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Abstract
Graph analytics delivers deep knowledge by processing large
volumes of highly connected data. In real-world graphs, the
degree distribution tends to follow the power law – a small
portion of nodes own a large number of neighbors. The high
irregularity of degree distribution acts as a major barrier to
their efficient processing on GPU architectures, which are
primarily designed for accelerating computations on regular
data with SIMD executions.

Existing solutions to the inefficiency of GPU-based graph
analytics either modify the graph programming abstraction
or rely on changes to the low-level thread execution models.
The former requires more programming efforts for designing
and maintaining graph frameworks; while the latter couples
with the underlying architectures, making it difficult to adapt
as architectures quickly evolve.
Unlike prior efforts, this work proposes to address the

above fundamental problem at its origin – the irregular graph
data itself. It raises a critical question in irregular graph
processing: Is it possible to transform irregular graphs into
more regular ones such that the graphs can be processed more
efficiently on GPU-like architectures, yet still producing the
same results? Inspired by the question, this work introduces
Tigr – a graph transformation framework that can effectively
reduce the irregularity of real-world graphs with correctness
guarantees for a wide range of graph analytics. To make the
transformations practical, Tigr features a lightweight virtual
transformation scheme, which can substantially reduce the
costs of graph transformations, while preserving the benefits
of reduced irregularity. Evaluation on Tigr-based GPU graph
processing shows significant and consistent speedup over
the state-of-the-art GPU graph processing frameworks for
several graph algorithms on a spectrum of irregular graphs.

∗Here, irregularity refers to the power-law degree distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173180

CCS Concepts • Computing methodologies → Paral-
lel computing methodologies;

Keywords Vertex-Centric Graph Processing, Irregularity,
Power-law Graph, Graph Transformation, GPU, SIMD
ACM Reference Format:
Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018.
Tigr: Transforming Irregular Graphs for GPU-Friendly Graph Pro-
cessing. In Proceedings of 2018 Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’18). ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3173162.3173180

1 Introduction
Graph analytics is fundamental in unlocking key insights
by mining large volumes of highly connected data. Unlike
the traditional analytics based on “one-to-one" or “one-to-
many" relationships, graph analytics allows more complex
reasoning by exploring “many-to-many" relationships, such
as identifying influencers in social networks [46], spotting
frauds in bank transactions [57], optimizing supply chain
distribution [66], and developing recommendations [12] and
more effective medical treatments [7]. There is a growing
need for accelerating graph analytics by taking advantages
of modern parallel architectures.
Packed with up to thousands of computing units, GPUs

have emerged as an attractive computing platform for large
graph processing. Recent work [32] has shown orders of
magnitude efficiency improvement over traditional CPU-
based graph processing, such as GraphLab [37]. Despite the
promise, existing GPU-based graph processing suffers from
low efficiency due to the highly irregular degree distribution
in real-world graphs. By nature, the degree distribution of
real-world graphs tend to follow the power law (known as
power-law graphs) – a small portion of nodes 1 own a large
number of neighbors (i.e., one-hop nodes) while most nodes
are connected to only a few neighbors. Such a highly skewed
degree distribution makes these graphs ill-suited to GPUs’
single-instruction multiple-data (SIMD) execution, which is
primarily designed for accelerating computations with more
regular data structures [39].
In the popular vertex-centric graph programming where

the nodes of a graph are distributed across threads for pro-
cessing, graph irregularity results in severe load imbalance
among threads. On GPU architectures, threads are organized
in warps and threads in the same warp proceed in an SIMD
execution fashion – threads that finish their tasks earlier
1We use node and vertex interchangeably in the context of graph structures.
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Figure 1. Illustration of Graph Irregularity Reduction.

have to wait until other threads in the same warp finish their
computations, before swapping in the next warp of threads.
In this case, the load imbalance among threads can lead to
inefficiencies at both intra-warp and inter-warp levels. As a
result, the GPU utilization drops to merely 25.3%-39.4% for
commonly used graph analytics [32].
State of The Art. To address the above barrier, research so
far either modifies GPU thread execution models [20, 23, 30]
or changes the graph programming paradigm [16, 31, 32,
69]. For instance, warp segmentation [30] and maximum
warp [23] improve the GPU efficiency by decomposing a
warp of threads into a group of sub-warps. With enhanced
flexibility, changes like these tightly couple with underlying
GPU architectures, making them harder to adapt as GPU
architectures quickly evolve. By contrast, CuSha [32] and
Gunrock [69] propose new graph representations and new
programming abstractions, respectively, which often require
extra programming efforts to adopt.

Different from prior efforts, this work proposes to address
the irregularity issue at its origin by transforming irregular
graphs into more regular ones, namely Tigr, as illustrated in
Figure 1. Note that this is radically different from changing
graph representations [32, 36] (e.g., CSR to CSR5 format)
or partitioning graphs [17, 37]. Tigr allows to change the
topology of a graph (i.e., structural transformations) while
does not generate any graph partitions, thus there is no need
for explicit partition synchronization.

To achieve this goal, there are three key challenges:
• Effectiveness. How should graphs be transformed such that
their irregularity can be effectively reduced?
• Correctness. How can we ensure that the processing of
transformed graphs still yields the same results?
• Efficiency. How can we minimize the transformation cost
while preserving its effectiveness?
First, to reduce the graph irregularity, this work proposes

a class of structural transformations based on a simple yet
effective idea – node splitting. Basically, the transformations
first identify nodes with high degrees, then iteratively split
the nodes until their degrees reach a predefined limit. We
refer to these transformations as split transformations.

The design complexity of split transformations lies in the
connection among the split nodes. Different connections may
lead to different extent of irregularity reduction. Even more
complex, they may affect the convergence rate of graph

analytics and alter the final results. In general, there exists
a basic tradeoff between graph irregularity reduction and
the convergence rate of graph algorithms. More importantly,
this work identifies a promising type of split transformations
that is able to achieve a good balance between irregularity
reduction and convergence speed, while preserving the result
correctness for a wide range of graph algorithms, called
uniform-degree tree transformation or UDT.

As the name suggests, UDT transforms a high-degree node
into a tree structure with nodes of identical degrees. This
special design leads to two important properties. First, it
ensures that the distances (i.e., #hops) among split nodes
only increase logarithmically as the degree of the to-split
node increases. This minimizes the negative impact of split
transformations on the convergence rate of graph algorithms.
Second, it preserves basic graph properties, like connectivity,
paths, and degrees, which in turn supports the correctness of
UDT for a variety of graph analytics.
Physically transforming graphs may incur substantial

costs in time and space. To address it, this work proposes
virtual split transformations, which add a virtual layer on
top of the original irregular graph, making it “look more
regular”. Essentially, virtualization separates programming
abstraction from the physical graph. The separation allows
computation tasks to be scheduled at the virtual layer (on
the transformed graph) while the actual value propagation
is carried at the physical layer (on the original graph). In
this way, it eliminates the needs of physical graph trans-
formations while preserving the benefits of reduced graph
irregularity. Moreover, the virtual transformation simplifies
the correctness enforcement by preserving the original value
propagation pattern at the physical layer.

