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Abstract: 
 
This project proposal outlines the various parent selection strategies which may 
possibly be employed for creation of a protocol specifically helpful in constructing 
Semantic Routing Trees in a Sensor Network environments.  We evaluate five 
different strategies and in terms of power consumption and maximum and average 
path lengths for query probes in the network. We show that our hybrid8:2 strategy 
performs quite better than other strategies with a 94% correlation, and is close to 
an optimal attribute based Semantic Routing Tree topology. Semantic Routing Tree, 
essential for management of queries dealing with range-based attributes are an 
integral part of sensor network architectures. In the absence of this routing 
structure it is infeasible, with regards to energy depletion due to redundant 
transmissions, for nodes to process range based queries over particular attributes. 
Nodes participating actively in a sensor network need to understand clearly whether 
they need to forward the range based queries to lower levels of the sensor hierarchy. 
Semantic Routing Trees is but a much-behooved panacea in this regard. The role of 
these routing structures has been acknowledged, as overlays, and has been 
implemented on pilot sensor implementations. Unfortunately, the underpinnings for 
a Semantic Routing Tree initialization have not been specified clearly, as of today. 
This project attempts to underline this very vital need to develop an unambiguous 
Semantic Routing Tree initialization protocol and presents SenSeRT in this regard. 
 
  
1. Introduction 
 
In the past few years, smart-sensor devices have matured to the point that it is now 
feasible to deploy large, distributed networks of such sensors [1], [2], [3], [4]. Sensor 
networks are differentiated from other wireless, battery powered environments in that 
they consist of tens or hundreds of autonomous nodes that operate without human 
interaction (e.g. configuration of network routes, recharging of batteries, or tuning of 
parameters) for weeks or months at a time. Furthermore, sensor networks are often 
embedded into some (possibly remote) physical environment from which they must 
monitor and collect data. The long term, low power nature of sensor networks, coupled 
with their proximity to physical phenomena lead to a significantly altered view of 
software systems than that of more traditional mobile or distributed environments. 
 
In this project, we are concerned with Semantic Routing Tree (SRT) [11] initialization for 
efficient query processing in sensor networks. Significant amount of research has been 
directed towards highlighting the benefits of a query processor-like interface to sensor 
networks and the need for sensitivity to limited power and computational resources [5], 



[6], [7], [8], [9]. Prior systems, however, tend to view query processing in sensor 
networks simply as a power constrained version of traditional query processing: given 
some set of data, they strive to process that data as energy-efficiently as possible. Typical 
strategies include minimizing expensive communication by applying aggregation and 
filtering operations inside the sensor network – strategies that are similar to push-down 
techniques from distributed query processing that emphasize moving queries to data. We 
intend to build an SRT and re-use it for probing the network for queries on similar 
attributes. The refresh period, after which the SRT needs to be reconstructed can be 
tweaked according to the needs of the application environment. 
 
An SRT is a routing tree designed to allow each node to efficiently determine if any or all 
the nodes below it will need to participate in a given query over some attribute “A” [13].  
Traditionally, in sensor networks, routing tree construction is done by having nodes pick 
a parent with the most reliable connection to the root. With SRTs, it is but obvious that 
the choice of a parent should necessarily include some semantic parameters. In general, 
SRTs are most applicable in situations in which there are several parents of comparable 
link quality. A link quality based parent selection algorithm as described in [10], can be 
employed in conjunction with the SRT to prefilter the set of parents made available to the 
SRT. 
 
Conceptually and SRT is an index over “A” [12] that can be used to select nodes that 
have data relevant to the query. Unlike traditional indices, however the SRT is an overlay 
on the network. Each node stores a single unidimensional interval representing the range 
of “A” values beneath each of its children. When a query “q” with a predicate over “A” 
arrives at a node “n”, “n” checks to see if any child’s value of “A” overlaps the query 
range of “A” in “q”. If so, it prepares to receive results and forwards the query. If no 
child overlaps, the query is not forwarded. Also, if the query also applies locally (whether 
or not it also applies to any children) “n” begins executing the query itself. If the query 
does not apply at n or at any of its children, it is simply forgotten.  
 
