Reliability Analysis for Unreliable FSM Computations

AMIR HOSSEIN NODEHI SABET, JUNQIAO QlU, and ZHIJIA ZHAO, University of
California, Riverside

SRIRAM KRISHNAMOORTHY, Pacific Northwest National Laboratory

Finite State Machines (FSMs) are fundamental in both hardware design and software development. How-
ever, the reliability of FSM computations remains poorly understood. Existing reliability analyses are mainly
designed for generic computations and are unaware of the special error tolerance characteristics in FSM
computations. This work introduces RelyFSM - a state-level reliability analysis framework for FSM com-
putations. By modeling the behaviors of unreliable FSM executions and qualitatively reasoning about the
transition structures, RelyFSM can precisely capture the inherent error tolerance in FSM computations. Our
evaluation with real-world FSM benchmarks confirms both the accuracy and efficiency of RelyFSM.

CCS Concepts: « Software and its engineering — Software verification; « Computer systems organi-
zation — Reliability; « Hardware — Fault tolerance;

Additional Key Words and Phrases: Finite state machine, error tolerance, reliability, probabilistic model

ACM Reference format:

Amir Hossein Nodehi Sabet, Junqiao Qiu, Zhijia Zhao, and Sriram Krishnamoorthy. 2020. Reliability Analysis
for Unreliable FSM Computations. ACM Trans. Archit. Code Optim. 17, 2, Article 12 (May 2020), 23 pages.
https://doi.org/10.1145/3377456

1 INTRODUCTION

Finite State Machines (FSMs) are fundamental in both hardware design and software development.
At the hardware level, FSMs serve as the underlying computation models for circuit design/logic
controllers [3, 26] and memory-based automata processors [1, 11, 33, 51, 52]. At the software level,
FSMs are the backbone of many automata-based applications and event-driven systems, such as
pattern matching [34, 45], data decoding [27, 49], semi-structured data analytics [6, 18], and net-
work intrusion detection [17, 29].

For their fundamental roles in computing, it is important to understand the reliability of FSM
computations in unreliable environments. As hardware manufacturers push the production pro-
cess to the physical limits, the soft error rates in emerging computer architectures are antici-
pated to increase [2, 37]. This trend is magnified in approximate computing, where unreliable

This research was supported in part by NSF Award 1565928. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number 66905.
Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830.

Authors’ addresses: A. H. N. Sabet, J. Qiu, and Z. Zhao, University of California, Riverside, 900 University Ave, Riverside, CA,
92521; emails: {anode001, jqiu004}@ucr.edu, zhijia@cs.ucr.edu; S. Krishnamoorthy, Pacific Northwest National Laboratory,
P.O. Box 999, MSINJ4-30, Richland, WA, 99352; email: sriram@pnnl.gov.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2020/05-ART12

https://doi.org/10.1145/3377456

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

https://doi.org/10.1145/3377456
mailto:permissions@acm.org
https://doi.org/10.1145/3377456

12:2 A. H. N. Sabet et al.

assume transition-level
rely(s,) = 1 rely(s;) = rely(trans)?
rely(trans) = 0.98 =0.983

= 0.94
s = A (b)
s; = trans(sy , 0);
s, = trans(s; , 1); state-level

rely(ss) rely(trans)

S3 trans(s, , 0);

0.98 “0”led A, B, C into the same state B
(a) (c) (d)

Fig. 1. Transition-level vs. state-level reliability analysis.

hardware components are introduced to simplify the design and improve efficiency [20, 44, 46],
such as approximate circuits [12, 53] and approximate storage [42, 47]. As more frequent soft er-
rors are expected on approximate computing platforms, program reliability reasoning frameworks
are necessary to ensure that program executions still satisfy the reliability requirement [4, 36, 46].

State of the art. Existing reliability analyses designed for general computations [4, 30, 31, 36] are
mainly performed at the instruction level. They assume that errors may occur during the evalua-
tion of individual instructions and infer the reliability of variables by propagating the reliability of
individual instructions along program execution paths. This provides a general solution to reason
about the program reliability and often yields sufficient accuracies for many applications [4, 46].
However, to apply a similar reliability reasoning for FSM computations, we have to raise the level
of abstraction from individual instructions to FSM transitions. Assuming that errors may occur at
individual FSM transitions, the reliability of state can be computed by propagating the reliability
along the FSM transition trace, referred to as the transition-level reliability analysis. As shown in
Figure 1(a) and (b), following the transition-level reliability analysis, we can infer that the reliabil-
ity of s3 is about 0.94, a joint probability among the reliability of three transitions (0.98%).

Although the analysis of transition-level reliability is straightforward, its computed value may
not faithfully reflect the reliability of the current state that the FSM is in. We demonstrate this with
an FSM transition diagram as shown in Figure 1(d) and the reliability reasoning in Figure 1(c). First,
notice that in the transition diagram, states A, B, and C all transition to state B after observing the
symbol 0. Then, consider the last transition in Figure 1(a). In fact, no matter what state s, carries,
after consuming the symbol 9, the expected target state would always be state B, assuming the
last transition itself is error free. Finally, as the last transition is not error free, the reliability of s;
turns out to be the same as the reliability of that transition, which is 0.98 rather than 0.94. As the
preceding reliability reasoning takes specific states (and their possible transitions) into account,
we refer to it as state-level reliability analysis.

Essentially, the reliability gap in the preceding example is due to the fact that transition-level
reliability analysis is unaware of the potential error tolerance in FSM computations. In fact, many
FSMs exhibit certain error tolerance capabilities thanks to some common properties in their tran-
sition diagrams. In the preceding example, the error tolerance comes from the substructure where
all of the states transition to the same state after reading symbol 0—a property known as state
synchronization. In general, there exist many different ways that errors get tolerated in FSM com-
putations (see Section 2.2). Failing to consider these potential error tolerance cases tends to make
reliability characterization less and less precise as the transitions elapse, illustrated in Figure 2.

Overview of this work. To precisely capture the reliability of FSM computations, it is important
to reason about the reliability at the state level rather than the transition level.! This work presents
RelyFSM, a state-level reliability analysis framework for FSM computations. First, RelyFSM allows

Despite that the reliabilities of lower-level instructions may still need to be collected.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:3

Reliability

« I due to error

S tolerance
transition-level

elapsed transitions

Fig. 2. Reliability gap between transition-level and state-level analysis.

reliability requirement
0010010 lﬁu

input — full reliability
analysis
R
N —>
VY fast reliability
—> analysis

FSM spec.

reliability
verified? > yes/no

Fig. 3. Workflow of RelyFSM.

users to specify the FSMs and their reliability requirements in a formal way. With the formal
specifications, RelyFSM can automatically reason about the reliability of FSM computations and
verify it against predefined reliability requirements, as illustrated in Figure 3. Depending on the
needs, the reasoning can be conducted either with full respect to the accuracy (i.e., full reliability
analysis) or trading off the accuracy for faster analysis (i.e., fast reliability analysis). At the core of
these analyses are the mathematical models that can precisely capture the behaviors of unreliable
FSM computations with statistical guarantees.

We evaluate RelyFSM with a spectrum of FSM benchmarks drawn from real-world applications.
The evaluation shows that the reliability analysis results from RelyFSM are consistent with the
ones from extensive fault injection-based approaches, confirming its accuracy. In addition, we
also conduct a use case study for RelyFSM on approximate searching in biological databases.

Contributions. This work makes a fourfold contribution:

e To the best of our knowledge, for the first time, this work provides a systematic characteri-
zation on the error tolerance properties of FSM computations (Section 2) and a formalization
of the FSM reliability problem.

e It builds statistically precise reliability analysis for FSM computations based on rigorous
mathematical models.

e It provides a lightweight reliability analysis based on a two-state Markov model, which
enables trading off the accuracy for faster analysis.

e By targeting a basic computation model, this work offers insights for the error tolerance
and reliability analysis of a wider range of FSM-based applications.

In the following, we will first characterize the error tolerance in FSM computations, then formal-
ize the reliability analysis of FSM computations in Section 3, followed by two reliability analysis
schemes in Section 4 (full reliability analysis) and Section 5 (fast reliability analysis). After evalu-
ating RelyFSM in Section 6, we will discuss the related work in Section 7 and conclude this work
in Section 8.

2 ERROR TOLERANCE CHARACTERIZATION

In this section, we informally introduce the error types in FSM computations and discuss the
fundamental causes of the error tolerance—synchronization structures—followed by a systematic

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:4 A. H. N. Sabet et al.