Finally, we integrate the proposed graph transformations
Tigr into a lightweight GPU graph processing framework.
Thanks to the data-level transformations, its code base is
much smaller than other GPU graph processing solutions.
Evaluation on six important graph analytics confirms the
effectiveness and efficiency of the proposed transformations
with substantial speedups over existing solutions.
Contributions. This work makes a four-fold contribution.

• This work directly targets the irregular graph data for
addressing the fundamental efficiency issue in irregular
graph processing, complementary to existing techniques.
• It proposes a class of novel structural transformations that
can effectively reduce the irregularity of real-world graphs
while guaranteeing the correctness.
• To make the graph transformations practical, it designs a
virtual transformation scheme, which eliminates the needs
of expensive physical graph transformations.
• Finally, it implements the proposed transformations and
compares with the state-of-the-art GPU graph processing
frameworks. The results confirm both the effectiveness
and correctness of the transformations. (Github repository:
https://github.com/amirnodehi/Tigr)
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initial dist values after 1st iter. after 2nd iter.

vertex_func (vertex v, bool finished) {
foreach nbr of v.nbrs {

alt = v.dist + weight[v,nbr]
if (alt < nbr.dist)    /* a shorter path ? */

nbr.dist = alt 
finished = false

}
}
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Figure 2. Example of (Push-based) Vertex-Centric Programming.
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Figure 3. SIMD Execution.

2 Background and Motivation
This section briefly introduces the parallel programming
model for graph analyses, the SIMD execution model on
GPU architectures, and the special challenges for GPU-based
graph processing.

2.1 Vertex-Centric Programming
Graph analytics is notoriously difficult to parallelize due to
its inherent dependencies [39]. In response to the challenge,
vertex-centric programming model has quickly established
its popularity in recent years for its simplicity, high scal-
ability and strong expressiveness. Since implemented by
Google Pregel [41], this model has been widely adopted by
many parallel graph engines, including Apache Giraph [1],
GraphLab [37], PowerGraph [17], MaxWarp [23], CuSha [32],
and many others. The model is based on a simple paradigm
“thinking like a vertex” – computations are defined from the
view of a vertex rather than a graph. In specific, a vertex
function is first defined, and then applied on each vertex.
Based on the Bulk Synchronous Parallel (BSP) model [65],
computations of different vertices are synchronized at the
graph level, iteration by iteration, until a certain number of
iterations or a convergence property is met.
Example. Figure 2 provides a vertex-centric programming
example for finding the shortest path from the source node to
the other nodes iteratively. Initially, each node in the graph
has an infinite distance to the source node (dist=∞), except
the source node (dist=0). By invoking the vertex function
vertex_func, each node attempts to update its neighbors’
distance values, based on its own value from the last iteration
and the distances to its neighbors (weight[v,nbr]). The
updates of different nodes are synchronized iteration by
iteration. The whole computation halts when all node values
stop changing – the algorithm converges.

In the above scheme, node values are propagated by updat-
ing neighbors’ values through outgoing edges. This scheme
is known as push-based. By contrast, the node values can also
be propagated by gathering values from neighbors through
incoming edges and updating the node’s own value, which
is known as pull-based. Both schemes have been used by
some prior graph frameworks. In the following, we assume a
push-based vertex-centric programming on directed graphs,
but similar ideas can also be applied to pull-based scheme
and undirected graphs – which actually are special cases of
directed graphs with each edge having both directions.

2.2 GPU and SIMD Execution
On GPU architectures, computing units (i.e., GPU cores)
are organized by a number of streaming multiprocessors
(SM). Typically, GPU applications distribute computation
tasks to thousands of parallel threads. These threads are
grouped into warps. In NVIDIA’s GPU architectures, a warp
typically contains 32 threads. Threads in the same warp are
assigned to a single SM, and proceed in an SIMD fashion 2.
That is, threads execute the same instructions (or nothing),
but on different data. Following the SIMD execution model,
even though some threads have finished their computations
earlier, their occupied computing units (also called SIMD
lanes) cannot be released for other computations, until all the
threads in the warp have finished, as illustrated in Figure 3.
Though offering massive threads for parallel executions,

whether the tremendous computing power of GPUs can be
utilized effectively depends on the computation regularity.

2.3 Challenges of GPU-based Graph Processing
Real-world graphs, like social networks and the web, are
highly irregular. For example, a basic graph characteristic
profiling on three popular real-world graphs (LiveJournal,
Higgs Twitter [35], and Hollywood [5]) reveals that over
90% of nodes have degrees less than 20 while less than 2% of
nodes have degrees around 1000, up to 14,000.
The high irregularity in real-world graphs poses a major

challenge to efficiently utilizing GPU’s processing power for
many graph analytics. In vertex-centric graph programming,
each node communicates with its neighbors to update their
values (see Section 2.1). The higher number of neighbors a
node has, the more computations it has to perform. When
mapping nodes to GPU threads, a highly biased node degree
distribution would lead to severe load imbalance across GPU
threads. At intra-warp level, some threads may finish earlier,
leaving their SIMD lanes idle. At inter-warp level, this leads
to some GPU SMs underused while others being busy.

Next, we will describe how to address this basic issue with
graph transformations.

3 Graph Transformations
This section first introduces the general ideas of a class of
novel structural transformations – split transformation, then
focuses on a promising type of split transformation with
desired properties – uniform-degree tree transformation.

2Single-instruction multi-thread (SIMT) model in NIVIDA’s term.



3.1 Split Transformations
Graph irregularity can be reflected by the highly skewed
node degree distribution. To reduce such irregularity, we
consider transforming nodes with high degrees into sets of
nodes with lower degrees. In (push-based) vertex-centric
programming (Section 2.1), values are propagated through
outgoing edges. Therefore, we focus on the outdegree – the
number of outgoing edges of a node 3. For simplicity, we
refer to outdegree as degree, unless otherwise noted. Formally,
we define high-degree nodes in a graph as follows.

Definition 1. Given a directed graph G = (V ,E), where V is
the set of vertices and E is the set of edges, and a predefined
degree threshold K (K ≥ 1), Node v , v ∈ V , is a high-degree
node if and only if it has an outgoing degree d (v ) such that
d (v ) > K . The threshold K is called degree bound.

To transform high-degree nodes, our strategy is to split
each high-degree node into a set of split nodes and evenly
distribute its (outgoing) edges to some split nodes based on
the degree boundK , as illustrated in Figure 4. We refer to this
process as split transformation. Assume the neighbor set of a
node v via outgoing edges is denoted as Nv . Similarly, the
neighbor set of node set S is denoted as NS , NS = ∪v ∈S Nv .
Then, split transformation can be formally defined as below.

Definition 2. Given a high-degree node v and the degree
bound K , a split transformation of node v is a mapping

T : (v, Nv ) 7→ (I ∪ B, NI ∪ NB ) (1)

where (i) I is the internal split node set i.e., NI ∩ Nv = ∅;
(ii) B is the boundary split node set i.e., B = {v ′ |Nv ′ ∩Nv ,
∅}; (iii) NB ⊇ Nv and |B | = ⌈|Nv |/K⌉.

