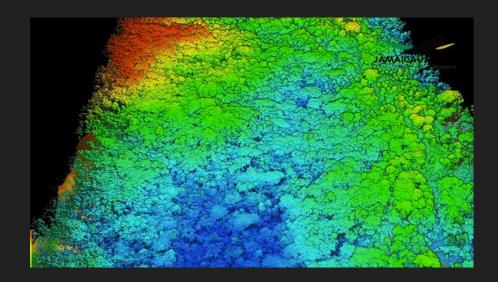

Introduction to LiDAR technology


Airborne laser scanning—an introduction and overview

Nicholas Kory Abenezer Wudenhe

Lidar

- Lidar (Light Detection & Ranging)

Ground LiDAR

Aerial Topographic LiDAR

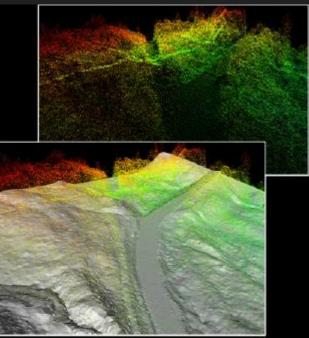
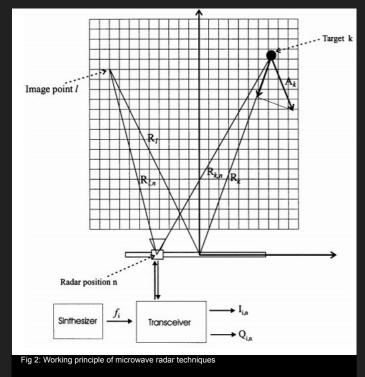
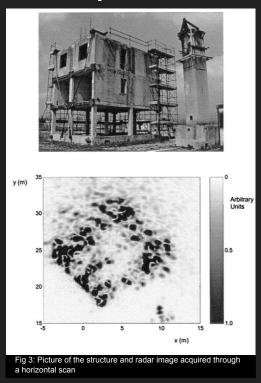
Google Scholar	Airborne laser scanning—an introduction and overview	Q
Articles		S My profile
Any time Since 2020 Since 2019 Since 2016 Custom range	Airborne laser scanning—an introduction and overview A Wehr, U Lohr - ISPRS Journal of photogrammetry and remote sensing, 1999 - Elsevier This tutorial paper gives an introduction and overview of various topics related to airborne laser scanning (ALS) as used to measure range to and reflectance of objects on the earth surface. After a short introduction, the basic principles of laser, the two main classes, ie, pulse and continuous-wave lasers, and relations with respect to time-of-flight, range, resolution, and precision are presented. The main laser components and the role of the laser wavelength, including eye safety considerations, are explained. Different scanning ☆ 90 Cited by 1717 Related articles All 9 versions Web of Science: 715	[PDF] knightlab.org UC-eLinks
Sort by relevance Sort by date		

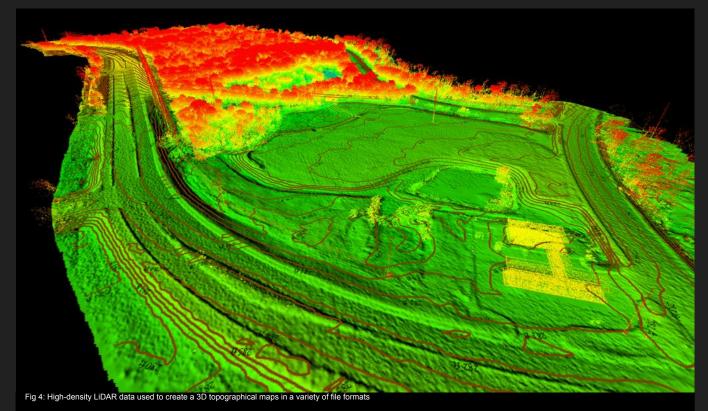
Outline

- Why this problem
- Why this is important
- Why it is challenging
- What the validation method is
- What the novel contributions are
- What the limitations of the related work are

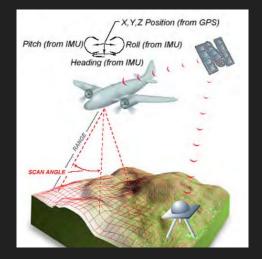
The Problem

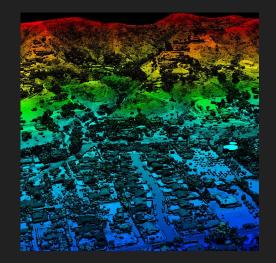
The Problem - The Ability to "See under Trees"

