ·

connect(s,remoteAddr)

· · ·

Prepare msg[1] for sending

send(s, msg[1])

recv(s, &msg[0])

· · ·

close(s)

s = socket(SOCK DGRAM)

bind(s,localAddr)

· · ·

Allocate 1 msg buf

· · ·

connect(s,remoteAddr)

· · ·

· · ·

recv(s, &msg)

send(s, msg)

· · ·

close(s)

Echo client using UDP/IP socket Echo server using UDP/IP socket

February 8, 2004 UC Riverside Slide 4



1 – Kernel-based Message Passing Architecture CS213

1.1 – How UDP send/receive work

rx_ring tx_ring

application application

socket socket

skbuf(xmit)

skbuf(recv)

Driver

IP
TCP/UDP
Socket

PCI bus

pointer

copy

CSRs DMA engine CRC generator/checker

DEC 21140 device structures

Kernel

User

HOST

DEC 21140 NIC

Figure 2: TCP/UDP/IP over DEC 21140 NIC (tulip)
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UDP send operations

Socket:

• get the BSD socket structure.

• build msghdr structure for the sending message.

• pass control from BSD socket to INET socket.

UDP:

• get and verify the address. For connected socket, a flag is set to avoid routing.

• For unconnected socket, call routing function to get the routing table entry.

• fill in the UDP header (except checksum).

IP:

• segment large message if necessary.

• allocate a socket buffer (skbuf) and a data buffer for the sending message. The data

buffer includes the message and udp/ip/ethernet headers. The ethernet header is

16-byte aligned. The data buffer is 128-byte aligned.

• fill in the IP header and calculate the IP header checksum.
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IP (continue):

• copy the message from user space to skbuf and compute the message checksum at

the same time.

• compute the UDP header checksum and TCP/UDP pseudo-header checksum.

• copy the UDP header to skbuf.

Driver(xmit):

• enqueue skbuf to tx ring.

• trigger the immediate transmit.

NIC:

• DMA fetch tx ring descriptor.

• DMA fetch data buffer.

• CRC checksum.

• put packet onto the wire.

After NIC complete transmission:

• send a interrupt signal to CPU.

• CPU calls the NIC interrupt handler to dequeue skbuf from tx ring and free the

buffer.

⇓

0 31

source ip address

destination ip address

0 Protocol segment length
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UDP receive operations

when NIC receives a packet:

• DMA the incoming packet to a skbuf pointed by rx ring tail descriptor.

• send an interrupt to CPU.

Driver(recv):

• determine the packet protocol id.

• push skbuf into a queue.

• add the NIC to the poll list, and raise a soft interrupt to trigger the bottom-half of

the receive process.

IP (in bottom half):

• check IP header (length, version, checksum).

• handle IP options if any.

• reassemble IP fragments if necessary.
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UDP (in bottom half):

• check UDP header (length, checksum).

• find the INET socket that matches the address/port.

• enqueue skbuf into the socket receive queue.

• wake up a sleeping process waiting for packets.

Socket:

• get the BSD socket structure.

• build msghdr structure for receiving message.

• pass control from BSD socket to INET socket.

UDP (top half):

• If no packet arrives and recv() is a blocking call, the current process will sleep.

• After being waked up, copy and checksum the message from skbuf to user space.

• copy the sender’s address to user space.
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1.2 – UDP critical path analysis
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Figure 3: Time line of transferring 1-byte message using UDP/IP
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Categories Intervals usec percentage

User application t1 + t19 0.3 0.9

Protocol processing t3 + t4 + t5 + t6 + t11 + t13 +

t14 + t16 + t17

14.5 41.0

OS system call overhead t2 + t18 1.6 4.5

OS interrupt overhead t10 + t12 5 14.1

OS context switch overhead t15 2 5.6

DMA/transmit/receive t7 + t8 + t9 12 33.9

Total 35.4 100

Table 1: UDP critical time break down

Problem: LARGE OVERHEAD!
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Goal: reduce software overhead to approach hardware limits.

Quick solution:

User Applications

Network Interface Controller

Driver

User

Kernel

IP

TCP/UDP

Socket

User Applications

Network Interface Controller
Driver

User

Kernel

This idea is reasonable:

• Cluster network can be assumed to be reliable and secure. A thick procotol stack like

TCP/IP is not necessary.

• An increasing number of applications are more sensitive to communication latency.

But,

• How to allow direct access yet provide protection?

• How to design an efficient, yet versatile programming interface?

• How to manage resources, in particular memory?

• How to fair share network without a kernel path?
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2 – User-Level Message Passing Architecture

In user-level message passing architecture, the operating system kernel and its

centralized networking stack are removed from the critical communication path

in a protected fashion, providing user applications a user-level network

interface, through which users can directly access to their network interface.

The operating system is only involved in setting up the communication.