Condition (iii) ensures the original outgoing edges are
evenly distributed based on degree bound K . Together, we
refer to I ∪B as a family. The degree of a family equals to the
highest degree of all nodes in the family. Different families
form disjoint sets of nodes. For a split node with degree less
than K , we name it a residual node.

Though the basic idea of split transformation is intuitive,
the concrete designs of splitting is non-trivial, due to the
complexities in connecting the split nodes, that is, designing
internal split node set I and its outgoing neighbor set NI .
Design Tradeoffs. In general, there are various topologies to
connect the split nodes of a family. We illustrate the tradeoffs
in designing connection topologies with three representative
transformations that are based on a clique connection (T cliq),
a circular connection (T circ), and a star-shaped connection
with a “hub” node (T star), respectively (see Figure 5). For
T cliq and T circ, the incoming edges of the original node (red
dashed arrows) are randomly assigned to the split nodes; For
T star, the incoming edges all connect to the hub node.
Table 1 summaries the impacts of the three designs on

graph size, degree, and the maximum number of hops to
propagate a value to the split nodes. In terms of graph size,
3Similarly, indegree should be used in a pull-based scheme.

...
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Figure 4. Illustration of Split Transformation.
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Figure 5. Three Example Connections.

Tstar (K=3)
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degree < K

Figure 6. Comparison between T star and T udt.

T cliq introduces the highest space cost, for its quadratic in-
crease of extra edges. As to the irregularity reduction, T circ
wins – the new degree only depends on degree bound K .
Besides space cost and irregularity reduction, a less obvi-
ous yet critical effect of split transformation is its influence
on value propagation speed, that is, how fast node values
are propagated through the graph. This directly affects the
convergence rate of graph algorithms. The influence can
be estimated by the maximum number of hops needed to
propagate a value within a family. As shown in the fifth
column of Table 1, T circ performs the worst as it needs up
to ⌈d/K⌉ − 1 hops to propagate a value from one split node
(with an incoming edge) to another. By contrast, T cliq and
T star only need one hop to cover all the split nodes.

The above analysis indicates a general tradeoff among space
cost, irregularity reduction, and value propagation rate. Weigh-
ing the advantages and disadvantages, T star shows relative
superiority for its low space cost and fast value propagation.
The only downside is the relatively high family degree caused
by the adding of the hub node. Next, we show a promising
type of split transformation that shares benefits with T star
while without the hub node issue.

3.2 Uniform-Degree Tree (UDT) Transformations
One straightforward solution to the hub node issue of T star
is recursively applying T star to the hub node until its degree
drops to K . As a consequence of the recursive splitting, a
hierarchy of families would be created, where the height of
the hierarchy equals to the depth of the recursion. However,
this recursive T star may introduce more residual nodes, as



Table 1. Properties of Split Transformations (K : degree bound; d : degree of original high-degree node).
#new nodes #new edges new degree max #hops space cost irreg. reduction value prop.

T cliq ⌈d/K ⌉ − 1 ( ⌈d/K ⌉ − 1) · ⌈d/K ⌉ K + ⌈d/K ⌉ − 1 1 high low fast
T circ ⌈d/K ⌉ − 1 ⌈d/K ⌉ − 1 K + 1 ⌈d/K ⌉ − 1 low high slow
T star ⌈d/K ⌉ ⌈d/K ⌉ max{K + 1, ⌈d/K ⌉} 1 low varies fast

shown in Figure 6-(a). Applying T star to a node of degree five
results in two residual nodes. Situations like this not only
compromise the irregularity reduction, but also introduce
unnecessary split nodes. To avoid such issues, we propose
another transformation scheme, called uniform-degree tree
transformation, or UDT (T udt), which ensures at most one
residual node in the generated family.
Algorithm 1 illustrates the how UDT works. Instead of

creating a hub node at each splitting, UDT introduces new
split nodes on demands. This is achieved by maintaining a
queue of split nodes to connect. Initially, the queue contains
all neighbors of the high-degree node. If the queue has more
than K (degree bound) nodes, a new node is created and
connected to K nodes popped from the queue. After that, the
new node is appended to the queue. This process iterates
until the queue has no more than K nodes. The remaining
ones are assigned to the original node.

Figure 6-(b) shows a UDT example on a node of degree five.
After the transformation, the new structure has no residual
nodes, comparing to the two residual nodes in T star.
Properties of UDT. The output of Algorithm 1 forms a tree
structure where the degree of each node (or except the root)
equals to K . We refer to this tree structure as uniform-degree
tree, hence the name of UDT transformation.
Besides the uniform degree property, UDT also features

the following important properties:
• P1: UDT is a type of split transformation (Definition 2).
• P2: After the transformation, there exits a unique path
connecting the incoming edges of the original node to
each of its outgoing edges. Because (i) the original node
with all incoming edges becomes the tree root (see Lines
12-13 in Algorithm 1) and (ii) each outgoing edge of the
original node is only connected to one node in the tree
(i.e., pushed once into the queue at Line 4 in Algorithm 1).
• P3: The number of hops to propagate a value through the
split nodes (i.e., tree height) only increases logarithmically
O (loдKd ) to the degree of the original node d .
Since the transformation at most traverses each node and

each edge once, the time complexity of UDT for the entire
graph is linear to the graph size O ( |V | + |E |).
Similar to the side effects of other split transformations,

UDT increases the size of the graph. However, our analysis
indicates that, with the benefits of reducing degree d to a
constant K , the graph size only increases linearly O (d/K ) in
terms of both nodes and edges. As to the graph diameter D,
the increase is at most O (D · loдK ( |E |/d ))

4.

4For space limit, the details will be available on the project website.

Algorithm 1 UDT Transformation
1: if degree(v ) > K then ▷ for each high-degree node
2: q = new_queue()
3: for each vn from v’s neighbors do
4: q.add(vn ) ▷ add all original neighbors
5: v .remove_neighbor(vn )
6: while q.size() > K do
7: vn = new_node()
8: for i = 1..K do
9: vn .add_neighbor(q.pop())
10: q.push(vn ) ▷ add a new node
11: S = q.size()
12: for i = 1..S do ▷ connect to the root node
13: v .add_neighbor(q.pop())

Next, we discuss how UDT can preserve the correctness
for a diverse set of graph algorithms.

3.3 Enforcing the Correctness for T udt

As discussed above, UDT, like other split transformations,
may substantially change the structure of the original graph.
In this case, will graph analyses still yield the same results as
processing on the original graphs? If not, how can we enforce
the correctness for this type of transformations?

It is obvious that the correctness of UDT depends on graph
analyses, in particular, the graph properties that various
graph analyses rely on. Hence, instead of discussing the
correctness for each graph analysis, we first present the
important graph properties that UDT preserves. Base on
that, we can infer what kinds of graph algorithms can yield
correct results and what cannot.

We define a path P (vi ,vj ) as the set of edges on the path
from node vi to node vj .