A simplistic means of building an SRT [11], can be conceptualized as a two phase 
process: first the SRT build request is flooded (re-transmitted by every mote until all 
motes have heard the request) down the network. This request includes the name of the 
attribute “A” over which the tree should be built. As a request floods down the network, a 
node “n” may have several possible choices of parent, since, in general, many nodes in 
radio range may be closer to the root. If “n” has children, it forwards the request on to 
them and waits until they reply. If “n” has no children, it chooses a node “p” from 
available parents to be its parent, and then reports the value of “A” to “p” in a parent 
selection message. If “n” does have children, it records the value of “A” along with the 
child’s ID. When it has heard from all of its children, it chooses a parent and sends a 
selection message indicating the range of values of “A” which it and its descendents 
cover. The parent records this interval with the ID of the child node and proceeds to 
choose its own parent in the same manner, until the root has heard from all of its children. 
Figure 1 shows an SRT over the latitude. The query arrives at the root, is forwarded down 
the tree, and then only the dark nodes are required to participate in the query (note that 



node 3 must forward results for node 4, despite the fact that its own location precludes it 
from participation.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. : A SRT being used to direct queries to only those nodes which have data 
relevant to the attribute X, only the dark nodes participate. 
 
 
2. Maintaining SRTs 
 
Even though SRTs are limited to constant attributes, some SRT maintenance must occur. 
In particular, new nodes can appear, link qualities can change, and existing nodes can 
fail. Node appearance and link quality change can both require a node to switch parents. 
To do this, it sends a parent selection message to its new parent, n. If this message 
changes the range of “n’s interval, it notifies its parent; in this way, updates can 
propagate to the root of the tree. To handle the disappearance of a child node, parents 
associate an active query id and last epoch with every child in the SRT (recall that an 
epoch is the period of time between successive samples.) When a parent “p” forwards a 
query “q” to a child “c”, it sets c’s active query ID to the ID of “q” and sets its last epoch 
entry to 0. Every time “p” forwards or aggregates a result for “q” from “c”, it updates c’s 
last epoch with the epoch on which the result was received. If “p” does not hear “c” for 
some number of epochs t, it assumes “c” has moved away, and removes its SRT entry. 
Then, “p” sends a request asking its remaining children retransmit their ranges. It uses 
this information to construct a new interval. If this new interval differs in size from the 
previous interval, “p” sends a parent selection message up the routing tree to reflect this 
change. Finally, we note that, by using these maintenance rules proposed, it is possible to 

Find(x): Where      
       2<x<4 

Find(x):      
X:3.5, X:2.8 

Find(x):     
X:3.5 

Find(x):      
X:5 

Find(x):     
X:7 

1

2

3

4
5



support SRTs over non-constant attributes, although if those attributes change quickly, 
the cost of propagating changes in child intervals could be prohibitive. 
 
2.1 Evaluation of Benefit of SRTs 
 
The benefit that an SRT provides is dependent on the quality of the clustering of children 
beneath parents. If the descendents of some node n are clustered around the value of the 
index attribute at n, then a query that applies to n will likely also apply to its descendents. 
This can be expected for geographic attributes, for example, since network topology is 
correlated with geography. There are predominantly three policies for SRT parent 
selection [11]. In the first, random approach, each node picks a random parent from the 
nodes with which it can communication reliably. In the second, closest-parent approach, 
each parent reports the value of its index attribute with the SRT-build request, and 
children pick the parent whose attribute value is closest to their own. In the clustered 
approach, nodes select a parent as in the closest-parent approach, except, if a node hears a 
sibling node send a parent selection message, it snoops on the message to determine its 
siblings parent and value. It then picks its own parent (which could be the same as one of 
its siblings) to minimize spread of attribute values underneath all of its available parents.  
 
2.2 SRT Summary 
 
SRTs provide an efficient mechanism for disseminating queries and collecting query 
results for queries over constant attributes [11]. For attributes that are highly correlated 
amongst neighbors in the routing tree (e.g. location), SRTs can reduce the number of 
nodes that must disseminate queries and forward the continuous stream of results from 
children by nearly an order of magnitude. 
 