..0110010...
0110010, States: DCABE... @

0
..0110110...
_read error transition error /

Fig. 4. Two basic types of errors

c d

(a) state sync. (b) symbol sync. (c) state-symbol sync.

S0 b G

Fig. 5. Synchronization structures.

classification of various error tolerance cases. By revealing the essence of error tolerance, we show
that error tolerance capabilities are prevalent in FSM computations.

2.1 Types of Errors

Informally, FSM computations consist of a sequence of state transitions, based on predefined tran-
sition rules. Each transition consists of two basic operations: (1) read an input symbol and (2) move
to the next state. From the perspective of FSMs, the unreliable executions of the two operations
form two basic sources of errors, as illustrated in Figure 4:

e Read error: In this case, an FSM reads an incorrect input symbol. As shown in Figure 4 (left),
an FSM is supposed to read the symbol @ but instead it reads 1.

e Transition error: After reading an input symbol, the FSM may transition to a state other than
the one specified by the transition rule. As illustrated in Figure 4 (right), after reading a o,
the FSM should transition to state F. However, due to an error, it moves to state E.

At the hardware level, the preceding FSM execution errors could stem from the use of unreli-
able arithmetic and logic units [12, 53] or/and the use of unreliable components in the memory
hierarchy (e.g., unreliable registers, caches, or DRAM) for storing inputs and transition rules [47].

2.2 Synchronization Structures

Unlike general programs, FSM computations tend to exhibit high error tolerance capabilities. To
understand the root causes of such error tolerance, we look into the structural diagrams of FSMs,
like the one shown in Figure 1(c). We find that the error tolerance in FSM computations is enabled
by three kinds of “structures” in the FSM structural diagrams, namely state synchronization, symbol
synchronization, and state-symbol synchronization, as illustrated in Figure 5:

e State synchronization: In this case, two different states transition to the same state after
reading the same symbol, as illustrated by the example in Figure 5(a).

e Symbol synchronization. In this structure, different input symbols from one source state
point to the same target state, like the one in Figure 5(b).

e State-symbol synchronization: In the last case, there are two different states transitioning to
the same state after reading two different symbols, as shown in Figure 5(c).

Together, we refer to the three structures as synchronization structures. It is interesting to note
that the synchronization structures are so basic that almost all FSMs consist of some of them.
In fact, the only exceptions are the trivial FSMs with a single-symbol alphabet and a state-chain

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:5

(o] C
[
o |90 50 | 920|005 b | O
e c \—/ c’ 9 c e c
Causes © c
T1 T2 T3 T4 T5 T6
state sync. v v
w
E symbol sync. Vv v
" |state-sym sync. v v
in an err. state v v v v
[©]
3| read error v NV v v
’ trans. error \/ \/ \/
error cancellation \/ \/ \/ \/

Fig. 6. Error tolerance types and corresponding causes/conditions.

structure. Consider the example FSM in Figure 1(c). It exhibits the symbol synchronization from
state A to state B (i.e., A transitions to B on both @ and 1) and state synchronization at state B, which
owns three incoming edges labeled with 0. Next, we show how synchronization structures enable
the error tolerance in FSM computations in detail.

2.3 Qualitative Characterization of Error Tolerance

To systematically reveal the connections between error tolerance and synchronization structures,
we categorize the error tolerance in FSM computations into six basic cases, denoted as T1 through
Té6 (see row 1 in Figure 6). The notations S” and ¢’ indicate erroneous state and input symbol,
respectively. The curved arrows represent erroneous transitions (more formal definitions are in
Section 3). Note that this classification includes scenarios where multiple read and/or transition
errors occur.

Considering T1 first, its interpretation is that if the FSM was already in the error state S’ rather
than the correct state S, then the error gets tolerated after reading input symbol c, as both states
transition to state T after reading c (i.e., state synchronization). Note that in this case, no error
happens in the current transition. This is exactly the case mentioned earlier in motivation example
(Figure 1(b)). Next, consider T2, where the FSM was in the current state S but the input symbol
is read incorrectly. Fortunately, both the incorrect input and the correct input lead the FSM to the
same next state T. As a result, the FSM remains in the correct state. The following cases T3, T4,
and T6 are similar to T1 except they suffer from error(s) in the current transition. The case T5 is
similar to T2 except it consists of both input and transition errors. Note that the last four cases
(T3-T6) all involve some form of error cancellation—later error(s) cancels out the effect of the prior
error(s). More detailed conditions and causes of different cases are listed in the following rows of
Figure 6. One important thing worth to mention is that all the six basic classes of error tolerance
require one synchronization structure (see rows 2—4).

Figure 7 shows a simple way to identify the type of errors based a two-layer decision tree. The
first layer specifies if the FSM was already in the error state, and the second layer is concerned
with the errors happening in the current transition. Note that when the FSM was in the correct
state, it had no chance to tolerate a transition error, according to the definition of transition error.

3 FORMALIZATION

To rigorously analyze and verify its reliability, we formally define FSM and its execution semantics,
including both the error-free (reliable) and potentially faulty (unreliable) executions. Based on the
semantics, we further formalize the reliability analysis problem for FSM computations.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:6 A. H. N. Sabet et al.

in an err. state ?

yw

read error(s) error(s) reads
reads y Wxs .
T2 trans. T1 T6
T5 read trans.
T3 T2

Fig. 7. A decision tree for error tolerance classification.

Read-R Read-T
(c = I, skip,sy — (I, c,s) {c, skip,s) — (e, c,s)
d(s,c) =5’
Trans-R Trans-T
I, ¢, sy = (I, skip,s”) (e, skip,s)y —'s

Fig. 8. Semantics for reliable FSM execution.

3.1 FSM Definition

An FSM is an abstract computation model formally defined as follows.

Definition 3.1. An FSM M is a 5-tuple (Q, X, 8, so, F), where Q is a finite state set called states,
> is a finite set called the alphabet, each element ¢ € X is called a symbol, § : Q X 3 — Q is the
transition function, sy € Q is the initial state, and F C Q is the set of accept states.

Note that FSM has different variations. In this work, we assume that the FSM is deterministic,
also known as Deterministic Finite Automata (DFA). For a given input I, a deterministic FSM exe-
cutes from the initial state sp and consumes one symbol from the input string each time. Based on
the read symbol ¢ and the current state s, the FSM transitions to the next state according to the
transition function d(s, ¢). The FSM execution terminates when the whole input string has been
consumed. However, under an unreliable computing environment, the FSM may exhibit different
behaviors. To rigorously compare its behaviors in reliable and unreliable environments, we next
formally define the semantics of reliable and unreliable FSM executions.

3.2 Semantics of Reliable FSM Execution

An environment of FSM execution is a 3-tuple of input, symbol, and state (I, ¢, s), meaning that the
FSM currently is in state s and it has read input symbol ¢, with input sequence I to process. We
use notation ¢ :: I to represent an input sequence starting with symbol c.

Figure 8 shows the small-step semantics for reliable FSM executions. In particular, Read-R de-
fines the effect of a read operation, where the next symbol from the input is consumed; Read-T
indicates the case where the last symbol in the input is consumed; Trans-R defines the effect of a
transition, where the read symbol ¢ is used and the state is updated from s to s’, under the precon-
dition that §(s,c) = s’ exists; and Trans-T defines the termination of the FSM execution, where
the input is empty and there is no read symbol to available. Overall, an FSM execution consists of
a sequence of interleaved read and trans steps.

With the small-step semantics, we further define the big-step semantics as the transitive closure
of a sequence of small-step evaluations: (I, s) = s" =(I,s) — ... — (skip,s’), which captures the
process of a (partial) FSM execution where the input I is fully consumed and the FSM finally ends
at state s after a series of small-step operations. Note that here, s could be any state in Q, including,
but not necessarily limited to, the initial state s.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:7

czl p=1-e, cul cp#c p=er XPcrle)
Read-C Read-F
. Cp (Fyer)p
(skip,s) — {c,s) (skip,s) —— (cf,)
O6(s,c)=s" p=1-¢ sp #0(s,c) p=-e XP(spls,c)
Trans-C Trans-F
Cp ., (F,s¢).p)
(c,s) — (skip,s”) (e, s) ——> (skip, s¢)

Fig. 9. Semantics for unreliable FSM execution.