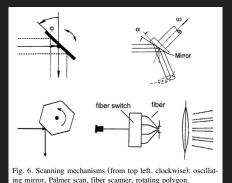

Fig 1: Lidar point and surface products

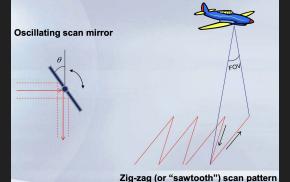
The Problem - Microwave Radar Technique

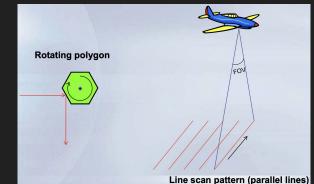



The Problem - LiDAR

The Problem - How it Works


- Measure distance based on sending & receiving light emissions

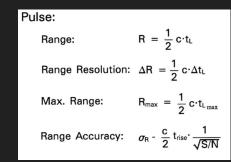


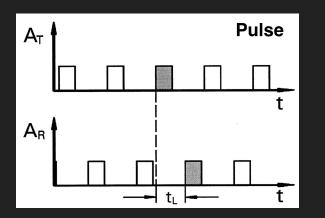


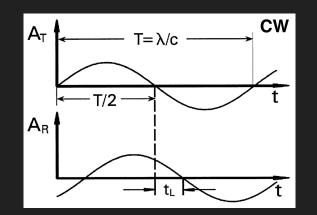
The Problem - LiDAR Systems in Airplanes

- Airborne Topographic LiDAR takes place in two phases
 - Phase 1: Scanning
 - Different Scan Mechanisms lead to different scan pattern on the ground
 - Patterns include (oscillating mirror, Palmer scan, fiber scanner, rotating polygon
 - **Phase 2:** Post Scan processing

The Problem - LiDAR Systems in Airplanes


Components:


- Inertial Measurement Unit (IMU)
- Position and
 Orientation System
 (POS)
- Laser power supply
- Laser
- Scan
- Optics
- Receiver


The Problem - The Lasers Used

- Lasers

- Pulse Laser
- Continuous Wave Laser (CW)

Sinusoidal	CW-Modulation:
------------	----------------

Travelling Time by Phase Difference:	$ \left. \begin{array}{l} T \ \ \doteq \ 2\pi \\ t_{L} \ \ \doteq \ \ \Phi \end{array} \right\} \Rightarrow \ t_{L} \ = \ \frac{\Phi}{2\pi} \cdot T $
Range:	$R = \frac{1}{2} \operatorname{c} \cdot \frac{\Phi}{2\pi} \cdot T = \frac{\lambda}{4\pi} \cdot \Phi$
Max. Unamb. Range:	$R_{max} = \frac{\lambda_{long}}{2}$
Range Resolution:	$\Delta R = \frac{\lambda_{\text{short}}}{4\pi} \cdot \Delta \Phi$
Range Accuracy:	$\sigma_{\rm R} \sim \frac{\lambda_{\rm short}}{4\pi} \cdot \frac{1}{\sqrt{{\rm S/N}}}$

The Importance

The Importance - Flood Insurance Rate Maps

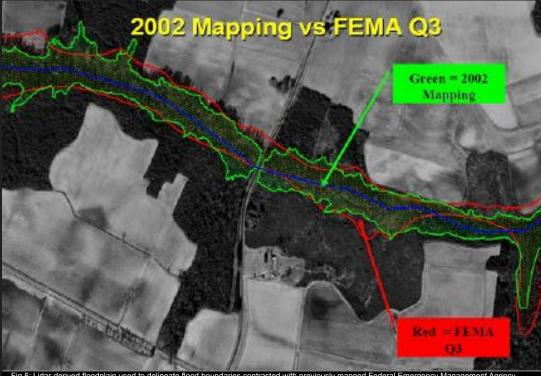
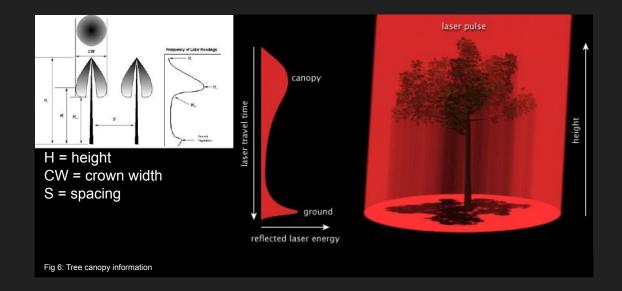