3. SPP : An Overview  
 
[17] Sequence Packet Protocol (SPP) is the primary transport-layer protocol in the Xerox 
Network Systems (XNS) and is employed by the ChipCon CC 1010. It provides reliable, 
flow-controlled, two-way transmission of data for an application program. It is a byte-
stream protocol used to support the SOCK_STREAM abstraction. The SPP protocol 
uses the standard Network Systems (NS) address formats. The SPP layer presents a byte-
stream interface to an application or user process. As a byte-stream protocol, SPP is used 
to support the SOCK_STREAM mechanism for interprocess communication. Sockets 
using the SPP protocol are either active or passive. By default, SPP sockets are created 
active. The following conventions apply to using active and passive sockets: 

• Active sockets initiate connection to passive sockets. 
• Only active sockets may use the connect subroutine to initiate connections. 
• To create a passive socket, an application must use the listen subroutine after 

binding the socket with the bind subroutine. 
• Only passive sockets may use the accept subroutine to accept incoming 

connections.  
 
 



The following table illustrates the table parameters available for SPP in general. 
 
Source 
connection ID 
  

 

Reference number used to identify the source end of a transport 
connection. This protocol establishes Connection IDs at connect time 
to distinguish between multiple transport connections. 

 
Destination 
connection ID 
  

 

Reference number used to identify the target end of a transport 
connection. 

Sequence 
number 
 

 

Sequence number of the packet. Each successive packet transmitted 
and acknowledged on the transport connection must have a sequence 
number one higher than the previous sequence number. 

Acknowledge 
number 
 

 

Sequence number of the last packet that the protocol received 
properly. Each side of the transport connection uses its own sequence 
of numbers for transmitted packets, resulting in sequence and 
acknowledge numbers in the same packet generally being out of phase 
with each other. 

Credit 
 

 

Number of unacknowledged packets that the other side of the transport 
connection can send. 

Transport 
control flag 
 

 

When set (value of 1), the packet is used for transport control. 

Acknowledge 
required flag 
 

 

When set (value of 1), an immediate acknowledgement is requested. 

Attention flag 
 

 

When set (value of 1), the packet is sent regardless of the credit 
advertised by the destination. 

EOM 
 

 

End of message flag. When set (value of 1), a logical end of message 
stream is denoted. 

Datastream type 
 

Reserved field ignored by the SPP transport layer. SPP provides the 
datastream type for use by higher level protocols as control 
information. 

 
Details on RF networking implemented in the CC1010 software library [18], follow.  



  1. The SPP (Simple Packet Protocol) functions/macroes in CUL implements the basic 
      RF link protocol, not network/client arbitration. The idea is to implement such 
      arbitration 'above' the CUL level.  
  2. Chipcon has not yet implemented a full RF network arbitration level in the CC1010 
      libraries. However, the Chat example should give some indication on how this can 
      be done in a very simple manner: 
 
     1. [A] sends a SPP packet to [B], using sppSend(). 
         [B] receives it, using sppRecv(). 
 
     2. [B] is then required to send an acknowledge packet back to [A]. 
         In this [B]->[A] packet [B] must then include a channel access request 
         (if it wants to send another packet to A). 
         [A] is then required to wait a certain time for [B] to send its packet.  
 
  Collision detection is mainly implemented by ACK timeout limits, packet sequence 
  tracking, etc, while network arbitration is done by unique addressing of each client 
  in the network. This is assigned by the RF network server (which is selected during 
  set-up/initialisation). The efficacy of this protocol is highlighted by [19]. 
 
4. The SenSeRT Protocol 
 
In this section we go on to describe our view of an SRT initialization protocol [14], [15], 
[16]. Even though SRTs have been the focus of research, a deep understanding of how 
exactly a sensor network can evolve an SRT remains elusive. We attempt to lift the veil 
from the proverbial “implementation issue” in this project. The roadmap for this project 
is detailed in the following paragraph.  
 
We list the steps to develop the SenSeRT protocol, highlighting at each step the 
important issues and how we will proceed to solve them. 
 

1) Assumption: All sensors sprinkled over an area are in radio range of each other, 
this assumption is certainly not a “profanity” in terms of sensor capabilities as 
may seem at a first look. The ChipCon 1010 sensor on which the RISE project 
revolves aims to use MMICs to increase the radio transmission range of each 
node in the next phase. Also all nodes except the initiator are in listening mode. 
All Nodes listen to a particular pre-agreed transmission frequency. Each node has 
the capability to change its transmission or Receiving frequency on the fly. The 
number of such frequencies is limited to three. The RISE platform built on the 
ChipCon 1010, can operate at 868/915 MHz or 2.4 GHz, this modeling is in 
convergence with the actual sensor part of the RISE platform. 