3.3 Semantics of Errors

According to its execution semantics, an FSM execution consists of two basic small steps: (1) read
the next input symbol (read) and (2) transition to the next state (trans). The error(s) might happen

in either step or both. Formally, we define two types of errors as follows?:

e Read error: Suppose that the next symbol at the beginning of the remaining input sequence
is ¢ (i.e., ¢ :: I), then the FSM reads a symbol cs. If ¢ # ¢, we say that a read error has
happened, where symbol ¢ is called the faulty symbol. The probability that a read error
occurs is denoted as e,. The distribution of a faulty symbol is a mapping from the alphabet
3 to a probability vector, denoted as X — [Py, Py, . . ., Pjs|-1], where P; is the probability that
¢; is the faulty symbol. In addition, we have }}; P; = 1 and Pr = 0.

e Trans error: Suppose that symbol ¢ has just been consumed from the input and FSM is in
state s (i.e., (I, c, s)), then the FSM makes a transition, ending at state s¢. If sy # 6(s, c), we say
that a trans errorhas just occurred. State sy is referred to as the faulty state. The probability
that a trans error occurs is denoted as e;. The distribution of a faulty state is a mapping
from the state set Q to a probability vector, denoted as Q — [Py, Pi, . .., Pjg|-1], where P; is
the probability that s; is the faulty state. In addition, we have }}; P; = 1 and Pr = 0.

Calculating e, and e;.In practice, the error probabilities of read and trans can be calculated as
the joint (error) probabilities of machine instructions that implement the read and trans, follow-
ing the conventional instruction-level reliability analysis [8, 39]. For example, assume that an FSM
read is implemented with an add instruction followed by a mov instruction, then e, = €444 * €mov»
where e,44 and e,,0,, are the error probabilities of add and mov, respectively. Essentially, there are
two levels of error models: the conventional instruction-level error model and the FSM-level error
model. The error rates of the latter depends on the error rates of the former.

3.4 Semantics of Unreliable FSM Execution

Based on the preceding error semantics, we next define the semantics for unreliable FSM execution,
as summarized in Figure 9. A small-step evaluation relation (e.g., (skip,s) — (c,s)) carries two
labels. The first label 6, 8 € {C, (F, cr), (F, Sf)}, denotes whether the evaluation is correct (C) or
faulty (F), and if it is faulty, what the fault symbol or state (cf or s¢) is. The second label p indicates
the probability that a correct/faulty evaluation occurs. For example, the first rule Read-C says that
if the next symbol is ¢, there is a probability of 1 — e, that the evaluation is correct: (skip, s) — {c, s).
Note that for faulty read rule Read-F, the probability of the faulty evaluation is calculated as the
product between error probability of read e, and the conditional probability P(cr|c). The latter
denotes the probability that the faulty symbol is cf, given that the next symbol is c. Similarly,
the faulty trans rule Trans-F needs to take the conditional probability P(s¢|s,c) into account,

2Note that if an error generates an undefined symbol or state, the error can be caught immediately by range checking.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:8 A. H. N. Sabet et al.

which represents the probability that the faulty state is s, given that the prior state is s and the
last consumed symbol is c¢. Together, the four rules in Figure 9 define the possible behaviors of an
unreliable FSM execution at each small-step evaluation.

Based on the small-step semantics, we next introduce the big-step trace semantics and big-step
aggregate semantics for unreliable FSM executions, following a similar style as those in recent
work [4]. Basically, big-step trace semantics defines the whole unreliable FSM execution as a
transitive closure of a sequence of small-step evaluations. The labels on the small-step evalua-
tions together form a trace, denoted as 7, 7 = 04, . . ., 0. The probability of a trace p is the prod-
uct of probabilities of all individual small-step evaluations—that is, p = [] p;. Thus, we have the
following:

e Big-step trace semantics:

.p 01.p1 On,pn
Lisy=s"=(,s) —> ... —— (skip,s’), where t = 0y,...,0, and p = [] p;.

In sum, (I, s) i s’ states that given input I and state s, an unreliable FSM execution has probability
p to exactly follow a specific sequence of (correct/faulty) small-step evaluations.

By aggregating all unreliable execution traces (assuming the trace set is denoted as T) and their
corresponding probabilities, we can further define the big-step aggregate semantics:

e Big-step aggregate semantics:

(I,s) £> s’, where p = Y, p, such that (I, s) g s’
TeT
Intuitively, the preceding evaluation tells that given an input I and a state s, an unreliable FSM
execution has a probability of p ending at state s’. Note that the probability p may include a number
of alternative sequences of small-step evaluations that end at state s’, different from the probability
in big-step trace semantics, which focuses on a specific sequence of small-step evaluations.
As we will show next, the preceding two big-step semantics form the theoretical foundations
for defining the reliability of unreliable FSM executions.

3.5 Reliability of Unreliable FSM Execution

Depending on the strictness of correctness criteria, we introduce two basic types of reliability,
namely trace reliability and state reliability.

Trace reliability. The correctness criterion for the trace reliability is strict—an unreliable FSM
execution should behave exactly the same as the reliable FSM execution semantically (as defined
in Section 3.2). Based on the big-step trace semantics, we define the trace correctness as follows.

. . . .p
Definition 3.2. For an unreliable FSM execution, (I, s) — s’, where the trace 7 = 61, ..., 60,.If 0;
=C, 1 < i < n, then the unreliable FSM execution satisfies the trace correctness.

Trace correctness requires every single small-step evaluation to be performed correctly during
the whole FSM execution. Assume that the length of an input is |I|, then there would be |I| read
and trans operations, respectively, interleaved with each other during the FSM execution. Based
on the definitions of big-step trace semantics and the trace probability (p = [] p;), we can infer the
probability that an unreliable FSM execution meets the trace correctness—the trace reliability.

THEOREM 3.3. The trace reliability of an unreliable FSM execution on input I is
Re=((1-er) x (1-e)", (1)

where e, and e; are the error probabilities of read and trans, and |I| is the input length.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:9

o}
O—O© G-
’"""S(\tl)

'~

(a) No errors (b) A Read error only

4 Y
G At} @ c’
et S= NN AR
O, 1)

(c) A Trans error only (d) Both errors

Fig. 10. Four possible cases in an unreliable transition.

As discussed in Section 2.3, errors occurred during the unreliable FSM execution may be tol-
erated due to a variety of reasons and may still end up in the correct state. The preceding trace
reliability is too strict to accommodate such error tolerance. To capture the error tolerance in un-
reliable FSM executions, we next introduce the state reliability, which is more forgiving than trace
reliability.

State reliability. The correctness for state reliability is solely based on the correctness of the
ending state, regardless the correctness of small-step evaluations. This idea perfectly matches the
big-step aggregate semantics defined in Section 3.4. Formally, we define the state correctness as
follows, based on a pair of reliable and unreliable FSM executions.

. . P .
Definition 3.4. For an unreliable FSM execution < I,s > = s’, if final state s’ equals to the final
state s’ in the corresponding reliable FSM execution < I, s >= s/, then we say the unreliable FSM
execution satisfies the state correctness.

Similar to trace reliability, we define the state reliability as the probability that an unreliable FSM
execution satisfies the state correctness, denoted as R;. Thanks to the possible error tolerance in
FSM executions, we can infer that R, < R;. Unlike trace reliability, state reliability is much more
challenging to calculate, due to the complexities of error tolerance. In the following sections, we
will mainly focus on the calculation of state reliability.

4 FULL RELIABILITY ANALYSIS

This section introduces a reliability analysis for unreliable FSM executions, with the goal to provide
the precise answer to the state reliability problem raised in Section 3.5. This is achieved with a
rigorous mathematical model that naturally combines the FSM with the probabilistic nature of
unreliable computing. In the following, we will first examine the reliability for a single unreliable
FSM transition, then discuss the reliability reasoning for an entire unreliable FSM execution.

4.1 Reliability of an Unreliable FSM Transition

First, we discuss how errors affect the behavior of a single FSM transition, based on which we then
analyze how likely a single FSM transition tolerates the errors and still transitions to the correct
state—that is, the reliability of a single FSM transition.

Behaviors of an unreliable transition. Consider an FSM transition in an unreliable computing
environment. As discussed earlier, a read error and/or a trans error may occur. Depending on
their occurrences, there are four possible correct/faulty transitions, as illustrated in Figure 10:

(1) When no errors occurs, the FSM would follow its default transition &(s,c) =t
(Figure 10(a)).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:10 A. H. N. Sabet et al.

Table 1. Notations and Probabilities of Possible Cases in an Unreliable Transition &

| Case | Notation | Probability |
No error 800 P(8p0) = R(read) - R(trans)
Read error only 510 P(510) = (1 -R(read)) - R(trans)
Trans error only So1 P((%l) = R(read) - (1 — R(trans))
Both errors 511 P(611) = (1 —R(read)) - (1 — R(trans))

(2) When only a read error occurs, the FSM may transition to a different state, depending if
the state ¢; in &(s, ¢’) = t; is the same as t (Figure 10(b)).

