Spatio-temporal access
methods

Tong Jia
Xiangyu Li
Yongyi Liu

NG
NG

NG

exing t
exing t
exing t

Ccontents

ne Past
ne Current

ne Future

Indexing the past

Multi-dimensional structures
Tong Jia

PH-Tree
(PATRICIA-hypercube-tree)

* A multi-dimensional data structure

» Extends both the Quad-tree and the
PATRICIA-trie

* Optimize the search performance and the
space utilization

 Indexing large amounts of multi-
dimensional data.

Quad-tree

T

 Efficiently store data of %‘:ﬁ: aaa:
points on a two-dimensional .
space. ﬁif "
TR
=

« Each node has at most four

children.
* Rarely used outside 2D or Ssalloaaal
3D problems B
T
d R

PATRICIA-Trie (prefix tree)

romane
romanus
romulus
rubens
ruber
rubicon

Radix Trie

=] o N s La b =

o

=

g @ ®

us

i
r
I
[

PN

om

/’

rubicundus .'
— T

|ns

1O,

!

®

on

nndus

@

« Trie: strings are stored in a prefix-sharing method--Much more
space efficient than storing each key individually.

« PATRICIA trees are radix trees with radix equals 2

* In general, any kind of data can be stored in such a tree by taking

the bit representation of the data

PH-Tree

» k-dimensional object

 Partitions the space across all dimensions
at any given node.

» Serializes the attributes of the indexed
objects using binary representation.

» Can be seen as a hyper-cube of size 2%

* |s essentially a quadtree that uses hyper-
cubes, prefix-sharing and bit-stream
storage.

Advantages

* Makes access virtually independent of the
order.

* Reduce the number of nodes In the tree

* The maximum depth is independent of k
and equal to the number of bits in the
longest stored value.

Advantages

* No need for rebalancing because it's
ubalanced.

« Stable with respect to insert or delete
operations.

* This Is useful for concurrency when stored
on disk--limits the number of pages that
need to be rewritten.

1D PH-Tree

0 0 " root node
) | | :'
ﬁ | .
g) (i) 0 s prefix 0
8% &
8 z- 1 0 1 ~HC/LHC 5
o | | | 8_
0 1 0 ~ postfixes ®
(a) (b)

Figure 1: A sample 1D PH-tree with one 4-bit entry (a) and
two 4-bit entries (b)

resembles the binary PATRICIA trie.

The value is stored in its binary representation as a bit-string.

The first bit is stored in the root node.(In the 1D-case, all entries
starting with a 0 can be found below the left box, all starting with a
1 can be found below the right box.)

The depth of the trees is thus limited to 4.

1D PH-Tree

0 0 " root node
) | | :'
o0 | .
g) (i) 0 s prefix 0
8% &
8 &+ 1 011 ~HC/LHC + 5
o | | | 8_
0 1 0 ~ postfixes ®
(a) (b)

Figure 1: A sample 1D PH-tree with one 4-bit entry (a) and
two 4-bit entries (b)

» Entries that are attached to an array field without further sub-
nodes, such as the 010, are called a postfix.

« Asecond value 0001 has been added to the tree in Figurelb.

2D PH-tree

‘ ‘Oll‘ ‘ ‘ E root node
0 0 E prefix -
00/ 10/11 wemc I
10 1010 posthices °

Figure 2: A sample 2D PH-tree with three 4-bit entries:
(0001, 1000), (0011, 1000), (0011, 1010)

Indexing the current
Xiangyu LI

Challenges

* Frequent Updating

Challenges

* Frequent Updating

— Locating ->
— Deletion ->
— Insertion ->
M
I] K L
A B C D E F G H

o do dlo dlo do-0o oo oo o

Op 02 03 04 Os5 O O7 00 010011 012 013014 O15 Oj6

Fig. | An Example of Location Update

Challenges

* Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

* Inefficient -> Real-time Response

Challenges

* Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

* Inefficient -> Real-time Response X

« Caching -> Reduce I/O cost -> Real-time
Response

Challenges

Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

Inefficient -> Real-time Response X

Caching -> Reduce 1/O cost -> Real-time
Response

1. RUM+-tree(R-tree-based)
2. DIME(Disposable Index for Moving Objects)

RUM+-tree

!

