
Spatio-temporal access

methods
Tong Jia

Xiangyu Li

Yongyi Liu

Contents

• Indexing the Past

• Indexing the Current

• Indexing the Future

Indexing the past
Multi-dimensional structures

Tong Jia

PH-Tree

(PATRICIA-hypercube-tree)

• A multi-dimensional data structure

• Extends both the Quad-tree and the

PATRICIA-trie

• Optimize the search performance and the

space utilization

• Indexing large amounts of multi-

dimensional data.

Quad-tree

• Efficiently store data of

points on a two-dimensional

space.

• Each node has at most four

children.

• Rarely used outside 2D or

3D problems

PATRICIA-Trie (prefix tree)

• Trie: strings are stored in a prefix-sharing method--Much more

space efficient than storing each key individually.

• PATRICIA trees are radix trees with radix equals 2

• In general, any kind of data can be stored in such a tree by taking

the bit representation of the data

Radix Trie

PH-Tree

• k-dimensional object

• Partitions the space across all dimensions

at any given node.

• Serializes the attributes of the indexed

objects using binary representation.

• Can be seen as a hyper-cube of size 2𝑘

• Is essentially a quadtree that uses hyper-

cubes, prefix-sharing and bit-stream

storage.

Advantages

• Makes access virtually independent of the

order.

• Reduce the number of nodes in the tree

• The maximum depth is independent of k

and equal to the number of bits in the

longest stored value.

Advantages

• No need for rebalancing because it’s

ubalanced.

• Stable with respect to insert or delete

operations.

• This is useful for concurrency when stored

on disk--limits the number of pages that

need to be rewritten.

1D PH-Tree

• resembles the binary PATRICIA trie.

• The value is stored in its binary representation as a bit-string.

• The first bit is stored in the root node.(In the 1D-case, all entries

starting with a 0 can be found below the left box, all starting with a

1 can be found below the right box.)

• The depth of the trees is thus limited to 4.

1D PH-Tree

• Entries that are attached to an array field without further sub-

nodes, such as the 010, are called a postfix.

• A second value 0001 has been added to the tree in Figure1b.

2D PH-tree

Indexing the current
Xiangyu Li

Challenges

• Frequent Updating

Challenges

• Frequent Updating
– Locating -> Top-down

– Deletion -> Merging

– Insertion -> Splitting

Challenges

• Frequent Updating
– Locating -> Top-down

– Deletion -> Merging

– Insertion -> Splitting

• Inefficient -> Real-time Response

Challenges

• Frequent Updating
– Locating -> Top-down

– Deletion -> Merging

– Insertion -> Splitting

• Inefficient -> Real-time Response X

• Caching -> Reduce I/O cost -> Real-time

Response

Challenges

• Frequent Updating
– Locating -> Top-down

– Deletion -> Merging

– Insertion -> Splitting

• Inefficient -> Real-time Response X

• Caching -> Reduce I/O cost -> Real-time

Response

• 1. RUM+-tree(R-tree-based)

• 2. DIME(Disposable Index for Moving Objects)

RUM+-tree

• Hash Table(with Obj ID) + Update Memo

RUM+-tree

• Hash Table(with Obj ID)

• -> directly locate objects

• Update Memo

• -> cache the costly modification

RUM+-tree

• With Update Memo

• Update:

– Cheap one -> do

– Costly -> cache

Lazy Update + Batch -> Avoid Frequent

split/merge

RUM+-tree

RUM+-tree

Limitation

DIME: Disposable Index for

Moving Objects
• Do not modify the index at all!

DIME: Disposable Index for

Moving Objects
• Do not modify the index at all!

• Modify the index ->

• Detach a whole chunk of the index

DIME

DIME

DIME

DIME

• n equals to 2.

• At t2, the components of t0 need to be

disposed

Indexing the Future
Yongyi Liu

Indexing the Future Based on Underlying Road-Network

“Predictive Tree: An Efficient Index for Predictive

Queries on Road Networks”

Challenges

-functional limitations

1.distance measure

2.training data

3.flexibility

-performance deficiencies

The implementation system

-iRoad Sytem Architecture

State Manager: R-tree , trajectory buffer , predictive tree

Predictive Tree builder:the moving object's trajectory buffer, the moving object's

current predictive tree, the tunable parameters

Query processor

Predictive Tree Construction

• Initialization

visited nodes list: record nodes processed so far

min-heap:order the nodes based on distance to

the root

• Expansion

continuously pop the root from the min-heap and

expand the predictive tree

Initialization

Expansion

Predictive Tree Maintenance

Main Idea:

update the root and prune the unnecessary

part

basic query and extensions

• predictive point query

-to find out the moving objects with their

corresponding probabilities that are expected

to be around a specified query node in the

road network within a future time period

extension to range queries, aggregate queries,

KNN