2) Who starts the communication: This is fundamental to formation of a structured 
routing tree. Most sensor implementations assume different types of sensors with 
varied capabilities in terms of energy availability and computational capabilities. 
We do not agree with this approach. Such a design is flawed for a number of basic 
reasons. Commercially speaking, every major chip manufacturer, or SoC provider 



spends millions on developing their systems and to customize their nodes for 
deployment at different “hierarchical levels” seems silly, and financially unwise. 
We thereby assume the presence of only one special initiator node. All other 
nodes have the same capabilities. This node is responsible for starting the SRT 
formation procedure; no other node can begin this process. 

3) How do we form the hierarchy: This is done in a lock-step fashion. The initiator 
node floods an SRT-Make packet with TTL 1, and its ADMIN-ID of 1, to its one-
hop neighbors to let them know that it wants to initiate the SRT creation process. 
Any node that hears this SRT-Make, understands that it now has to take on the 
baton for the SRT creation. These one hop neighbors retransmit the SRT-Make 
packet with TTL 1, and a COMMON-ID 2, specifying that the request came from 
a generic pool of nodes and not the master controller. The rationale for using a 
TTL of 1 in this stage stems from the fact that a shorter transmission radius 
ensures lesser chances of transmission collisions. Any node which receives such a 
request will wait till a random backoff timer set between, 0.1 sec to 1 sec before 
replying to the request with a MY-RANGE message. This backoff timer is 
essential for the node to further the SRT-Make packet forward to the other nodes 
and at the same time listen to requests for SRT-Makes from its “temporal” 
parents. Each secondary node makes a decision of choosing parents at this stage, 
the major highlight lies in choosing not only a primary parent but also a secondary 
parent. With the primary parent the node will communicate on a particular 
frequency, having the best link quality indicator and with the secondary parent it 
will maintain a link on a different frequency, obviously accepting a lesser degree 
of link quality with it. The node will forward its MY-RANGE values to both its 
parents, so that fault tolerance is built into the system in case the primary parent 
“fails”. Of course the secondary parent will only append the MY-RANGE value 
from this node after it receives an explicit HOOKUP message from it. This 
concept is essential for synchronized data fusion at each “temporal” parent, in 
case nodes forwarding their ranges to it, miss out on their timers and fail to 
forward their ranges in time for the parent to compile and summarize the 
information and hand it on to a different node. 

4) When are the Attribute ranges specified: The attribute ranges are specified at the 
very onset, during flooding of the SRT-Make packet itself. In fact the SRT-Make 
packet is a probe, query, by itself. Consider for instance, a sensor network 
deployed for measuring temperature. The initial SRT-Make packet would actually 
ask each sensor to report back its range of currently observed temperature. 

5) How are the Ranges exchanged: The ranges are exchanged in response to the 
SRT-Make packet using the MY-RANGE response packet.  

 
Figure 2 illustrates the SenSeRT protocol. Figure 3, provides a staggered temporal view 
of the protocol. The full protocol specification for this initialization mechanism will be 
the core idea of this project.  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. : The SenSeRT protocol in action. The Init (Initiator) node, intitaiates the SRT-
Make procedure by flooding its 1 hop neighbors with an <SRT-Make ID 1>, packet. The 
1 hop neighbors receive this message and relay this same signal, albeit with their own 
COMMON ID, 2 in this case. Node-X which receives requests for it range from two 
temporal parents, waits for a buffer time before responding so that it may gauge the link 
quality of nodes requesting it for its range value. Once it chooses the primary parent (PP) 
it links with it by sending over its range values, and the aggregated ranges of other nodes 
that have chosen it as its parent and have passed their data to it. It however links up to the 
secondary parent (SP) via a different frequency and passes on its range to it to, in case PP 
fails SP can link up with Node-X after receiving a HOOKUP packet from Node-X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. : The SenSeRT protocol; staggered protocol operation.  
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4. Mathematical Formalization 
 
Problem:  How can we best build an SRT (Semantic Routing Tree) in a sensor network. 
We want to construct an SRT and use it multiple times, how is the parent selection 
strategy that we employ going to effect the sensor network. 
 