(3) When only a trans error occurs, the FSM must transition to a different state t, (i.e., t, #)
by the definition of a trans error (Figure 10(c)).

(4) When both read and trans errors occur, the FSM would transition to a state #3 such that
t5 # d(s, c’). Note that t3 may equal to t if 5(s, c) # (s, ¢”) (Figure 10(d)).

For conciseness, we use 5 to represent an unreliable FSM transition and Sxx, where x € {0, 1}
to represent the four cases: the first x is for read error and the second one is for trans error, as
shown in the second column of Table 1. The probabilities of the four cases are easy to calculated,
as shown in the third column of Table 1.

According to the reliability definitions (see Section 3.5), we can find that the trace reliability of a
single unreliable FSM transition is R, = P(Soo). However, to find out the result reliability R, esy1s,
we need to reason about the possibility that state s; successfully transitions to the correct next state
s; after reading the symbol ¢ in an unreliable transition, denoted as P(8(si c) = sj). For example,
we need to find out the possible states 1, t;, and t3 in Figure 10 and their probabilities.

Reliability reasoning for an unreliable transition. At high level, depending on the outcome
of an unreliable transition, we can break down the reasoning into two situations. For a reliable
transition d(s;, ¢) = s*, the two possible situations of an unreliable transition d(s;, ¢) = s; are

SituationI: the target state s; is the correct state (i.e., s; = s*);
Situation I : the target state s; is a wrong one (i.e., s; # s7).

We next analyze the two situations one by one. To simplify the formal representations, we use
transition matrix M (s;, s;) to represent all valid transitions under input symbol ¢, ¢ € 2.

Me:QxQ — {0,1}

2
subject to Mc(s;,s;) = 1 if and only if (s;, c) = s; @)

Basically, M, is a Boolean matrix. For symbol c, if there exists a valid transition from state s; to

state s;, then M (s;, s;) = 1; otherwise, Mc(s;, s;) = 0.

Situation I To calculate the probability that an unreliable transition S(si, ¢) moves to the correct
next state s*—that is, P(g(si, c¢) = s*)—consider the four cases in Table 1:
(1) When no error happens (dyo), the FSM must transition to the correct state s*, so the con-
ditional probability that s; transitions to s* is P(S (si,c) = s*|6g0) = 1.
(2) When only a read error happens (d19), the FSM reads a faulty symbol cs. Assume that cf
has a probability of P(ck|c) to be symbol ci. If ¢ also leads state s; to state s™ (i.e., §(s;, cf)

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:11

= s"), the FSM still transitions to the correct state. Hence, we have

P(8(sic) = 5™1610) = ZPcklc Me, (sis5%). (3)

(3) When only the trans error happens (dy1), according to the definition of a trans error, the
FSM cannot transition to s*, and therefore P(S(s,-, ¢) = 5%8p1) = 0.

(4) When both errors happen (811), the FSM may transition to the correct state only when
the read error causes the FSM to transition to a wrong state s; (s; # s*) and the follow-
ing trans error accidentally moves the FSM to the correct state s*, with a probability of
P(s*|s;j). Hence,

P(5(si.c) = 571611) = Z P(ckle) - Me, (si, sj) - P(s"Is;)- (4)
Sj#ES*
Based on the probabilities in Table 1, we can put the preceding four cases together to calculate
the probability that the unreliable transition moves the FSM to the correct state—the reliability of
a single unreliable transition, summarized by the following theorem.

THEOREM 4.1. The reliability of an unreliable transition R(8(si,c) = s*) is given as follows:

R((sir¢) = 5") = P(boo) + P(So1) -) P(ckle) - Moy (5i,5)
k

+P(Bu) - Y Plekle) - Mo, (51.5) - P(s"ls),

sj#S*
where s* = 6(s;, ¢).

Theorem 4.1 implies that even for a single unreliable transition, it is possible that R (5 (si,c) =s%)
is greater than R, depending on the transition structure of the FSM.

Situation II. Next, we discuss the probability that an unreliable transition 5 (si, c) moves to a
wrong state s;—that is, P(5(si,c) = sj), where s; # s*. Although it does not provide the reliability
information directly, it is needed for precise reliability propagation, as we will show shortly in
Section 4.2. Similarly to Situation I, let us consider the four cases in Table 1:

(1) When no error happens (dy), the FSM transitions to the correct state s*, so the conditional
probability of entering a wrong state s; is zero—that is, P8 (si c) = $j1600) = 0.

(2) When only a read error happens (81¢), the FSM reads a faulty symbol ¢y with a probability
of P(ck|c) to be symbol ¢ (cx # c). If cf leads state s; to state s; (i.e., 6(si, cf) = s;), the
FSM would end in the wrong state s;. Hence, we have

P(3(si,) = 51810) = ZPch Mo, (sis5)- (6)

(3) When only the trans error happens (Jo1), assume that the FSM has a probability of P(s;s;)
transitioning to s;, then we have P(é(s,-, ¢) = sjldo1) = P(sjls;).

(4) When both errors happen (611), the FSM may transition to the wrong state s; only when
the read error causes the FSM to transition to a state sj’. (s]' # s;) and the following trans
error accidentally moves the FSM to state s;, with a probability of P((s;ls}). Hence, we
have

P(8(si,¢) = 5i1811) = Y Plexle) - M, (si,5)) - P(s;1s)). (7)

7
S;#S)

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:12 A. H. N. Sabet et al.

Putting the four cases together, we have the probability that, given the current state s; and
symbol ¢, an unreliable transition would end at (incorrect) state s;.

P(5(sire) = ;) = P(10) -), Plckle) - M, (5i, ;) + P(8o1) - P(sils))
k

R 8

+P(511) : Z P(Ck'C) : MCk(Siij") ! P(s]|sjl)7 ()

7
sjisj

where s; # s*. So far, we have derived the probabilities that an transition ends in the correct state
s* and the incorrect state s;, respectively. Next, we show how to extend the reliability reasoning
from one unreliable transition to an entire FSM execution.

4.2 Reliability of an Entire FSM Execution

The key to answer the reliability of an entire FSM execution is to understand how errors are
propagated transition by transition probabilistically. In fact, such a probability propagation can be
modeled as a series of vector-matrix multiplications.

Probabilistic transition matrix. As mentioned earlier, for input symbol ¢ (¢ € X), the (reliable)
FSM transitions can be represented as a binary matrix, Mc(s;,s;). The potential errors, in fact,
make the transitions probabilistic. In other words, the transition matrix for input symbol ¢ becomes
probabilistic, which we refer to as the probabilistic transition matrix for symbol ¢, denoted as M.

P@(s1,¢) =s1) POls1,0) =s2) ... P(8(s1,¢) =sn)
- P(6(sz,c) =s1) P(8(sz,c) =s2) ... P(d(sz,¢) =sp) ©)
PB(sme) = 51) PBlom) =52) r. P(B(smse) = 50)

where P(§(s;, ¢) = s;) represents the probability that an unreliable transition from state s; to state
s;j after reading input c. Note that this s; could be the correct target state or any incorrect one, which
correspond to the two situations analyzed in Section 4.1. Therefore, we have already derived their
probabilities with Equation (5) and Equation (8), respectively.

With the probabilistic transition matrix, we can derive the state distribution x; after consum-
ing each input symbol ¢; in an input sequence cjc; - - - ¢; - - - ¢, wWith vector-matrix multiplications.
Suppose that the initial state distribution is 7o = [00---1--- 0], where 1 corresponds to the initial
state s, then the new distribution after reading input symbol ¢ would be 7y - M. In general, we
can calculate the final state distribution sy iteratively,

mL =y Mg, - Mg, -+~ Mg, ,1 < L, (10)

where M., is the probabilistic transition matrix for ¢;. The time complexity of the calculation is
O(L - N?), where L is input length and N is the number of states.

Take the FSM in Figure 1(c) as an example. Given error rates e, and e;, we can construct the
probabilistic transition matrices for symbols @ and 1 based on Equations (5) and (8). Then, for a
given unreliable FSM execution on input 0019, the state distribution can be computed as follows:

7[4(A) 1
71—4(3) =10 -] - - 0], (11)
7[4(C) 0 . 0 0 1 0

where 74 (i) is the probability of ending at state i after the unreliable FSM execution over 0010.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:13

Two things are worth noticing in the calculation of 7. First, because matrix multiplications are
associative, the calculation can be easily parallelized in a prefix sum manner. However, this will
increase the time complexity to O(N? - log(L)).* Second, the order of the input symbols matters to
the state distribution since matrix multiplication is not commutative in general. For example, the
state distribution after reading 1010 could be different from that of @010. This also reflects the fact
that & provides a per-input state distribution.