Theorem 1. Given a graph G(V, E), let v1, v2 ∈ V , then there
exists a path P (v1,v2) in G iff there exists a path P ′(v1,v2) in
the UDT-transformed graph G’. Furthermore,

P ′(v1,v2) = P (v1,v2) ∪ Enew (2)

where Enew is a set of new edges, that is, Enew ∩ E = ∅.

Proof. If none of the nodes on original path P (v1,v2) are
high-degree nodes, then P ′(v1,v2) = P (v1,v2) and Enew = ∅.
Otherwise, assume pi is a high-degree node, then pi will
be transformed into a uniform-degree tree, as illustrated in
Figure 7. Assume pi−1 and pi+1 are the nodes before and after
pi on path P (v1,v2), then based on the P2 property of UDT,
there exists a unique path from pi−1 to pi+1. Assume pi−1 and
pi+1 connect tom and n in the tree, respectively. Then we
have P ′(v1,v2) = P (v1,v2) ∪ Enew , where Enew = P ′(m,n).
On the other hand, by removing the edges in P ′(m,n) from
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Figure 7. A Path Before and After UDT.

P ′(v1,v2), we can recover the original path P (v1,v2), except
a node notation difference, that is, edges pi−1 → pi and
pi → pi+1 become pi−1 →m and n → pi+1. □

Based on Theorem 1, we have three corollaries.

Corollary 1. UDT preserves graph connectivity.

Proof. By the definition of connectivity and Theorem 1. □

Corollary 1 ensures the correctness of UDT for connected
components (CC), by preserving both the inter and intra
connectivities of all the connected components in a graph.
Dumb Weights. For some graph analyses, like finding the
shortest path, the calculation also involves the edge weights.
Here, we show that, by carefully assigning weights to the
newly introduced edges, UDT can preserve some even more
interesting graph properties.

The key to the weight assignment is to make the new edges
contribute nothing to the calculation. We can achieve this by
assigning “dumb weights” to the new edges. We next present
two such cases (Corollary 2 and Corollary 2).

Corollary 2. UDT preserves the distance between any pair
of nodes in a weighted graph by assigning weight zero to all
UDT-introduced edges.

Proof. See Equation 2 in Theorem 1. By assigning weight
zero to all edges in Enew , P ′(v1,v2) and P (v1,v2) will have
the same total weight. By preserving the total weight on
every path, the distances between pairs of nodes remain. □

According to Corollary 2, it is easy to find that UDT can
preserve the results for single-source shortest path (SSSP)
and between centrality (BC), for which the calculations are
only based on the distances between node pairs. Since breath-
first search (BFS) is equivalent to SSSP on graphs with all
edge weights of 1, UDT can also preserve the results for BFS.

Figure 8 shows the UDT with dumb weights for SSSP. The
distance between A and B remain six after transformation.

Corollary 3. UDT preserves the minimal edge weight in a
path by assigning weight infinity to all UDT-introduced edges.

Proof. See Equation 2 in Theorem 1. By assigning weight
infinity to all edges in Enew , P ′(v1,v2) and P (v1,v2) will
have the same minimal edge weight. □

Corollary 3 confirms that UDT can preserve the results for
single-source widest path (SSWP), for which the calculation
is purely based on the minimal edge weight along a path.

Finally, we have a corollary for degree-based analyses.
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Figure 8. Example of UDT with dumb weights for SSSP.

Corollary 4. For push-based and pull-based vertex-centric
programming, UDT preserves the indegrees and outdegrees,
respectively, for all nodes in the original graph.

Proof. By definition, UDT keeps all the incoming edges of
the original node unchanged, as values are only propagated
along the outgoing edges in a push-based scheme. Similarly,
for a pull-based scheme, UDT keeps the outgoing edges of
the original node unchanged. □

Corollary 4 ensures the correctness for graph analyses that
rely on indegrees or outdegrees for node value calculation,
such as PageRank (PR). Since PR depends on outdegrees
only, its correctness can be ensured by using a pull-based
vertex-centric programming model.
Applicability Discussion. Together, UDT can preserve the
correctness for a spectrum of connectivity-based, path-based,
and degree-based graph analyses, including the widely used
CC, SSSP, SSWP, BC, BFS, and PR.

Despite the promises, there are graph analyses for which
UDT or other split transformations may fail to preserve the
results. These include analyses that require preserving the
neighborhood of nodes, such as graph coloring (GC), triangle
counting (TC), clique detection (CD), and some others. By
checking the graph property requirements, the applicability
of UDT or other split transformations for a specific graph
analysis can be determined.

Note that physically transforming irregular graphs takes
extra time and space. Furthermore, the transformed graphs
may take more iterations to process due to the slowdown
of value propagation (caused by splitting). To address these
issues, we propose to virtually apply split transformations,
without physically changing the graphs.

4 Enabling Virtual Graph Transformations
This section discusses how to apply the split transformations
virtually, such that the benefits of physical split transforma-
tion – reduced graph irregularity – can be preserved, while
without suffering from its practical issues.

4.1 Virtual Split Transformations
To avoid physical graph transformations, we propose to add
a virtual layer on top of the original graph (physical layer),
then perform split transformations only at the virtual layer,
leaving the original graph intact, as shown in Figure 9. We
refer to this scheme as virtual split transformation. The nodes
at physical and virtual layers are called physical nodes and
virtual nodes, respectively.
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Figure 9. Illustration of Virtual Split Transformation.

The key to virtual split transformation is to separate the
programming model from the physical graph data:
• First, by exposing the virtual layer to the vertex-centric
programming model, node value computation tasks are
scheduled at the virtual layer.
• Second, computed (virtual) node values are propagated at
the physical layer, hidden from the programming model.
From the view of vertex-centric programming model, the

graph has been transformed and become more regular; while
physically, it is still the original irregular graph.

Next, we discuss the design of virtual split transformation
and explain how it ensures the correctness.
Virtualization Design. Essentially, virtualization is about
constructing a mapping between the physical layer and the
virtual layer. In the context of graph virtualization, it needs
to define a node mappingmapv and a edge mappingmape .

v =mapv (v
′), e =mape (e

′)

In fact, split transformations do not specify the edge as-
signment from a high-degree node to the split nodes, except
that the edges should be distributed evenly (Section 3.1). This
flexibility allows edge mapping to be implicitly defined based
on the node mapping, the order of edges in the storage, and
the degree bound K (see an example shortly). That is, a node
mapping itself is sufficient to define the virtualization.
Depending on when the node mapping is generated, we

propose two alternative virtualization designs: virtual node
array and on-the-fly mapping reasoning.
• Virtual Node Array. This design creates a node mapping
before graph processing and store it in a structural array,
namely virtual node array. Each element in the array is a
structure of two nodes {v,v ′}, representing a mapping
between physical node v and virtual node v ′. This array
can be effectively integrated into the popular compressed
sparse row (CSR) graph representation. See the example
in Figure 10, a high-degree nodev2 is split into two virtual
nodes v ′2 and v

′′
2 . Node v2’s original edges to nodes v5, v4

and v6 are implicitly mapped to virtual node v ′2 based on
their order in the edge array and the setting of K (i.e., 3),
the rest are mapped to virtual nodev ′′2 (i.e., edge mapping).
Note that any incoming edges to the original node (v2)
would be shared by split nodes (v ′2 and v

′′
2 ).