In this way, the communicating parties can avoid intermediate copies of data,

interrupts, and context switches in the critical path, thus greatly decreasing

communication latency and increasing network throughput.
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2.1 – VIA Overview
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Figure 4: The Virtual Interface Architecture Model
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Figure 5: A Virtual Interface
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VipOpenNic(&nicHand)

· · ·

VipCreateVI(&viHand)

· · ·

Allocate 3 desc and 3 msg

Register 3 desc and 3 msg

desc[i].buf ← msg[i]

· · ·

VipostRecv(viHand, &desc[1])

descp ← &desc[2]

VipConnectRequest(viHand,lAddr,rAddr)

· · ·

Prepare msg[0] for sending

VipPostSend(viHand,desc[0])

VipSendWait(viHand,&descp2)

VipPostRecv(viHand,descp)

VipRecvWait(viHand,&descp)

· · ·

VipDisconnect(viHand)

Deregister desc and msg

VipDestroyVI(viHand)

VipOpenNic(&nicHand)

· · ·

VipCreateVI(&viHand)

· · ·

Allocate desc[2] and msg[2]

Register desc[2] and msg[2]

desc[i].buf ← msg[i]

· · ·

VipPostRecv(viHand,&desc[0])

descp ← &desc[1]

VipConnectWait(nicHand,lAddr,rAddr,&connHand)

VipConnectAccept(connHand,viHand)

· · ·

VipPostRecv(viHand,descp)

VipRecvWait(viHand,&descp)

VipPostSend(viHand,descp)

VipSendWait(viHand,&descp)

· · ·

VipDisconnect(viHand)

Deregister desc and msg

VipDestroyVI(viHand)

Echo client using VIA Echo server using VIA
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2.2 – How M-VIA send/receive work
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HOST

DEC 21140 NIC
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DEC 21140 device structures

CSRs DMA engine CRC generator/checker

rx_ring tx_ringrecv buffers

Figure 6: M-VIA over DEC 21140 NIC (tulip). M-VIA is a modular VIA imple-

mentation for Linux over Ethernet.
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M-VIA send operations

VipPostSend:

• enqueue a send descriptor to the sending queue.

Driver(xmit):

• prepares send header, waits for device stop, gets the next send decriptor entry, and

fill in the header.

• segments large packets into chunks.

• enqueue each chunk to tx ring.

• trigger the immediate transmit.

NIC:

• DMA fetch tx ring descriptor.

• DMA fetch data buffer.

• CRC checksum.

• put packet onto the wire.
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After NIC complete transmission:

• send a interrupt signal to CPU.

• CPU calls the NIC interrupt handler to dequeue head entries from tx ring, mark the

descriptor complete and wake up a block process.

VipSendWait:

• check the head descriptor of the sending queue for N times. If the head descriptor is

marked complete, remove it from the sending queue and return success.

• otherwise, sleep.

• after being waked up, check the head descriptor again. If the head descriptor is

marked complete, remove it from the sending queue, and return success. Otherwise,

return error.
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M-VIA receive operations

VipPostRecv:

• enqueue a recv descriptor to the receiving queue.

when NIC receivess a packet:

• DMA the incoming packet to a buffer pointed by rx ring tail descriptor.

• send a interrupt signal to CPU.

Driver(recv):

• get a corresponding VI structure from the received packet.

• check the sequence number of the received packet.

• copy the packet from rx ring to VI specified buffer.

• dequeue head entry from rx ring.

• mark the descritpor complete.

• wake up a block process.
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VipRecvWait:

• checking the head descriptor of the receiving queue for N times. If the head

descriptor is marked complete, remove it from the receiving queue and return success.

• otherwise, sleep.

• after being waked up, check the head descriptor again. If the head descriptor is

marked complete, remove it from the receiving queue, and return success. Otherwise,

return error.
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2.3 – M-VIA critical path analysis
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Figure 7: Time line of transferring 1-byte message using M-VIA
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Interval Description Time

cycles usec

t1 user post send descriptor 31 0.08

t2 Fast trap 138 0.34

t3 device send (first chunk) 733 1.83

t4 + t5 DMA(xmit)/transmit 10.1 + 0.08s

t6 DMA (receive) ???

t7 interrupt start 1268 3.16

t8 interrupt recv processing 3.1 + 0.272b(s + 25)/32c

t9 interrupt return 627 1.57

t10 user receive (polling) 20 0.05

Table 2: M-VIA critical time breakdown
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2.4 – M-VIA performance evaluation

vipl.a

Modules:
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Figure 8: Experimental Setting
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size

• entirely remove socket,

TCP/UDP and IP layers.

• zero copy when sending.

Sending overhead is constant.

• use fast trap instead of normal

system call.

• use polling instead of interrupt

to avoid context switch.
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3 – Conclusion

• Traditional kernel-based communication has large software overhead.

• User-level communication is a good solution for intra-cluster

communication.
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