With the state distribution sy, to find out the reliability of the ending state, all we only need to
know is which state the FSM is supposed to be after processing the input. Consider the example
in Figure 1(c). Suppose the FSM starts from state A, after processing inputs 0010 in a reliable exe-
cution, it ends at state B, then the reliability of an unreliable execution on the same input should
be the probability of ending at state B—that is, 74(B). In general, we have the following theorem.

THEOREM 4.2. Given an FSM M and its unreliable execution with error rates e, and e; on input I
of length L, suppose that the final state distribution after processing I is n;, and the ending state of its
reliable execution is s}, then the reliability of the unreliable execution is ry (i*).

We refer to the preceding analysis as full reliability analysis. Full reliability analysis precisely
reasons about the unreliable behaviors of an unreliable FSM execution step by step, thus pro-
ducing the “ground truth” of reliability, for which conventional fault-injection-based approaches
never achieve.

Although full reliability analysis provides precise reliability results, its time complexity O(L -
N?) s significantly higher than FSM execution complexity O(L). Such a gap prevents it from being
applied in some online analysis scenarios. To address this, we introduce a lightweight reliability
analysis approach, which we refer to as fast reliability analysis.

5 FAST RELIABILITY ANALYSIS

The goal of fast reliability analysis is to provide relatively accurate reliability results, yet run dra-
matically faster than full reliability analysis. To achieve this goal, we put efforts along two di-
rections of optimizations: (i) partially characterize the error tolerance offline and (ii) simplify the
probability model used for reasoning. Following the two directions, we propose a dual-state Markov
modelbased on offline error tolerance characterization for more efficient reliability analysis. We next
elaborate on its basic ideas.

5.1 Offline Error Tolerance Characterization

To reduce the cost of (online) analysis, we characterize the error tolerance capability of FSMs
offline. The characterization is based on the error tolerance characterizations in Section 2.

Error tolerance parameters. Recall that in Section 2 we revealed six basic cases of error tolerance
(T1-T6 in Figure 6). Here, we quantify the error tolerance by measuring the probabilities that
the six error tolerance cases happen in unreliable executions. For convenience, we denote these
probabilities as P; (1 < i < 6), referred to as error tolerance parameters.

Also discussed in Section 2, the error tolerance cases are due to three basic synchronization
structures. Suppose that the likelihoods the three synchronization structures are encountered dur-
ing an FSM execution are « (state sync.), § (symbol sync.), and y (state-symbol sync.). Then, for
a given pair of read and transition error rates, e, and e;, we can calculate the error tolerance pa-
rameters, as shown in Figure 11. Note that P(8o), P(d10), P(801), and P(d;1) are the transition
probabilities from Table 1. Next, we explain how «, 5, and y could be calculated.

Here, we discuss two approaches, based on static analysis and dynamic profiling, respectively:

3 Assume a basic matrix multiplication algorithm with O(N?®) complexity.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:14 A. H. N. Sabet et al.

Py =P(8p0) - (12)
Py = P(b10) - B (13)
P3 = P(b10) -y (14)
Py =P(6o1) - (1= B)/(N—1) (15)
Ps=P(611)- (1-a)/(N-1) (16)
Ps=P(611)- (1-y)/(N-1) (17)

Fig. 11. Calculation of error tolerance parameters.

% o)

a) Markov model b) Transition matrix

Fig. 12. Dual-state Markov model.

e Static analysis: In this method, we analyze the given FSM statically without any inputs. Take
a as an example. To statically reason about the probability that a wrong input symbol can
lead the FSM to the correct state, one can examine each state in the FSM, and check each
pair of symbols (c, ¢’), where c is assumed as the correct symbol while ¢’ is considered as
the wrong one. By calculating the frequency ratio that a pair of symbols lead the state to
the same next state, @ can be computed. In similar ways, and y can be computed as well.
Static analysis considers all possible inputs—that is, all symbol combinations of length L
(i.e., F)—and hence it produces accurate values from a statistical point of view.

e Dynamic profiling: Alternatively, a more straightforward method is profiling these param-
eters with either offline training inputs or a small portion of the actual (testing) input.
When using an actual testing input, it involves in a tradeoff between profiling accuracy and
profiling cost.

For simplicity and efficiency, we use offline profiling when the error tolerance parameters are
less input insensitive and online profiling otherwise. The sensitivity can be simply tested offline.

5.2 Dual-State Markov Model

To improve the efficiency of reliability analysis, our idea is to abstract the level of analysis from
concrete FSM states to two abstract states: correct state and incorrect state. In this way, the proba-
bilistic transition model in full reliability analysis is streamlined to a lightweight dual-state Markov
model. Figure 12 illustrates this new model.

In this model, we represent the correct state as T and the incorrect state as F. In this case,
it only needs two parameters to represent all of the transition probabilities, denoted as Pr and
Pp. The former is the probability that an FSM stays in a correct state, whereas the latter is the
probability that an FSM gets back to the correct state from a wrong state. Based on the error
tolerance parameters from the offline error tolerance characterization (Section 5.1), Py and Pr can
be calculated as follows:

Pr = P((SO(]) + Py + Ps
Pr =P+ P;+Ps + Pg. (18)

Note that the reliability after the n-th transition (denoted as R(n)) depends on the reliability

after the n — 1-th transition (denoted as R(n — 1)). This allows us to build a recursive function to

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:15

calculate the reliability. Obviously, 1 — R(n) is the probability of being in a wrong state after the
n-th transition. According to the definitions of Py and P, we have

R(n):{Ili(n—l)'PT+(1—R(n—1))'PF Zig_ 19)

After simplification, we can get the following closed form:
Prp(1 - (Pr — Pp)")
1—(Pr — Pr)

This formula tells the reliability of the state after the FSM finishes the n-th transition. Note that
since |Pr — Pp| < 1, we can calculate the limit of the reliability as follows:

lgl’l R(n) = Pr/(1 — Pr + Pp). (21)

R(n) = (Pr — Pp)" + (20)

This means that, statistically speaking, the state reliability tends to converge to a lower bound as
the FSM executes, a phenomenon also observed in real-world FSM computations (see Section 6).

In sum, with the offline error tolerance characterization and state abstraction, we provide a new
reliability analysis solution. The new analysis leverages a closed-form equation to calculate the
reliability efficiently and also provides a statistical lower bound for the reliability.

6 EVALUATION

In this section, we first evaluate the proposed reliability analyses in terms of accuracy and cost,
then demonstrate their uses with a case study in approximate searching of biological patterns.

6.1 Methodology

We first validate the correctness of full reliability analysis by comparing it with extensive error
injection-based simulations, which mimic unreliable FSM executions a huge number of times (i.e.,
sampling) to collect the reliability statistically. For each simulation of unreliable FSM execution,
we inject errors randomly (but not exhaustively) into the input and transitions based on the speci-
fied read and transition error rates (e, and e;), respectively. Note that since the proposed reliability
analysis is at the FSM level, this evaluation does not include lower-level error injections, which
could be conducted independently for collecting the FSM read and transition error rates. In the
following, we treat the two error rates as the parameters to our analysis model. After the valida-
tion, we use full reliability analysis as the baseline to evaluate the accuracy and efficiency of fast
reliability analysis. Note that the error injection-based approach is straightforward to implement
but requires a high sampling rate to achieve high precision. For this reason, the evaluation also
examines the efficiencies of the different reliability analysis approaches.

Benchmarks. We use the FSM benchmark suit from recent FSM studies [56, 57] and update it
with FSMs from biological searching applications. Table 2 lists their basic information, includ-
ing description, number of states, and symbols. They are drawn from a variety of areas, includ-
ing text mining, data decompression, pattern matching, bioinformatics, and mathematics. Together,
they cover a spectrum of complexities. The number of states ranges from several to thousands.
For space limits, we only show the results of representative benchmarks when the results of
others are similar.

6.2 Correctness of Full Reliability Analysis

As explained in Section 4, full reliability analysis is based on rigorous mathematical models and
provides the ground truth of reliability. To validate this, we compare its results with those from
extensive error injection—-based simulations. The latter extensively simulates unreliable execution

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:16 A. H. N. Sabet et al.