The space cost of virtual node array is bounded by the
number of virtual nodes and controllable by tuning the
degree bound K (more details in Section 6).

Node …

Edge …2 5 4 5 4 6 8 7 3 7 6 8

Edge …

…

Virtual 
Node
Array

(a) CSR of Original Graph

(b) CSR of Virtually Transformed Graph (K=3)

2 5 4 5 4 6 8 7 3 7 6 8

Value …x y z

Value …

0 3 9

…

0 3 6 9

1 2 2 3
x y z

7

5

4

6

8

3
1

7

5

4

6

8

3
1

Figure 10. Integrating Virtual Node Array into CSR Format.

• Dynamic Mapping Reasoning. In certain scenarios, even
allocating a little extra memory is undesirable. In this case,
we can dynamically compute the mapping based on the
node splitting logic (i.e., degree bound K ). See the example
in Figure 10. Before processing node v2, a reasoning run-
time finds its degree is 6, which is greater than K , hence
splits it into two virtual nodes (⌈6/3⌉), each with three
edges of v2. In this way, we determine the node mapping
dynamically, eliminating the needs for storing a mapping.
Essentially, this design trades off computation cost for
better memory efficiency.
As shown above, virtual split transformations are more

lightweight compared to physical graph transformations.
Next, we discuss how (virtual) nodes’ values are propagated
after the virtual split transformation.
Implicit Value Synchronization. Asmentioned earlier, with
virtualization, node values are propagated at the physical
layer (i.e., on the original graph). Consider the virtual node
array design 5 as shown in Figure 10. Despite the fact that
a physical (high-degree) node is split into multiple virtual
nodes, the values of these virtual nodes are all stored to the
same memory location - the place for the value of the origi-
nal physical node. Notice that, in Figure 10, the value array
remains unchanged. This allows virtual nodes of the same
family automatically synchronize their values.

The synchronization brings two key benefits:
• Faster value propagation comparing to that on a physically
transformed graph. Consider the virtually transformed
graph in Figure 10. A value from node v1 can immediately
reach both nodes v ′2 and v

′′
2 without any extra hopping.

By contrast, it may one or multiple hops to reach a split
node on a physically transformed graph.
• Correctness enforcement for general vertex-centric graph
analyses. We elaborate this benefit in the next subsection.

4.2 Enforcing Correctness
The correctness of virtual split transformations is enforced
by a simple yet effective mechanism – implicit value syn-
chronization, which relaxes the constraints for applying split
transformations, leading to much stronger conclusions.

5Similar ideas are also applicable to on-the-fly mapping reasoning.
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Figure 11. Correctness for Push-based Scheme.

Theorem 2. Virtual split transformations preserve the results
for all push-based vertex-centric graph analyses.

Proof. In push-based vertex-centric programming, a node
updates the value of each neighbor one by one, based on
its own value and the neighbor’s value obtained from the
last iteration. Consider the node v and its neighbor vn in
Figure 11. Suppose both of them are high-degree nodes. After
virtual split transformation, the values of virtual nodes at
both ends, such as v ′ and v ′n , remain unchanged, thanks to
the implicit value synchronization. By applying the same
function f (·), the new value of the neighbor vn .xi+1 would
also be the same as the one calculated on the original graph,
that is, v ′n .xi+1 = vn .xi+1. Since the equality holds from
initialization (i.e., i = 0), it will continue to hold for all the
following iterations till convergence or termination. □

Theorem 3. For pull-based vertex-centric graph analyses, to
ensure the correctness of virtual split transformations, the ver-
tex function needs to be associative.

Proof. In pull-based vertex-centric programming, a node v
uses the values of its neighbors vi .w to update its own value
based on the vertex function v .w = f (v .w , v1.w , v2.w , · · · ,
vn .w )6, vi ∈ v .nbrs . In the transformed graph, a virtual
node v ′ is only connected to a subset of the neighbors of
the original node v (i.e., v ′.nbrs ⊂ v .nbrs). Hence, the cal-
culated value v ′.w may not equal to v .w . However, because
of implicit value synchronization, virtual nodes of the same
family will repeatedly update the same value at the physical
layer, that is, f ( f (· · · f (v .w, · · · ), · · · )). Since the neighbors
of virtual nodes (of the same family) are disjoint, each of
them appears exactly once in the nested function. If the
vertex function f is associative, then nested function can
be reduced to exactly the original vertex function with all
neighbors included. □

Fortunately, many graph analyses once implemented in
pull-based scheme are purely based on associative vertex
functions [32], such as SUM, MIN, and MAX. These include
popular ones like SSSP, BC, SSWP, BFS, and PR7. Besides
associativity requirements, virtual split transformation for
pull-based scheme further requires the updates to the value
array are performed with atomic operations.
Together, Theorems 2 and 3 guarantee correctness for

vertex-centric graph analyses in a broad sense.
6We assume vertex function includes the node value itself as a parameter.
7PageRank requires modifying the logic of its vertex function.

Algorithm 2 SSSP on Virtually Transformed Graph
1: __global__ SSSP_Kernel(bool finished)
2: nodeId = virtualNodes[tid].physicalNodeId ▷ main difference
3: d = distance[nodeId] ▷ value array
4: start = virtualNodes[tid].edgePointer
5: end = virtualNodes[tid+1].edgePointer - 1
6: for i = start..end do ▷ push value to each neighbor
7: alt = d + edges[i].weight
8: if alt < distance[edges[i].nbr] then
9: atomicMin(&distance[edges[i].nbr], alt)
10: finished = false

4.3 Example
Algorithm 2 shows an example of programming SSSP for
the virtually transformed graph using virtual node array.
Since threads are scheduled at the virtual layer, the virtual
node ID is also the thread ID – tid, which is reflected by
vituralNodes[tid]. At Line 2, a virtual node ID is mapped
to the corresponding physical node ID. This is the main
difference comparing to the vertex function for the original
graph. The remaining code is the same as that in the original
vertex function, except that nodes[tid] gets replaced by
vituralNodes[tid].edgePointer.

4.4 Optimization for GPU Architectures
Data locality plays a critical role in the performance of GPU
applications. Here, we examine the potential issues in the
design of virtual split transformations that may harm the
data locality, and address them with a memory access opti-
mization, namely edge-array coalescing.
Edge-array Coalescing. We assume the virtual node array
design for the virtualization, but the idea is also applicable
to the other design on-the-fly mapping reasoning.

With virtual split transformations, threads are scheduled
based on the virtually transformed graph. Specifically, each
thread is assigned to process a virtual node by propagating
its value to its neighbors. This requires accessing the edges of
this virtual node. In the default setting, the edges of a virtual
node are stored consecutively in the edge array, as shown
in Figure 10. Hence, from a single thread’s view, the edge
array accesses have good locality. However, GPU threads are
grouped into warps (of 32 threads) and proceed in an SIMD
fashion. From a warp’s view, the access to the edge array is
actually strided, where the stride length equals to the degree
bound K . Consider the two virtual nodes in Figure 10, the
first virtual node starts from index 3 of the edge array, while
the second virtual node starts from index 6. Since the threads
of the same warp share local caches, such a strided accessing
pattern hurts the data locality.