Formulation:  All nodes in the sensor network are powered up and are listening for radio 
signals, the SRT_MAKE request. The initiator node injects a query into the system, 
“Generate temp reading”, this trickles down the complete network creating the layered 
structure. The lowest level nodes reply to the SRT_MAKE request and relay their 
temperature readings to their selected parents. We assume that there are no time-outs at 
each node leading to missing out on the information sent by a lower layer node to its 
parent while creating the SRT. We do not address data fusion issues, how will each node 
know that all its children have replied and that it should now send its range value to “its” 
parent. We simply consider the effect of parent selection strategies on the SRT we try to 
build. Each node stores the values of “attribute” or range of attribute values that its 
children correspond to, and its own reading is integrated into this range.  
 
 
There is a special initiator node with Li=0, (node level ID). 
 
 Lj= { 0 iff node is initiator for SRT_CREATE 
           
         Else = Li + 1, where Li = min {∀ Li where i,j∈N and Ri >= W(i,j)} 
 
Ri be the range of transmission of radio signal for node i. 
W(i,j) be the weight (radial distance) of node i from node j. 
 
{This allows for a layered ring structure via which we can classify nodes in levels 1 to 4 
(Say)} 
 
We can explore some parent selection strategies that will effect on how the SRT is 
formed. 
 
1) Random parent selection 
 
Pi = j iff Rj > W(i,j) and Lj <= Li   { Pi , parent of node i} 
 
2) Best Link based selection 
 
Pi = j iff Rj > W(i,j) and  Lj <= Li and Fj =max{∀ Fp , where p∈N and Rp >= W(i,p)}  
 
{Fp is the fitness of node p} 
 
 
 



3) Best attribute value-based selection 
 
Pi = j iff Rj > W(i,j) and  Lj <= Li and Fj =min{∀ Ap , where i,p∈N, Rp >= W(i,p), we 
compute | Ap – Ai |}  
 
{Ap is the Attribute value of node p} 
 
4) Hybrid1:1 
 
Pi = j iff Rj > W(i,j) and  Lj <= Li and Fj =max{∀ Ap , where i,p∈N, Rp >= W(i,p), we 
compute (1-(| Ap – Ai |)/Nf ) + (Fj)}  
 
5) Hybrid8:2  
 
Pi = j iff Rj > W(i,j) and  Lj <= Li and Fj =max{∀ Ap , where i,p∈N, Rp >= W(i,p), we 
compute 0.2(1-(| Ap – Ai |)/Nf ) + 0.8(Fj)} 
 
future work will concentrate on developing a window based scheme, adhering to the 
following formulation. 
 
Pi = j iff Rj > W(i,j) and  Lj <= Li and Fj =min{∀ Ap , where i,p∈N&Rp >= W(i,p), (| Ap – 
Ai |) & (SDt- SDt-1) }  
 
{SDp is the Statistical deviation in mean of the range at each node, in cycle p} 
 
Efficacy of a particular parent selection scheme is gauged by four main parameters, the 
maximum path length, which provides for an upper bound on the delay characteristic of 
the network. Path length is calculated by considering the number of radio links, modeled 
as edges in the graph that a query has to traverse. The Average path delay, provides a 
birds eye view of the network and how the strategy works as a whole. The Maximum 
Energy consumed by a query to travel from a level 4 node to the sink at level1, again 
provides for a worst case view of how soon the fringe elements in the network might start 
to fail due to excessive power depletion. Energy consumed by a query to reach the sink 
from a source is calculated in an iterative manner. The source expends Ei energy in order 
to process the packet and at each subsequent hop the receiver or relay node has to expend 
Ei as well as the energy needed to fuse the data with its own metrics. The energy 
expended to merge incoming data with one’s own metrics have been assumed to be 
equal. Thus if a node at level 4 spends Ei energy to generate the reading and passes on 
the query to another node, the receiver has to spend Ei+(Ei), energy to relay it. Similarly 
the next node on the path spends Ei+(Ei+(Ei)) amount of energy. We also provide a 
comparison for the average energy consumption for a query packet to traverse the 
network from a source to a sink for all the five schemes. 
 