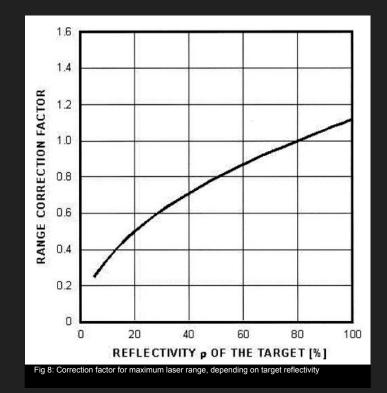
Fig 5: Lidar-derived floodplain used to delineate flood boundaries contrasted with previously mapped Federal Emergency Management Agency (FEMA) flood zone boundaries

The Importance - Forest and Tree Studies

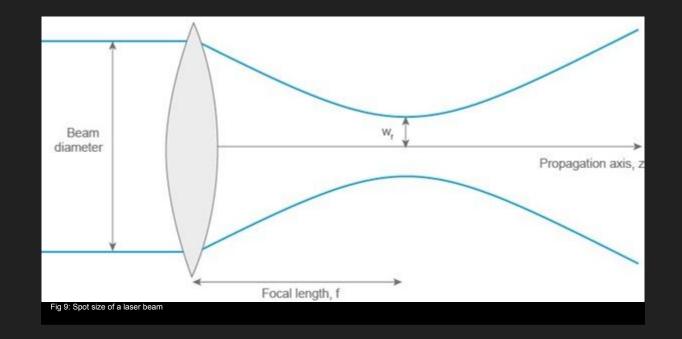
The Importance - Coastal Change Mapping

The Importance - Additional

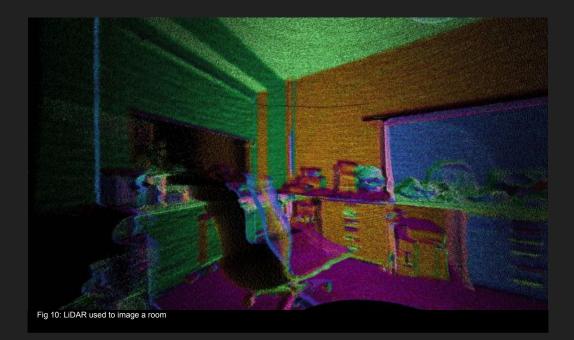
- Mapping of corridors, e.g., roads, railway tracks, pipelines, waterway landscapes
- Mapping of electrical transmission lines and towers including ground/tree clearance
- DTM and DSM generation in urban areas, automated building extraction, generation of 3-D models for city planning


- Measurement of snow- and ice-covered areas, including glacier monitoring
- Measurement of wetlands
- Derivation of vegetation parameters, e.g., tree height, crown diameter, tree density, biomass estimation, determination of forest borders
- Hydrographic surveys in depths up to 70 m.

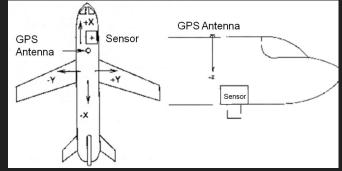
The Challenges


The Challenges - Reflectivity

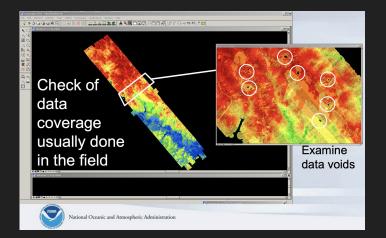
Material	Reflectivity (%)
Dimension lumber (pine, clean, dry)	94
Snow	80-90
White masonry	85
Limestone, clay	Up to 75
Deciduous trees	Тур. 60
Coniferous trees	Тур. 30
Carbonate sand (dry)	57
Carbonate sand (wet)	41
Beach sands, bare areas in dessert	Тур. 50
Rough wood pallet (clean)	25
Concrete, smooth	24
Asphalt with pebbles	17
Lava	8
Black neoprene (synthetic rubber)	5