To address the locality issue, we reorder the edges during
the construction of CSR. Instead of assigning consecutive
edges to a virtual node, the new assignment follows a strided
pattern (see Figure 12). The stride and offset are the number
of virtual nodes in the family and virtual node ID within
the family, respectively. That is, the second virtual node is
assigned with edges 1, 3, and 5 (index starts from 0). In this
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Algorithm 3 SSSP with Edge-array Coalescing.
1: __global__ SSSP_Kernel(bool finished)
2: nodeId = virtualNodes[tid].physicalNodeId
3: offset = nodes[nodeId] + virtualNodes[tid].offset
4: stride = virtualNodes[tid].stride
5: d = distance[nodeId]
6: for i = 1..K do ▷ K: degree bound
7: e = offset + stride × i ▷ compute edge array index
8: alt = d + edges[e].weight
9: if alt < distance[edges[e].nbr] then
10: atomicMin(&distance[edges[e].nbr], alt)
11: finished = false

way, when the virtual nodes of the same family are scheduled
to the same warp (as they are consecutive in the virtual node
array), each time they access an edge, a consecutive chunk of
memory will be loaded. We refer to this reordering technique
as edge-array coalescing. Algorithm 3 describes SSSP with
edge-array coalescing. The main differences happen at Lines
3, 4 and 7, which calculate the edge index.

5 Implementation
We implemented the proposed split transformations as a
graph transformation framework – Tigr and integrated it
into a lightweight GPU graph processing engine, written in
C++ and CUDA. For physical graph transformation, Tigr im-
plements UDT (Section 3.1); For virtual transformation, Tigr
uses virtual node array (Section 4.1) for lower runtime cost.
In addition to edge-array coalescing (Section 4.4), our GPU
graph engine also implements worklist and synchronization
relaxation. The former tracks a set of active nodes and only
processes the active ones in each iteration; The latter allows
to use values computed in the current iteration (along with
values from the last iteration) for node value updates. Both
optimizations are orthogonal to split transformations.
Selection of K. Degree boundK can be tuned based on graph
algorithms and graph characteristics to maximize the ben-
efits. However, for virtual graph transformation, we only
observed marginal improvements by turning K . Hence, for
simplicity, we empirically choose K = 10 for its overall best
performance across settings.

By contrast, for physical graph transformation (UDT), we
did observe substantial performance variations for different
values of K . In fact, the best value of K primarily depends
on the degree distribution. As more nodes are with higher
degrees, the bestK increases correspondingly. In practice, we
use a simple heuristic that pre-defines a mapping between
K and the maximum degree of a graph for selecting K .

6 Evaluation
This section evaluates the efficiency and effectiveness of split
transformations for graph processing on GPUs.

6.1 Methodology
We compare Tigr-based GPU graph processing with three
state-of-the-art general GPU graph processing frameworks:
maximum warp [23], CuSha [32], and Gunrock [69]. Both
implementations of CuSha and Gunrock are obtained from
their public repositories. For maximum warp, we use an
implementation from the CuSha repository. Table 2 lists the
methods used in our comparison.
Besides, we compared with low-level implementations

of some specific graph primitives, such as ECL-CC [25],
Elsen and Vaidyanathan’s PR [13], Davidson and others’
SSSP [11], as well as the BFS by Merrill and others [44]. In
fact, Gunrock [69] has systematically compared with several
“hardwired" implementations and has shown performance
superiority (except CC). Therefore, we choose to compare
with Gunrock and leave the comparisons with these specific
implementations to our project website 8.

Table 2. Methods in Evaluation.
Abbr. Framework
MW Maximum warp w/ warp size range: 2~32 [23]
CuSha CuSha w/ G-Shards or Concatenated Windows [32]
Gunrock Gunrock graph processing library [69]
Tigr-UDT UDT split transformation-based graph processing
Tigr-V Virtual split transformation-based graph processing
Tigr-V+ Virtual split transformation w/ edge-array coalescing
baseline Our lightweight GPU graph engine w/ Tigr disabled

The hardware platform is a Linux workstation equipped
with an Intel Xeon E3-1225 v6 CPU (4 cores, 3.30GHz), 32GB
memory, and an NVIDIA Quadro P4000 GPU with 8GB mem-
ory and 1792 cores. All GPU code is compiled with CUDA
8.0 using the highest optimization level. The timing results
reported are the average of 10 repetitive runs.

Table 3. Datasets in Evaluation
dmax : maximal outdegree, d : diameter, Kudt and Kv : degree bounds

Dataset #Nodes #Edges dmax d Kudt Kv
Pokec social [35] 1.6M 31M 8.8K 11 500 10
LiveJournal [35] 4.0M 69M 15K 13 1K 10
Hollywood [5] 1.1M 114M 11K 8 1K 10

Orkut [35] 3.1M 234M 33K 7 1K 10
Sinaweibo [56] 59M 523M 278K 5 10K 10

Twitter2010 [56] 21M 530M 698K 15 10K 10

Table 3 lists the graph datasets used in our experiments, all
of which are real-world power-law graphs. The evaluation
includes six widely used graph analyses: breath-first search
(BFS), connected components (CC), single-source shortest path
(SSSP), single-source widest path (SSWP), between centrality
(BC), and PageRank (PR).

8https://github.com/amirnodehi/Tigr.

https://github.com/amirnodehi/Tigr


Table 4. Performance Comparison.
execution time:ms ; the best performance is bolded

Alg. Dataset MW CuSha Gunrock Tigr-V+
BFS pokec 60.32 21.73 28.23 14.64
BFS LiveJournal 149.6 57.62 51.47 27.76
BFS hollywood 89.4 142.26 24.54 15.9
BFS orkut 276.13 129.93 227.83 77.73
BFS twitter 1514.44 1060.85 344.06 178.53
BFS sinaweibo 1160.01 OOM OOM 299.24
SSSP pokec 94.37 44.49 73.34 40.77
SSSP LiveJournal 228.39 115 127.54 62.21
SSSP hollywood 180.16 331.46 85.49 44.84
SSSP orkut 538.99 279.33 452.89 159.85
SSSP twitter 1670.21 OOM 533.47 269.75
SSSP sinaweibo 1529.09 OOM 1297.46 699.35
PR pokec 20.81 2.06 30.67 22.1
PR LiveJournal 30.63 4.61 33.04 34.25
PR hollywood 16.73 20.35 12.7 15.09
PR orkut 135.65 16.59 171.7 156.32
PR twitter 216.21 OOM 243.07 221.49
PR sinaweibo 445.8 OOM 444.02 463.06
CC pokec 54.94 17.94 37.44 42.32
CC LiveJournal 133.98 49.42 59.54 47.4
CC hollywood 71.08 98.87 89.36 21.38
CC orkut 221.67 132.37 170.51 207.93
CC twitter 1427.73 979.03 683.89 573.53
CC sinaweibo 928.45 OOM 772.52 579.13