Table 2. Benchmarks

| Name | Description | #States | #Accept | Symbols |
div7 Unary Divisibility 7 1 Binary
evenodd Even Odd Testing 4 1 {abcd}
commadot | Text Searching 130 7 ASCII
likeapple | Text Searching 495 1 ASCII
huff Huffman Decoding 511 256 ASCII
dnal DNA Motif Search 371 76 {ATGC}
dna2 DNA Motif Search 2,871 583 {ATGC}
dna3 DNA Motif Search 40 5 {ATGC}
protnl Protein Motif Search 68 6 | 20 Letters
protn2 Protein Motif Search 280 14 | 20 Letters
protn3 Protein Motif Search 831 48 | 20 Letters
 _#simulation = 10° | _#simulation = 10* _#simulation = 10° | _#simulation=10° g #simulation=10°

0.9 0.9 0.9 0.9 0.86

0.8 0.8 0.8 0.8 0.84

7 500 1000 7o 500 1000 o 500 1000 7o 500 1000 *%

, #simulation = 10° , #simulation = 10* | Hsi ion = 10° | _#simulati 1=10° 08

08 08 08 08 078

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4 078 1

2, 500 1000 20 500 1000 %0 500 1000 20 500 1000 800 850 900

Fig. 13. Validation of full reliability analysis. The two rows are for commadot and huff, respectively. (x-axis:
transitions, y-axis: reliability, blue lines: error injection—based simulation, red lines: full reliability analysis,
and error rates are e, = e; = 0.02.)

under the given error rates (i.e., e, and e;). Figure 13 reports the reliability of the first 1,000 tran-
sitions for two benchmarks: commadot and huff. Results from other benchmarks are similar. The
error rates are artificially set to high values (e, = e; = 0.02) to magnify the variations of reliability.

The results clearly show that the reliability from simulations tend to converge to the reliability
from full reliability analysis; the differences between the two reduce as the amount of simulations
increases. Note that the reliability curve of huff (on the right) varies quickly due to its complex
transition structure. Even for this challenging case, we find full reliability analysis still perfectly
captures its reliability variation. However, the results also demonstrate the key advantage of full
reliability analysis—even the reliability resulted from 1M simulations of error-injected executions
still exhibits noticeable discrepancy, as shown in the right-most subfigure in Figure 13. Moreover,
the discrepancy often increases as more transitions are performed.

Discussion. Even though the preceding results confirm the correctness of full reliability analysis
in theory, there could be some other factors affecting the actual reliability in practice. First, as full
reliability analysis takes the read and trans error rates as inputs, the precisions of these error rates
directly affect the reliability results. However, this impact can be statistically minimized with more
intensive profiling (i.e., reducing the error margin). Second, in some application scenarios, there

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:17

; dnat ; protn3] div7 ; evenodd ; commadot
0.9 0.9 % 0.8 0.8 0.8
0.8 0.8 0.6 0.6 0.6
0.7 0.7 0.4 0.4 0.4
0.6 0.6 0.2 0.2 0.2
0.5 0.5 0 0 0
0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000

Fig. 14. Accuracy of fast reliability analysis. (x-axis: transitions, y-axis: accumulated reliability, blue lines:
full reliability analysis of five inputs, red lines: fast reliability analysis, and e, = ¢; = 0.02.)

Table 3. Costs of Different Methods for Computing Reliability

div7 (7 states) protnl (68 states)
Method | 1K | 2K | 4K 1K | 2K | 4K
Fast reliability analysis | 0.291 ms | 0.597 ms | 1.21 ms | 0.299 ms | 0.576 ms | 1.16 ms
Full reliability analysis | 1.12ms | 2.37ms | 4.39ms | 94.7ms | 193 ms 378 ms
Error injection based | 9.8 s 17.7 s 36.9s 8.56s 16.5s 33.0s

could be masking effects beyond FSM error tolerance, which the full reliability analysis does not
take into account. For example, when the analysis is used for reasoning the reliability of sequential
circuits, there might be cases in which the FSM enters a wrong state but the primary output remains
correct. In such uses scenarios, our analysis provides a lower bound of the actual reliability.

6.3 Accuracy and Efficiency of Fast Reliability Analysis

We examine the accuracy and efficiency of fast reliability analysis based on full reliability analy-
sis. The error tolerance parameters used in fast reliability analysis were collected using dynamic
profiling (see Section 5.1), which yields higher-quality parameters overall, thanks to its input sen-
sitivity. As fast reliability analysis abstracts state identities, we compare its accumulated reliability
with that of full reliability analysis. The accumulated reliability is the averaged reliability among
all transitions that have happened so far. As discussed in Section 5, the rationale is that many
FSM applications care more about the overall reliability instead of the reliability of individual
transitions.

Figure 14 shows the results of accumulated reliability on five representative benchmarks (in
terms of reliability trends): dnal, protn3, div7, evenodd, and commadot. Although the benchmarks
exhibit different reliability trends when reacting to the same error rates (e, = e, = 0.02), fast relia-
bility analysis precisely captures the trends, with less than 1% discrepancy in the given setting. The
results confirm the accuracy of fast reliability analysis and its potential for practical uses. Later
in this section, we will show its uses for estimating the approximate pattern searching accuracies.
Note that the precision loss of fast reliability analysis implies that the confidence of the reliability
is reduced. When the confidence is of the highest preference, a full reliability analysis would be
more preferred at the cost of a longer analysis time.

As to the efficiency, Table 3 summarizes the time costs of different methods for finding the
reliability. For error injection—based simulation, the number of simulations is set to 100K. Both full
reliability analysis and simulation show linear increases of costs as the input length grows, which
is expected according to the complexities, O(L - N?) and O(L - #Simulation), discussed in Section 4.
However, fast reliability analysis shows significant less cost than the other two approaches, thanks
to its use of a closed-form equation for reliability calculation.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:18 A. H. N. Sabet et al.

Table 4. Protein Motifs (x Represents Any Valid Symbol)

protnl | Description: IQ calmodulin-binding motif
[FILV]-O-x(3)-[RK]-G-x(3)-[RK]-x(2)-[FILVWY]
protn2 | Description: Hemopexin domain signature
[LIFAT]-[IL]-x(2)-W-x(2,3)-[PE]-x-[VF]-
[LIVMFY]-[DENQS]-[STA]-[AV]-[LIVMFY]
protn3 | Description: P-type “Trefoil” domain signature
[KRH]-x(2)-Cx-[FYPSTV]x(3,4)-[ST]-
x(3)-C-x(4)-C-C-[FYWH]

6.4 Case Study: Approximate Searching in Biological Databases

To demonstrate the uses of the proposed reliability analysis, we conduct a case study on a specific
yet important application: pattern searching in biological databases. In addition to the reliability
results, we also roughly estimate the potential energy saving by adopting a disciplined approximate
computing scheme. Next, we first motivate this case study and introduce the benchmarks.

Motivation. Due to the massive data sizes and the errors originally introduced by biological se-
quencing devices [54], relaxed searching has been proposed [5]. Here, “relaxing” means the results
are allowed to miss some hits (i.e., false negatives) and contain incorrect hits (i.e., false positives).
The pattern to search (in regular expression formats) can be converted to an FSM through the
standard DFA construction algorithm, then the searching becomes an FSM execution, where each
time the FSM enters an accept state, a hit is reported. By introducing errors at the FSM transition
level, the FSM may not enter an accept state as expected or enter an accept state when it is not
expected. Therefore, it is important to understand the reliability of the searching FSMs.

To introduce the read and trans errors, we consider the use of an approximate computing
platform proposed by recent work: Ener] [46]. In brief, Ener] is based on a hybrid hardware model
equipped with both approximate and reliable registers, data caches, memory regions, and func-
tional units (similar platforms have been used by other work [4, 36]). The platform offers an
approximation-aware ISA extension that allows application programs to distinguish between pre-
cise data and approximate data, as well as between precise computations and approximate com-
putations. With these supports, we can limit the errors within the scope of the FSM executions.
More specifically, there are three levels of approximation settings. Each setting corresponds to a
different set of error rates. We refer to the three levels as low, medium, and high. By decomposing
the FSM read and trans operations down to the instruction level, we can infer their error rates
(er and e;) with instruction-level analysis (see Section 3.3). More details about the approximation
platform can be found in prior work [4, 36, 46].