 
 
5. Experimental Results 



 
This section describes the results from simulations formulated to demonstrate the various 
parent selection strategies and their consequence on real-life parameters such as average 
and maximum power consumption in the sensor network and average and maximum path 
length which provides an idea of maximum delay characteristics for such networks. The 
simulation strategy deals with nodes at 4 levels of hierarchy, levels 1 to 4, each 
containing a number of sensor nodes. The first level comprises of the single initiator 
node, the second comprises of 4 nodes while the third and the fourth can contain 
anywhere from 10 to 400 nodes. Extensive simulations have been carried out by varying 
the number of nodes in layer 3 and layer 4 where one would naturally expect to find the 
maximum node density and their effects have been presented in graphical format. We 
evaluate five possible strategies for parent selection in SenSeRT, which are  

• Random : Upon  receiving a SRT_MAKE request the node is free to choose a 
random parent which can be a peer, at the same level, or a node at a higher level. 
However a node may not choose any other at a lower level and also may not 
choose one to be its parent if the the difference between their corresponding 
layers span more than 2 layers. 

• Bestlink (BL) : The node can choose  parent based on the RF link characteristics 
of the node-parent link. This strategy is optimal if the sensor network has 
extremely heterogeneous distribution of computing and power resources spread 
over a large area. This strategy would also be critical for mission critical 
applications which need hard performance constraints from the network. 

• BestAttribute (BA) :  The node can choose  parent based on the closeness of the 
attribute being probed by the initial SRT_MAKE request. This strategy is optimal 
in the sensor network since it inherently minimizes the search area through which 
the query has to be flooded every time we would like to update the SRT. This 
strategy strategy yields the optimal performance both in terms of power 
consumption and delay characteristics. However for real-world applications, 
where link quality parameters can make the difference between being able to 
sense and process event data successfully and banging one’s head on an RF 
analyzer, it is imperative that some amount of intelligence be associated ith the 
parent selection strategy in SenSeRT which would also favor links with better RF 
quality characteristics. 

• Hybrid1:1 : The node can choose a parent based on a hybrid strategy which gives 
equal weight to the best link characteristics of potential parents as well as to 
closest attribute value for the parent under consideration. A cumulative evaluation 
parameter is found by the linear sum of the benefits accrued due to thiese 
parameters and the node with the highest value is chosen as the parent. 

• Hybrid8:2 : This scheme is identical to the one described above except that it 
deals with the distribution of weights in a different manner. It splits the weights in 
an 8:2 fashion over the link quality indicator Vs the closest attribute indicator. 
The major motivation for this hybrid scheme is to observe if performance in terms 
of power or delay decreases signifiucantly if we would like to build in an amount 
of fault tolerance by choosing more stable links, which might not always be the 
optimal according to selection only based on the attribute values. 

 