SSWP pokec 111.44 52.29 - 36.86
SSWP LiveJournal 353.02 163.58 - 65.67
SSWP hollywood 141.2 239.13 - 22.63
SSWP orkut 479.12 211.38 - 121.48
SSWP twitter 1546.68 OOM - 240.48
SSWP sinaweibo 1527.14 OOM - 635.23

BC pokec - - 87.09 42.86
BC LiveJournal - - 109.56 73.61
BC hollywood - - 55.77 39.21
BC orkut - - 399.96 207.58
BC twitter - - 732.28 475.23
BC sinaweibo - - 1507.25 1033.97

6.2 Comparison With Existing Methods
Table 4 reports the performance results of tested methods
(we will discuss Tigr-UDT and Tigr-V in Section 6.3). For
MWwith varying virtual warp sizes, the best performance is
chosen. Similarly, for CuSha, we report results of the better
one between G-Shards and Concatenated Windows. Some
results on SSWP and BC are missing as the corresponding
frameworks are lack of such graph primitives.
Memory Requirements. Table 4 indicates that some graph
processing frameworks require larger memory space in order
to accommodate their special graph representations or their
growing runtime memory consumption. When the memory
requirement exceeds the GPU memory limit, an error of out
of memory (OOM) is thrown. This happened to both CuSha
and Gunrock when running on relatively large datasets such
as sinaweibo or twitter. In comparison, Tigr-V+ did not en-
counter any OOM issue in all tested datasets and algorithms,
thanks to its limited space cost (see Section 4). Besides our
method, MW is also free from OOM issues, since it is based
on the modifications to GPU thread execution model which
does not introduce significant space cost.
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Figure 13. Speedups of Tigr over baseline (SSSP).

Performance. On one hand, there is no such a single method
that always performs the best in all tested cases. On the other
hand, the results clearly show that Tigr-V+ achieves substan-
tial performance improvements over the existing methods
for most datasets and algorithms, thanks to its capability in
graph irregularity reduction. In particular, Tigr-V+ achieves
up to 5.43X speedup over MW method on LiveJournal
dataset when running SSWP algorithm. It also outperforms
CuSha by 10.4X on the same algorithm with the hollywood
dataset. Comparing with Gunrock, Tigr-V+ achieves around
3X speedup when running BFS and SSSP algorithms on the
orkut dataset. For the other cases where Tigr-V+ wins, the
speedup ranges from 1.04X to 2.93X.
Despite improvements for most datasets and algorithms,

Tigr-V+ performs worse than some existing methods in a
few cases, especially with the PR algorithm. This is mainly
because Tigr-V+ implements a push-based programming
strategy. Different from the other evaluated algorithms, PR
requires to processes every node in each iteration. For such
kind of computation pattern, a pull-based graph processing
(like CuSha) often performs more efficiently, by taking the
advantages of parallel scan-style parallelism.

6.3 Performance Breakdown of Tigr
Figure 13 reports the speedups of different versions of Tigr
over the baseline – a lightweight GPU graph engine without
any transformations, for SSSP algorithm. The speedups with
other graph algorithms follow a similar trend.
Physical v.s. Virtual. First, the results indicate that both
physical and virtual split transformations bring performance
benefits to the original GPU graph framework, with 1.2X
(Tigr-UDT) and 1.7X (Tigr-V) average speedups, respectively.
The reason Tigr-UDT shows less speedup is that physically
transforming graphs with splitting increases the number of
hops among nodes, which cause more iterations to converge
for graph algorithms (see Section 6.5), while the number of
iterations remains the same on a virtually transformed graph,
as the values are directly propagated at the physical layer –
with no extra hoping (see Section 4.1).
Memory-coalescing Optimization. Besides, Figure 13 also
shows that the proposed edge-array coalescing optimization
boosts the performance of virtual split transformations from
1.7X to 2.1X. The benefits come from the enhanced memory



Table 5. Space Cost of Physical Transformation (UDT).
K=100 K=1000 K=10000

pokec 100.13% 100.00% 100.00%
LiveJournal 100.41% 100.00% 100.00%
hollywood 101.37% 100.05% 100.00%

orkut 100.99% 100.01% 100.00%
twitter 101.29% 100.07% 100.00%

sinaweibo 100.96% 100.06% 100.00%

Table 6. Space Cost of Virtual Transformation.
K=4 K=8 K=16 K=32 K=100

pokec 147.32% 124.42% 113.24% 108.00% 105.32%
LiveJournal 146.69% 124.28% 113.46% 108.47% 105.86%
hollywood 149.28% 124.66% 112.38% 106.29% 102.35%

orkut 149.05% 124.55% 112.31% 106.23% 102.28%
twitter 148.05% 125.07% 113.88% 108.52% 105.15%

sinaweibo 145.99% 126.61% 117.60% 113.51% 111.05%

Table 7. Transformation Time Cost (ms).
Dataset pokec LiveJournal hollywood orkut twitter sinaweibo
Physical 403 1,088 994 2,164 10,161 16,444
Virtual 20.7 38.6 50.4 98.3 211.5 289.7

locality with more intelligent edge assignments to the virtual
nodes (see Section 4.4 for more details).

6.4 Transformation Costs of Tigr
As mentioned earlier (Section 6.2), despite the increases in
graph size, Tigr-based graph processing still require less
memory than other frameworks like CuSha and Gunrock.
Here, we further examine the time and space costs of Tigr.
Space Cost. Tables 5 and 6 report the space increases for
physical and virtual transformations, respectively, in terms of
the graph size in CSR format. For physical transformation, in
order to keep sufficient value propagation rate, K is often set
to a relatively large value (Table 3). As a result, the size of the
graph only increases marginally, by up to 1.37% (K=100). As
the degree bound increases, the sizes of transformed graphs
decrease since less number of nodes will be transformed.
In comparison, as shown in Table 6, the space cost of

virtual graph transformation is much higher due to the use of
relatively smaller K. Because virtual split transformation only
introduces a virtual node and the edge array dominates the
sizes of power-law graphs, the overall space cost of virtual
transformation remains around 25% even for K = 8. Note
that despite the increased graph sizes, the memory footprint
of Tigr-V is still much smaller than some other general graph
frameworks, like CuSha and Gunrock (see Section 6.2).
Time Cost. Table 7 reports the transformation time. Note
that the current implementation of transformations is serial
and can be parallelized. In general, the transformation time
is proportional to the size of the graph for both physical and
virtual graph transformations. For the same K , virtual trans-
formation is more lightweight than physical transformation
as it only needs to build a virtual node array, rather than
creating new nodes and edges. Since physical transformation

Table 8. Performance Details (SSSP, LiveJournal, K = 8).
Without Worklist With Worklist

#iter time / iter. #instr. warp effi. #iter #instr. warp effi.
Original 14 29.92 3.3 ×109 25.98% 18 9 ×108 60.53%
Physical 29 24.68 8.9 ×109 91.15% 45 4.6 ×109 70.11%
Virtual 14 17.64 7.6 ×109 92.81% 18 2.2 ×109 85.51%

can be performed offline, its cost can be amortized across
different runs. For virtual transformation, it can be easily
integrated into the graph loading phase, in which case the
transformation time cost could be negligible.