Benchmarks. A search in biological database is to find a pattern that may exhibit biological
significance, such as motifs. For example, a DNA motif is a short pattern of nucleic acid, whereas a
protein motif is a pattern of amino acids. It is common to represent protein patterns with regular
expressions. Table 4 lists three benchmark protein motifs randomly selected from the popular
protein database PROSITE [14]. As to DNA motifs, they are more commonly represented with
Hamming distances. In our benchmarks, dnal is a DNA motif for pattern ATCGGTCC(8, 3), which
means three of eight symbols can be different from the specified ones. dna2 and dna3 are two other
DNA motifs for patterns TCGAGGACCA(10@,4) and AGGGTAAAA(8,1).

Both protein and DNA motifs can be implemented with FSMs. The basic statistics of the motif
FSMs are shown in Table 2. An execution of a motif search returns all hits in the database.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:19

Table 5. State Reliability in Relaxed Queries on Biological Sequences
(Input Sizes: 2,778,548,305 for DNA and 1,471,906,839 for Protein)

Benchmark | Err. Rate | #Err. States (actual) | #Err. States (est.)
dnal Low 12,753 12,747
Med 144,939 144,590

High 14,382,834 14,369,394

dna2 Low 16,774 17,227
Med 183,191 185,085

High 18,438,646 18,569,717

dna3 Low 5,446 5,520
Med 61,034 62,531

High 6,007,384 6,133,971

protnl Low 716 723
Med 11,528 11,423

High 1,165,197 1,191,223

protn2 Low 2,342 2,475
Med 29,628 30,712

High 2,936,596 3,057,013

protn3 Low 1,157 1,187
Med 18,853 19,063

High 1,870,571 1,884,260

Reliability of approximate searching. Table 5 reports the reliability results of approximated
searches on a testing database with 2-GB DNA sequences and 1.5-GB protein sequences. The last
two columns show the actual number of erroneous states in an unreliable search and the estimated
number of erroneous states calculated by fast reliability analysis, respectively. A naive way to use
fast reliability analysis here is accumulating the state reliability at every position of the input
sequence, whereas a more efficient approach could leverage the convergence of state reliability,
as fast reliability captures, to eliminate repeated calculation when the reliability has converged
(according to some precision threshold). As the results shown, the calculated values estimate the
actual numbers with high precision. Note that after an unreliability platform is deployed, there is
no way to know the actual number of correct states in an unreliable execution. The proposed fast
reliability provides a lightweight yet accurate estimation to help users understand the reliability
of the search. Also note that the state reliability reported here is an “averaged” reliability of both
accept and non-accept states. If users would like to distinguish between the two cases, some ex-
tensions to the fast reliability analysis would be needed or alternatively the users could use the
full reliability analysis to achieve the same purpose (but at a higher cost).

Energy saving estimation. To estimate the potential energy saving, we adopt the energy model
from a recent approximate computing framework [46], and collect the instruction-level parame-
ters, such as the numbers of memory and arithmetic operations, to estimate the energy savings
of the three approximation levels.* Based on the instructions (produced by GCC 4.9.3 on a 64-bit
Linux machine) of FSM execution, we find about 30% arithmetic operations, 50% SRAM operations,
and about 20% DRAM operations. Based on the energy models, the estimated energy savings for
the three levels of approximation are 20%, 23%, and 29%, respectively.

4More details can be found in Sampson et al. [46].

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:20 A. H. N. Sabet et al.

7 RELATED WORK

Fault tolerance and resilience are among the primary goals for building dependable computing
systems. There is a rich body of research in developing methodologies for measuring the reliability
at different levels of the computing stack, including, but not limited to, circuit-level reliability (7,
28, 48], architecture-level reliability [10, 16, 37, 50], instruction-level reliability [8, 39], operating
system-level reliability [19], and application-level reliability [15, 21, 30-32, 43, 55]. However, there
is limited work for studying the reliability at the computation model level, which is the focus of
this work. There is early work on error analysis for finite automata [9], which discusses finite and
infinite errors from the theoretical perspective. It does not characterize the causes of the error
tolerance in detail and offers no quantitative analysis.

There is a series of studies on the quantitative reliability analysis of general programs. One of
the early studies [50] defines the program vulnerability factor (PVF) to capture the architecture-
level fault masking inherited in a program. Note that it captures both the crash-causing errors
and silent-data corruption (SDC) errors. ePVF [15] improves PVF in that it focuses on the SDCs.
However, it still includes benign faults that are tolerable by the program executions, due to its limi-
tations in error propagation models. TRIDENT [31] and vITRIDENT [30] address the limitations by
expanding the error propagation to control flows and the memory, yielding more accurate reliabil-
ity estimations. However, this work shows that the preceding instruction-level error propagation
methods cannot capture the reliability of FSM computations accurately, due to their inherent error
tolerance (see Section 2). We address this gap with a state-level reliability analysis.

Approximate computing has emerged in the past few years [20], ranging from approximate
hardware design [13, 35, 47] to the supports of architecture [12], programming languages [4, 36,
46], and even databases [22]. For example, approximate storage can be designed either using multi-
level phase-change memory cells and failed blocks [47] or based on spintronic memories [42].
These efforts together build the infrastructure for approximate computing and call for the exploita-
tion of more approximate applications. A core problem to this emerging domain is the reliability
analysis [4, 36, 46]. A few recent studies provide programming language supports for reliability
reasoning. For example, Rely [4] and Chisel [36] provide static reliability analysis to verify program
reliability against predefined requirements. Ener] [46] extends traditional assertions to probabilis-
tic ones to support reliability analysis for approximate computing. Similarly to the work in fault
tolerance studies, they propagate reliability at the instruction/statement level thus is unaware of
the state-level error tolerance in FSM computations.

As a basic computation model, FSM has been well studied in theory, including the property
of state synchronization [23, 25]. For practical uses, there is a series of efforts in parallelizing
FSM executions [24, 38, 40, 41, 56, 57], most of which exploit the state synchronization in FSM
computations. However, to the best of our knowledge, no prior work systematically examined the
state synchronization properties for analyzing the reliability of FSM computations.

8 CONCLUSION

This work introduces RelyFSM, which to our best knowledge is the first quantitative reliability
analysis for FSM computations. It provides a systematic way to characterize their intrinsic er-
ror tolerance properties, including the findings of three synchronization structures, the essential
causes of the error tolerance in FSM computations, and the six basic classes of error tolerance cases.
Based on the error tolerance characterization, this work provides both a rigorous full reliability
analysis and a lightweight reliability analysis. The former can find the theoretical ground truth
by simultaneously reasoning about the likelihood of each concrete state, whereas the latter trades
off model accuracy for faster analysis. Experiments confirm the correctness and efficiency of the

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:21

proposed analyses and demonstrate the potential of adopting disciplined approximate computing
for FSM computations.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their suggestions.

REFERENCES

(1]

[5]

(6]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin Skadron, Westley Weimer, and
Reetuparna Das. 2018. ASPEN: A scalable In-SRAM architecture for pushdown automata. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture.

Robert C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Transactions
on Device and Materials Reliability 5, 3 (2005), 305-316.

Stephen D. Brown. 2007. Fundamentals of Digital Logic with Verilog Design. Tata McGraw-Hill Education.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA’13). ACM, New York, NY, 33-52.

Yangjun Chen, Duren Che, and Karl Aberer. 2002. On the efficient evaluation of relaxed queries in biological databases.
In Proceedings of the 11th International Conference on Information and Knowledge Management. ACM, New York, NY,
227-236.

Cristiana Chitic and Daniela Rosu. 2004. On validation of XML streams using finite state machines. In Proceedings of
the 7th International Workshop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004. ACM, New York,
NY, 85-90.

Mihir R. Choudhury and Kartik Mohanram. 2007. Accurate and scalable reliability analysis of logic circuits. In Pro-
ceedings of the Conference on Design, Automation, and Test in Europe. 1454-1459.

Jeffrey J. Cook and Craig Zilles. 2008. A characterization of instruction-level error derating and its implications for
error detection. In Proceedings of the 2008 IEEE International Conference on Dependable Systems and Networks with
FTCS and DCC (DSN’08). IEEE, Los Alamitos, CA, 482-491.

Philip Simon Dauber. 1965. An analysis of errors in finite automata. Information and Control 8, 3 (1965), 295-303.
Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An architectural framework for soft-
ware recovery of hardware faults. In Proceedings of the 37th Annual International Symposium on Computer Architecture
(ISCA’10). ACM, New York, NY, 497-508.

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. 2014. An efficient and scalable
semiconductor architecture for parallel automata processing. IEEE Transactions on Parallel and Distributed Systems
25, 12 (2014), 3088-3098.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture support for disciplined ap-
proximate programming. In Proceedings of the 17th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVII). ACM, New York, NY, 301-312.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural acceleration for general-purpose ap-
proximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, Los Alamitos, CA, 449-460.