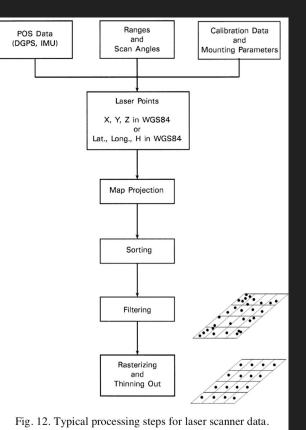

Tbl 1: Typical reflectivity of various diffuse reflecting materials for 900 nm wavelength

The Challenges - Spot Size


The Challenges - Frequency

The validation method

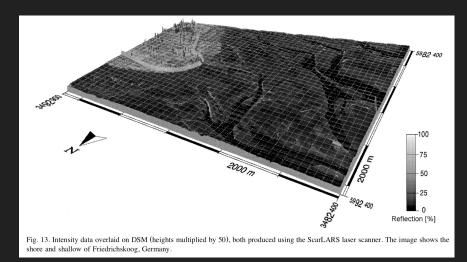

What is the validation method?

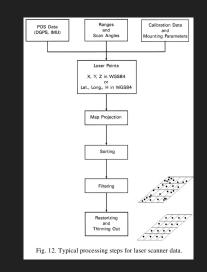

- Calibration
 - At the time of the paper, multiple ways to calibrate and not officially standardized
 - Recorded along with POS Data & Ranges for post scan processing
 - Includes mounting parameters of the laser
 - 2 types of calibration
 - System calibration
 - Factory Calibration (Manufacturer provides some calibration method)
 - In-Situ calibration (Performed by flying over calibration site that has been accurately surveyed using GPS)
 - Data Calibration (Rigorous data adjustment)

What is the validation method?

- Processing Chain
 - Adjustment to ranges made during multiple stages after scanning
 - Includes both mathematical model adjustment and human quality check
 - Can still result in holes in data

What is the validation method?

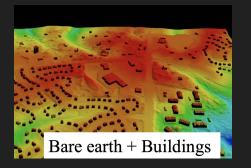

- Accuracy
 - Now multiple industry and government host LIDAR data
 - Example:
 - National Standard for Spatial Data Accuracy (NSSDA) w/ American Society for Photogrammetry and Remote Sensing (ASPRS)
 - Require vertical accuracy with confidence of 95% or higher
 - Require a minimum of 20 checkpoints (30 preferred) for each type of land mass

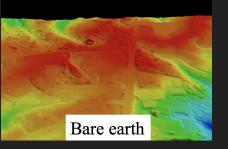

 $Lidar Horizontal Error (RMSE_r) = \sqrt{(GNSS positional error)^2 + \left(\frac{\tan(IMU \, error)}{0.55894170} x \, flying \, altitude\right)^2}$ ASPRS Lidar Horizontal Error Formula

The novel contributions

What are the novel contributions?

- The paper gave a proper introduction and overview of lidar for topology and geographical use
- Seminal paper with >1500 citations
- Define the pipeline structure to create lidar systems





The limitations of the related work

What are the limitations of the related work?

- Currently have to do all processing post scanning
- Post processing is slow compared to scanning at the time of the paper
- Some software for processing is proprietary leading to irregular processing among different people
- Improve filter/removal and classification/separation of object methods

and ARC/Info. Currently, the processing time for a DTM computed from laser scanner data is typically three times the data acquisition time.

Questions Comments Concerns

Sources

- Wehr, A. and U. Lohr, 1999. Airborne laser scanning—an introduction and overview
- Christopher Parrish. Lidar and Height Mod Workshop
 link:<u>https://www.ngs.noaa.gov/corbin/class_description/Parrish_Lidar_and_Height_Mod_Presentation_n.pdf</u>
- Carter, J., Schmid, K., Waters, K., Betzhold, L., Hadley, B., Mataosky, R., & Halleran, J. (2012). An introduction to LiDAR technology, data, and applications. NOAA Coastal Services Center, 2. link:<u>https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf</u>
- Young, J. (2011). LiDAR for Dummies. Hoboken.
 link:<u>https://ibis.geog.ubc.ca/courses/geog373/lectures/Handouts/LiDARforDummies.pdf</u>
- Lidar Wikipedia. link:<u>https://en.wikipedia.org/wiki/Lidar</u>