6.5 Case Study: SSSP
To obtain deeper insights on how irregular graph processing
benefits from physical and virtual split transformations, we
use SSSP as an example and break down the performance
into lower-level contributing factors, such as the number of
iterations, runtime of each iteration, GPU warp efficiency,
and the total amount of instructions executed.
Table 8 lists the detailed profiles of SSSP running on the

original LiveJournal graph, the physically transformed
graph and the virtually transformed graph, respectively.When
the worklist optimization is not used, all the nodes in the
graph are processed in each iteration. In this case, the physi-
cally transformed graph needs over 2X iterations to converge,
due to the increased node distances caused by physical split-
ting. By contrast, the virtually transformed graph needs no
extra iterations at all, thanks to its implicit value synchro-
nization. As to processing time per iteration, both physical
and virtual transformations are able to reduce it substan-
tially, due to the irregularity reduction. Meanwhile, both of
them lead to more instructions to execute because of the
extra computations on new nodes and edges. As shown by
the warp efficiency columns, both transformations boost the
efficiency with more balanced computations.
The results for the cases with worklist optimization, in

general, follow similar patterns. However, the processing
time per iteration can vary a lot depending on the set of
active nodes, hence is not listed. Note that the total number
of instructions is dramatically reduced in all three cases, as
only active nodes are involved in the computations.

7 Related Work
This section discusses related work in three aspects: general
graph processing frameworks, GPU-based graph processing,
and techniques for GPU efficiency optimizations.

7.1 General Parallel Graph Processing
There is a rich body of work on designing distributed graph
programming systems. Boost Graph Library [62], as an early
effort, offers a high-level abstraction for programming graphs.
To enable parallel execution, Gregor and Lumsdaine im-
plement parallel BGL [18]. Inspired by the Bulk Synchro-
nous Parallel model [65], Google designs the first vertex-
centric graph programming framework Pregal [41]. Since
then, vertex-centric graph programming has been adopted



by many parallel graph engines, such as Apache Giraph [1],
GraphLab [38], and PowerGraph [17]. Targeting distributed
platforms, the above systems require to partition graphs and
store the partitions across machines, based on edges [29, 52],
vertices [17], or value vectors [75]. PowerLyra [9] has shown
improved performance by differentiating the partitioning
between high-degree and low-degree vertices.

Though vertex partitioning [9, 17] shares similarities with
split transformation, the two approaches differ in a few key
aspects. First, split transformation allows to change the graph
topology meanwhile does not result in any graph partitions;
Second, targeting distributed platforms, vertex partitioning
requires to synchronize the partitioned vertices explicitly;
More critically, vertex partitioning often has to replicate both
high-degree and low-degree vertices (called mirroring).

On shared-memory platforms, Ligra [61] and Galois [53]
support programming over a subset of vertices. Featuring
amorphous data parallelism, Galois offers a new perspective
on irregular graphs processing [49, 54]. Charm++ [27] and
STAPL [14, 70] are general parallel programming systems.
The former supports intensively for irregular computations,
while the latter features a parallel container data structure
for graph processing. For easier adoption, graph processing
based on single PCs also receives significant attentions, such
as GraphChi [33], GraphQ [68], and Graspan [67].

In addition, some work focuses on specific parallel graph
algorithms, such as connected components [19], BFS [2],
SSSP[10, 45], and betweenness centrality [6] or the design
choice between pull and push-based processing schemes [4].
Some recent work parallelizes automata executions which
are essentially input-guided graph traversals [55, 76, 77].

7.2 Graph Processing on GPUs
By mapping nodes of a graph to GPU threads, Harish and
others [22] implement a GPU graph processing framework
based on vertex-centric programming. To minimize path
divergence and load imbalance in GPU graph processing,
Maximum warp [23] decomposes GPU warps into smaller
sub-warps. By contrast, CuSha [32] addresses the efficiency
issues with two new graph representations, namely G-shard
and concatenated windows, to achieve coalesced accesses.
Based on the concept of frontiers, Gunrock [69] proposes a
new programming abstraction for GPU graph processing.
Some other work targets efficient GPU implementations

of specific graph algorithms, including hierarchical queue
or prefix-sum based BFS [40, 44], GPU-optimized connected
components [19, 63], SSSP based on ∆-stepping or hybrid
approaches [11, 50] and betweenness centrality based on
Brandes formulation [26, 42, 58].
Besides, GPU graph processing for specific applications,

such as program analysis [43], and general applications, like
compiler-level optimizations [51] have also been proposed.
There are also a series of work on multi-GPU graph pro-
cessing, including TOTEM [15], Medusa [78], METIS [28],
as well as hybrid CPU-GPU methods [16, 24]. Graphie [21]
and GraphReduce [60] target the GPU memory constraints

for processing large graphs – another important problem
in GPU-based graph processing. In general, our proposed
methods are orthogonal to these existing techniques.

7.3 GPU Efficiency Optimizations
Minimizing non-coalesced memory accesses is shown as a
NP-complete problem [71]. To optimize memory access ef-
ficiency on GPUs, Dymaxion [8] and G-streamline [74] use
methods like data reordering, memory remapping, and job
swapping. Similar to the load balancing with local work-
lists [48], a queue-based approach handles irregularities in
task loads [64]. By contrast, other work [34, 73] proposes
static decomposition to overcome load imbalance in nested
patterns. The idea of dividing the warp into virtual warps is
also used in CUSP library [3] for SpMV operation on CSRma-
trices. Sartori and Kumar [59] explore the tradeoff between
path divergence and the accuracy of the results, by forcing
all the warp lanes to follow the majority.

In addition to path divergence elimination, there are also
methods trying to avoid the uses of atomic instructions for
processing irregular graphs [47], and a study on identifying
the bottlenecks of implementing GPU applications, such as
data transfers, kernel invocations and memory latencies [72].
In fact, the graph irregularity issue exhibits as a special

case of the path divergence problem in GPU processing. How-
ever, we are not aware of any systematic studies that address
the divergence issue at the input graph level by directly
transforming the structures of graph data.

8 Conclusion
This work addresses the critical irregularity issue in GPU
graph processing by transforming irregular input graphs.
Comparing to existing solutions, graph transformation does
not require significant changes to the graph programming
system or the GPU thread execution model.
Specifically, to reduce the graph irregularity, this work

presents a class of split transformations, which split nodes
with high degrees into sets of nodes with lower degrees. It
further identifies a type of split transformation – UDT, with
desirable properties, including correctness guarantees for a
variety of graph algorithms. To reduce the transformation
costs, this work introduces a virtual transformation scheme,
which allows a separation between the programming model
and the graph data. Based on implicit value synchronization,
the correctness of virtual split transformation is guaranteed
for vertex-centric graph analyses in a broader sense. Finally,
the evaluation confirms the effective and efficiency of the
split transformations on real-world power-law graphs.
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