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What are “Challenges” of managing LiDAR
data?



What are “Challenges” of managing LiDAR
data?

1. Acquisition
How to acquire a huge amount of data, useful data?

2. Storage
How to store them so that we can query them within a short time?

3. Utilization
How to analyze and visualize the data?



"Dictionary compression in point cloud data management.”

Pavlovic, Mirjana, et al.

Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems. 2017.



O\LQ_I_‘_Y_ieW @ Research Backgrounds
© Proposed Methods

© Experimental Evaluation

Q Conclusion




AR
\

Q

Research
Backgrounds




Dictionary-Based Compression
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Figure 1: An example of range query execution over a does not leverage the spatial properties of data)

dictionary-based representation of point cloud data.



Dictionary-Based Compression

Dictionary Compression in Point Cloud Data Management
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Figure 2: Dictionary space, 2D illustration.
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Space-filling Curves

MORTON CURVE in a grid of 1024 cells
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Advantages: transforms data
from a multi- dimensional to a
one-dimensional domain using

SFC to impose a total, 1 D
order by visiting all the points
in a d-dimensional grid exactly

once.



Space-filling Curves

Stepl

Partition the dataset’ s universe
with a uniform grid and assign to
each cell a value on the space-

filling curve

Step3

Sort the points based on the
assigned SFC code

©

SFC order reorganizes data (three
steps)

Step2

Assign SFC code to every point
cloud entry according to the grid
cell they belong to, where
multiple point cloud entries can
map to the same SFC code value

curve



Space-filling Curves

Step
1

Transform a query to the
1D domain according to the
SFC-order and perform
binary search on the SFC
codes data structure based
on the transformed ranges

Range query execution order (two
steps)

Step
2

As a SFC code is assigned per
cell and not per point basis, all
the points whose SFC code
matches the result of the binary
search have to be additionally
checked whether they belong to
the query range in order to

remove false positives.



Space-filling Curves

Challenge:
the SFC codes structure requires
additional storage resources. (hurts

space efficiency)



Space-filling Curves
Dictionary-based Compression
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Figure 3: SFC-DBC (data-oriented) and SFC-based (space- execution

oriented) partitioning strategy.
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Space-filling Curves 3. Additionally store the position of
Dictionary-based Compression the point within the cells

1. producing a 3D dictionary space and a grid on top of it SFc_Iv dictionary space
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2. Assign a SFC code to every 4. Once the final structures are

produced, we sort them according to
the assigned SFC code

point according to the dictionary
cells they belong to



Query Execution Algorithm 1: Query Execution: produce candidate results set

Input: q: range query - defined with two coordinates
Output: minDQ, maxDQ: min and max position in dictionary
that corresponds to query range
Bitetep: Output: candidateSet: candidate result set
Produce a candidate result set.

//transforms query to 1D:
for d = 0 to dimensions do
minDQ[d] = binaryS(dictionary(d], q.low[d])
maxDQ[d] = binaryS(dictionary[d], q.high[d])
end
qSFCcodes = calcSFCcode(q, minDQ, maxDQ)
candidateSet = binaryS(qSFCcodes, SFCcodes)
return candidateSet




Query Execution

Second step:
Produce the final result set.

Time consuming:
scan offsets + decoding SFCcode

Algorithm 2: Query Execution: produce final results set

Input: q: range query - defined with two coordinates

Input: candidateSet: candidate result set

Input: minDQ, maxDQ: min and max position in dictionary
that corresponds to query range

Input: EPC: number of entries per cell, d - dimension

Output: pOut: point cloud result set

for i = value in candidateSet do
cell_id = decode(SFCCodesl[i],d)
base = cell_id » EPC[d]
//retrieve the positions of the points for the given SFCcode
<inputMin, inputMax> = mapSFCcodeTolnputPosition(i)
//enclosedByQuery condition
if minDQ[d] < base AND (base + EPC[d]) < maxDQId]
then

pOut.setRange(inputMin, input Max)

continue
end
//not enclosedByQuery - retrieve offsets
for j = inputMin; j < inputMax do

position = base + offests[j];

if minDQ < position < maxDQ then

| pOut.set(j)
end

end
end
return pOut




Analyze

Space requirements
Assume each dictionary in 3d space has the same length

Traditional DBC: 3 X (DS X de +nX IOQZDS)

SFC-DBC: 3 X (DS X de + n % logy [DS/ 2P + #SFCcode x BPD)

DS: the number of entries

de: the size of an entry

n: the number of points

log,DS : the number of bits per Index Vector entry

BPD : the number of bits assigned per dimension
#SFC-code : represents the number of distinct SFCcode values
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Experiment Environment

Hardware
Configuratio

SuSE Linux Enterprise Server 12

SAP HANA

SP1 machine HANA is an in-memory database
4 Intel Xeon CPU E7-4880v2 that offers the possibility to store
processors at 2.50GHz and 512GB data in either a row-oriented or a
of RAM column-oriented fashion.

Each processor has 15 cores with
private L1 (32KB) and L2 (256KB)

caches, as well as 37,5MB of

shared L3 cache. n E



Experiment Environment

1. AHN2 dataset

2. Senatsverwaltung fur

one hundred 2D and 3D range
Wirtschaft, Technologie und queries that follow uniform
Forschung” and distribution.

"Europaischer Fonds fir
regionale Entwicklung (EFRE)"
provided the dataset that are
generated by using dense

image matching. E



Space Requiremets
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Query Performance
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Query Performance
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Impact of Skew

(==Y
o

Relative space requirements

@ SFC-DBC

ElBaseline *
aSFC '3
B Uncompressed E

AL

o

AAARL

K

Al

125 250 500 1000
#points in datasets (millions)

Relative execution time

[y
o

oo

el Baseline
= SFC
= &= +SFC-DBC
[ e s
0 200 400 600 800 1000

#points in datasets (millions)

Figure 9: The impact of skew: space requirements and query execution time.



Impact of Filtering

The filtering step significantly improves the

N
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HFiltering execution time for low selectivity queries,
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@No Filtering considering that it filters more data (e.g., the
improvement in the execution time is 38%
for 10% selectivity)
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Figure 11: SFC-DBC: impact of filtering. on performance when executing high
selectivity queries (e.g., for 0.01% selectivity
The relative execution time for the SFC-DBC queries the improvement in the execution

approach, when enable and disable filtering time is 0.6%).
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Conclusions



Conclusion

Executing existing data management solutions face two
challenges: time and space efficiency.

SFC-DBC employs dictionary-based compression in the spatial
data management domain, enhancing it with indexing
capabilities without introducing additional storage overhead,

thus solve the two problems.



Thanks for listening!