[Stamp counter]

|

2 ree —— I

Fig. 2. Structure of RUM+-tree

 Hash Table(with Obj ID) + Update Memo

secondary
Index

RUM+-tree

Hash Table(with Obj ID)
-> directly locate objects

Update Memo
-> cache the costly modification

RUM+-tree

« With Update Memo

« Update:
— Cheap one -> do
— Costly -> cache

Lazy Update + Batch -> Avoid Frequent
split/merge

RUM+-{ree

Create new version

new version of objl

- o

l

RO RO
Rl‘ Rl A
A ""j_) o R | E— A
o obj1 o
(a) (b)
RO

Split Rl A A
A

R2b
o

=

o

(c)

RUM+-{ree

Incoming update

!

[Stamp counter]

|

e

o ————

Fig. 2. Structure of RUM+-tree

Limitation

secondary
Index

DIME: Disposable Index for
Moving Objects

* Do not modify the index at all!

DIME: Disposable Index for
Moving Objects

* Do not modify the index at all!

* Modify the index ->
 Detach a whole chunk of the index

003 ':....-' Og
et 950 WG b4 4)
: L] o & 0
. HN CC oo i OO
 EEEE DOOE 0000 O00O0°
: T(Disposed) T+At T+2At i: TH3At
R OnDisk ...:dnMemory |

Disposable Index

Fig. 2 Location Update on Disposable Index

e 05502 T g—. S5 40)

O oy
[]

CIC]
EEER EOOE 0000 0000

DIME

o™)

e Og
>

L]
LI

Ll
CIC]

i T(Disposed) T+At T+2At ii T+3At
e ONDISK . i Memory |

Disposable Index

Fig. 2 Location Update on Disposable Index
TABLE I. TERMS AND NOTATIONS

Concept Expression | Description

Maximum Al Maximum time interval for moving objects to

time interval update locations

Phase At = At,,/n |Time interval to construct an indexing
component

Component | C, Indexing component constructed by timestamp ¢

Lifetime Lt= (n+1)*A¢|Time period from constructing an indexing

component to disposing it

DIME

DIME

Lo ———+ b ———+ t,
—em i, - ©
i . 6 . it
i 1 @ P7 @
3 g ! P2 ©
P2 ! i P9 ' S,
P4 O b/ ! ! :
o : - ! i
ol B e
P1 ;

* N equals to 2.

« At t2, the components of tO need to be
disposed

Indexing the Future

Yongyi Liu

Indexing the Future Based on Underlying Road-Network

“Predictive Tree: An Efficient Index for Predictive
Queries on Road Networks”

Store Finders
Why People 5till Need Locator Links

Challenges

-functional limitations
1.distance measure
2.training data
3.flexibility

-performance deficiencies

The implementation system
-IRoad Sytem Architecture

Moving Ob]ecl

Query ‘Answer Location ! updales
iRoad
Query State
Processor Predictive Manager
Tree Builder
Nﬂworthph Pt!dcive Tne Tnjocloq
“"
0 () 0
=)
Fig. 1. 1Road System Architecture

State Manager: R-tree , trajectory buffer , predictive tree

Predictive Tree builder:the moving object's trajectory buffer, the moving object's
current predictive tree, the tunable parameters

Query processor

Predicted Objects Predicted ﬂbjﬂ[’ﬁ
<0, 0.5,10> |[<0, 1.0,5>

(a) Network & Objects

Current Objects
; ,p|,§:~
Ol

010)

Predictive Tree for O, Predictive Tree for Og
(b) Predictive Trees Integrated With R-Tree

Fig. 2. Example Of The Proposed Index Structure

Predictive Tree Construction

* Initialization

visited nodes list: record nodes processed so fa

min-heap:order the nodes based on distance to
the root

* Expansion

continuously pop the root from the min-heap and

expand the predictive tree

-

NL || MH

B ||(C,10)
(D,17)
(E,27)

(a) Road Network (b) Imitialize Tree (c) Expand B
Fig. 4. Example of Constructing And Expanding The Predictive Tree Started At Node A.

Initialization

Expansion

7 \1o = D
@ (B.IS)
C (D7)
(E,.2T)
(F,30)

(d) Expand C

MH

®Of
B ||(E.27)

C [[(B.27)

o D ||(F30)

(¢) Expand D

Predictive Tree Maintenance

Main ldea:

update the root and prune the unnecessary
part

o e owq .'Ob!ec,..: X
on‘wéﬁoﬁo 1 - OC (8) 8
85558 Ebed dbbee éb

(a) Given Road Network (b) Trip Start (c) Tree Pruning (d) No More Children

Demonstration Example For An Object Trip And Predictive Tree Maintenance

basic query and extensions

 predictive point query
-to find out the moving objects with their
corresponding probabillities that are expected

to be around a specified query node in the
road network within a future time period

extension to range gueries, aggregate queries,
KNN