Laurent Falquet, Marco Pagni, Philipp Bucher, Nicolas Hulo, Christian J. A. Sigrist, Kay Hofmann, and Amos Bairoch.
2002. The PROSITE database, its status in 2002. Nucleic Acids Research 30, 1 (2002), 235-238.

Bo Fang, Qining Lu, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. 2016. ePVF: An enhanced
program vulnerability factor methodology for cross-layer resilience analysis. In Proceedings of the 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’16). IEEE, Los Alamitos, CA, 168-179.
Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010. Shoestring: Probabilistic soft error reliability
on the cheap. ACM SIGARCH Computer Architecture News 38 (2010), 385-396.

Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni Antichi, and Andrea Di Pietro. 2008. An
improved DFA for fast regular expression matching. ACM SIGCOMM Computer Communication Review 38, 5 (2008),
29-40.

Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. 2003. Processing XML streams with deterministic
automata. In Proceedings of the International Conference on Database Theory. 173-189.

Weining Gu, Zbigniew Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang. 2003. Characterization of Linux kernel
behavior under errors. In Proceedings of the International Conference on Dependable Systems and Networks. IEEE, Los
Alamitos, CA, 459.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

12:22 A. H. N. Sabet et al.

[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]

(30]

(31]

(32]

[33]

(34]
[35]

(36]

(37]

(38]

(39]

[40]

[41]

Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design.
In Proceedings of the 2013 18th IEEE European Test Symposium (ETS’13). IEEE, Los Alamitos, CA, 1-6.

Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachandran. 2012. Relyzer: Exploiting
application-level fault equivalence to analyze application resiliency to transient faults. ACM SIGPLAN Notices 47
(2012), 123-134.

Bingsheng He. 2014. When data management systems meet approximate hardware: Challenges and opportunities.
Proceedings of the VLDB Endowment 7, 10 (2014), 877-880.

Jan Holub and Stanislav Stekr. 2009. On parallel implementations of deterministic finite automata. In Implementation
and Application of Automata. Springer, 54-64.

Peng Jiang and Gagan Agrawal. 2017. Combining SIMD and many/multi-core parallelism for finite state machines
with enumerative speculation. ACM SIGPLAN Notices 52, 8 (2017), 179-191.

Jarkko Kari. 2003. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science 295, 1 (2003),
223-232.

Randy H. Katz and Gaetano Borriello. 2005. Contemporary Logic Design (2nd ed.). Pearson.

Shmuel Tomi Klein and Yair Wiseman. 2003. Parallel Huffman decoding with applications to JPEG files. Computer
Journal 46, 5 (2003), 487-497.

Smita Krishnaswamy, George F. Viamontes, Igor L. Markov, and John P. Hayes. 2005. Accurate reliability evaluation
and enhancement via probabilistic transfer matrices. In Proceedings of the Conference on Design, Automation, and Test
in Europe—Volume 1. IEEE, Los Alamitos, CA, 282-287.

Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner. 2006. Algorithms to accel-
erate multiple regular expressions matching for deep packet inspection. ACM SIGCOMM Computer Communication
Review 36 (2006), 339-350.

Guanpeng Li and Karthik Pattabiraman. 2018. Modeling input-dependent error propagation in programs. In Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18). IEEE, Los Alamitos, CA.
Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael Sullivan, and Timothy Tsai. 2018. Modeling
soft-error propagation in programs. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’18). IEEE, Los Alamitos, CA.

Xuanhua Li and Donald Yeung. 2007. Application-level correctness and its impact on fault tolerance. In Proceed-
ings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture (IIPCA’07). IEEE, Los
Alamitos, CA, 181-192.

Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and Adwait Jog. 2018. Architectural support for
efficient large-scale automata processing. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture.

Tobias Marschall and Sven Rahmann. 2009. Efficient exact motif discovery. Bioinformatics 25, 12 (2009), i356-i364.
Jin Miao, Andreas Gerstlauer, and Michael Orshansky. 2013. Approximate logic synthesis under general error mag-
nitude and frequency constraints. In Proceedings of the 2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’13). IEEE, Los Alamitos, CA, 779-786.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and accuracy-
aware optimization of approximate computational kernels. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA’14). ACM, New York, NY, 309-328.
Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. 2003. A systematic
methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In Proceed-
ings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-36). IEEE, Los Alamitos, CA,
29-40.

Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. 2014. Data-parallel finite-state machines. In Proceed-
ings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’14). ACM, New York, NY, 529-542.

Frances Perry, Lester Mackey, George A. Reis, Jay Ligatti, David I. August, and David Walker. 2007. Fault-tolerant
typed assembly language. ACM SIGPLAN Notices 42 (2007), 42-53.

Jungiao Qiu, Zhijia Zhao, and Bin Ren. 2016. MicroSpec: Speculation-centric fine-grained parallelization for FSM
computations. In Proceedings of the 2016 International Conference on Parallel Architecture and Compilation Techniques
(PACT’16). IEEE, Los Alamitos, CA, 221-233.

Junqiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon Song. 2017. Enabling scalability-sensitive
speculative parallelization for FSM computations. In Proceedings of the International Conference on Supercomputing.
ACM, New York, NY, 2.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

Reliability Analysis for Unreliable FSM Computations 12:23

[42]

(43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

[51]

[52]

(53]

[54]

(55]

Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand Raghunathan. 2015. Approximate
storage for energy efficient spintronic memories. In Proceedings of the 52nd Annual Design Automation Conference
(DAC’15). ACM, New York, NY, Article 195, 6 pages.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. August. 2005. SWIFT: Software im-
plemented fault tolerance. In Proceedings of the International Symposium on Code Generation and Optimization. IEEE,
Los Alamitos, CA, 243-254.

Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze, and Dan Grossman. 2015. Monitoring and debug-
ging the quality of results in approximate programs. In Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’15). ACM, New York, NY, 399-411.

Indranil Roy and Srinivas Aluru. 2014. Finding motifs in biological sequences using the Micron Automata Processor.
In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, Los Alamitos,
CA, 415-424.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011.
Ener]J: Approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’11). ACM, New York, NY, 164-174.

Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2013. Approximate storage in solid-state memories. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). ACM, New York,
NY, 25-36.

Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo Alvisi. 2002. Modeling
the effect of technology trends on the soft error rate of combinational logic. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN’02). IEEE, Los Alamitos, CA, 389-398.

Wasuwee Sodsong, Jingun Hong, Seongwook Chung, Yeongkyu Lim, Shin-Dug Kim, and Bernd Burgstaller. 2016.
Dynamic partitioning-based JPEG decompression on heterogeneous multicore architectures. Concurrency and Com-
putation: Practice and Experience 28, 2 (2016), 517-536.

Vilas Sridharan and David R. Kaeli. 2009. Eliminating microarchitectural dependency from architectural vulnerability.
In Proceedings of the 2009 IEEE 15th International Symposium on High Performance Computer Architecture (IIPCA’09).
IEEE, Los Alamitos, CA, 117-128.

Arun Subramaniyan and Reetuparna Das. 2017. Parallel automata processor. In Proceedings of the 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA’17). IEEE, Los Alamitos, CA, 600-612.

Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David Blaauw, Dennis Sylvester, and Reetuparna
Das. 2017. Cache automaton. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM, New York, NY, 259-272.

Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy, and Anand Raghunathan. 2012. SALSA:
Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual Design Automation Conference
(DAC’12). ACM, New York, NY, 796-801.

Xin Victoria Wang, Natalie Blades, Jie Ding, Razvan Sultana, and Giovanni Parmigiani. 2012. Estimation of sequencing
error rates in short reads. BMC Bioinformatics 13, 1 (2012), 185.

Li Yu, Dong Li, Sparsh Mittal, and Jeffrey S. Vetter. 2014. Quantitatively modeling application resilience with the
data vulnerability factor. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis. IEEE, Los Alamitos, CA, 695-706.

Zhijia Zhao and Xipeng Shen. 2015. On-the-fly principled speculation for FSM parallelization. In Proceedings of the
20th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’15).
ACM, New York, NY, 619-630.

Zhijia Zhao, Bo Wu, and Xipeng Shen. 2014. Challenging the “Embarrassingly Sequential”: Parallelizing finite state
machine-based computations through principled speculation. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, NY, 543-558.

Received June 2019; revised November 2019; accepted December 2019

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 12. Publication date: May 2020.