Below we demonstrate the effects of varying the number of nodes at the lowest two 
dense levels on the average and maximum power consumption in the network as well 
as the maximum path length. 
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Figure 4: The variation of average path length followed by a query when the number of nodes in layer 4 
varies from 40 to 400, number of nodes in layers 1,2 and 3 are constant, being 1,4 and 40 respectively. 
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Figure 5: The variation of average path length followed by a query when the number of nodes in layer 3 
varies from 10 to 300, number of nodes in layers 1,2 and 4 are constant, being 1,4 and 400 respectively. 
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Figure 6: The variation of average path length followed by a query when the number of nodes in layer 3 
and 4 varies from 5 to 100 and 25 to 500 respectively, number of nodes in layers 1 and 2 are constant, 
being 1 and 4 respectively. 
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Figure 7: The variation of maximum path length followed by a query when the number of nodes in layer 4 
varies from 40 to 400, number of nodes in layers 1,2 and 3 are constant, being 1,4 and 40 respectively. This 
gives an approximation of the worst case performance in terms of delay in the network. 
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Figure 8: The variation of maximum path length followed by a query when the number of nodes in layer 3 
varies from 10 to 300, number of nodes in layers 1,2 and 4 are constant, being 1,4 and 400 respectively. 
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Figure 9: The variation of maximum path length followed by a query when the number of nodes in layers 3 
and 4 vary from 5 to 100 and from 25 to 500 respectively, number of nodes in layers 1 and 2 are constant, 
being 1 and 4 respectively. 
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Figure 10: The variation of maximum energy expended by a query when the number of nodes in layer 4 
vary from 40 to 400, number of nodes in layers 1,2 and 3 are constant, being 1,4 and 40 respectively. 
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Figure 11: The variation of maximum energy expended by a query when the number of nodes in layer 3 
vary from 10 to 300, number of nodes in layers 1,2 and 4 are constant, being 1,4 and 400 respectively. 
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Figure 12: The variation of maximum energy expended by a query when the number of nodes in layers 3 
and 4 vary from 10 to 100, and 50 to 500 respectively, number of nodes in layers 1 and 2 are constant, 
being 1 and 4 respectively. 
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Figure 13: The variation of average energy expended by a query when the number of nodes in layer 4 vary 
from 40 to 400, number of nodes in layers 1,2 and 3 are constant, being 1,4 and 40 respectively. 
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Figure 14: The variation of average energy expended by a query when the number of nodes in layer 3 vary 
from 10 to 300, number of nodes in layers 1,2 and 4 are constant, being 1,4 and 400 respectively. 
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Figure 15: The variation of average energy expended by a query when the number of nodes in layers 3 and 
4 vary from 10 to 100 and 50 to 500 respectively, number of nodes in layers 1 and 2 are constant, being 1 
and 4 respectively. 
 
The following table clearly indicated that the hybrid8:2 scheme is a good balance 
between the optimal attribute only based BA scheme and the link quality based BL 
scheme. The values in the table represent Standard deviations in the values measured by 
the simulations, The Hybrid8:2 scheme is the one that is closest to BA. In all the 
experiments conducted the BA scheme was definitely the optimal, which is quite natural 
since it bounds the subtrees which do not need to be probed for the query in question. 
However a significant observation is that a hybrid scheme which tries to construct the 
SRT based on equal weightage for both link metrics and attribute values is not very good 
in terms of both power depletion as well as path lengths that an actual query has to 
traverse. However we see that when the weights assigned to path lengths and attribute 
values are considerably skewed about 8:2 the hybrid scheme is much better than the 
Hybrid1:1, and not far away from the optimal BA scheme. The BL scheme at times 
seems better than the Hybrid 8:2 however on the whole, throughout the complete range of 
simulations where nodes have been varied from a 1:4:40:400 format in four levels to all 
sorts of combinations, attempting to change density of nodes drastically as well as 
gradually, we find that the Hybrid8:2 is closest to BV, Some of the closest values have 
been highlighted in the table below using pointers. From our readings we have almost 
94% correlation between the MV and Hybrid8:2 scheme, the highest among all other 
schemes with the BV. 
 
 
 
 
 
 
 
 
 
 
 
 



 
Standard Deviation Random BL BA Hybrid1:1 Hybrid8:2 

Avg. Path Len. Level 4 0.91339 0.554306 0.556866 0.798291 0.402694 
Avg. Path Len. Level 3 0.752058 0.850047 0.486373 0.716923 0.499462 
Avg. Path Len. Level 
3&4 0.88258 0.812728 

0.502625 
0.48936 0.510418 

Max. Path Len. Level 4 2.038917 1.260235 0.655429 1.545194 1.206019 
Max Path Len. Level 3 1.453953 2.078047 0.657463 1.176837 1.039024 
Max. Path Len. Level 
3&4 1.970172 1.187656 0.510418 1.277333 1.147079 
Max. Energy Level 4 43.31827 16.93667 5.967432 25.2976 15.21931 
Max. Energy Level 3 37.33717 39.61948 5.908987 20.12199 13.80229 
Max. Energy Level 3&4 

44.57991 17.252 
4.691538 

19.60961 
 

14.16445 
Avg. Energy Level 4 10.5822 3.765249 3.190156 5.85238 2.690799 
Avg. Energy Level 3 9.837715 9.69913 2.359151 6.591784 3.324397 
Avg. Energy 
Level 3&4 

11.32429 6.417698 2.394621 2.876401 3.172248 
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