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Indexing the past

Multi-dimensional structures
Tong Jia



PH-Tree
(PATRICIA-hypercube-tree)

* A multi-dimensional data structure

» Extends both the Quad-tree and the
PATRICIA-trie

* Optimize the search performance and the
space utilization

 Indexing large amounts of multi-
dimensional data.
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PATRICIA-Trie (prefix tree)
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« Trie: strings are stored in a prefix-sharing method--Much more
space efficient than storing each key individually.

« PATRICIA trees are radix trees with radix equals 2

* In general, any kind of data can be stored in such a tree by taking

the bit representation of the data



PH-Tree

» k-dimensional object

 Partitions the space across all dimensions
at any given node.

» Serializes the attributes of the indexed
objects using binary representation.

» Can be seen as a hyper-cube of size 2%

* |s essentially a quadtree that uses hyper-
cubes, prefix-sharing and bit-stream
storage.



Advantages

* Makes access virtually independent of the
order.

* Reduce the number of nodes In the tree

* The maximum depth is independent of k
and equal to the number of bits in the
longest stored value.



Advantages

* No need for rebalancing because it's
ubalanced.

« Stable with respect to insert or delete
operations.

* This Is useful for concurrency when stored
on disk--limits the number of pages that
need to be rewritten.



1D PH-Tree
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Figure 1: A sample 1D PH-tree with one 4-bit entry (a) and
two 4-bit entries (b)

resembles the binary PATRICIA trie.

The value is stored in its binary representation as a bit-string.

The first bit is stored in the root node.(In the 1D-case, all entries
starting with a 0 can be found below the left box, all starting with a
1 can be found below the right box.)

The depth of the trees is thus limited to 4.



1D PH-Tree
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Figure 1: A sample 1D PH-tree with one 4-bit entry (a) and
two 4-bit entries (b)

» Entries that are attached to an array field without further sub-
nodes, such as the 010, are called a postfix.

« Asecond value 0001 has been added to the tree in Figurelb.



2D PH-tree
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Figure 2: A sample 2D PH-tree with three 4-bit entries:
(0001, 1000), (0011, 1000), (0011, 1010)



Indexing the current
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Challenges

* Frequent Updating



Challenges

* Frequent Updating

— Locating ->
— Deletion ->
— Insertion ->
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Fig. | An Example of Location Update



Challenges

* Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

* Inefficient -> Real-time Response



Challenges

* Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

* Inefficient -> Real-time Response X

« Caching -> Reduce I/O cost -> Real-time
Response



Challenges

Frequent Updating
— Locating ->
— Deletion ->
— Insertion ->

Inefficient -> Real-time Response X

Caching -> Reduce 1/O cost -> Real-time
Response

1. RUM+-tree(R-tree-based)
2. DIME(Disposable Index for Moving Objects)




RUM+-tree
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Fig. 2. Structure of RUM+-tree

 Hash Table(with Obj ID) + Update Memo

secondary
Index




RUM+-tree

Hash Table(with Obj ID)
-> directly locate objects

Update Memo
-> cache the costly modification



RUM+-tree

« With Update Memo

« Update:
— Cheap one -> do
— Costly -> cache

Lazy Update + Batch -> Avoid Frequent
split/merge



RUM+-{ree
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RUM+-{ree
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Fig. 2. Structure of RUM+-tree
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DIME: Disposable Index for
Moving Objects

* Do not modify the index at all!



DIME: Disposable Index for
Moving Objects

* Do not modify the index at all!

* Modify the index ->
 Detach a whole chunk of the index
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Fig. 2 Location Update on Disposable Index
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Fig. 2 Location Update on Disposable Index
TABLE I. TERMS AND NOTATIONS

Concept Expression | Description

Maximum Al Maximum time interval for moving objects to

time interval update locations

Phase At = At,,/n |Time interval to construct an indexing
component

Component | C, Indexing component constructed by timestamp ¢

Lifetime Lt= (n+1)*A¢|Time period from constructing an indexing

component to disposing it




DIME
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* N equals to 2.

« At t2, the components of tO need to be
disposed



Indexing the Future
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Indexing the Future Based on Underlying Road-Network

“Predictive Tree: An Efficient Index for Predictive
Queries on Road Networks”

Store Finders
Why People 5till Need Locator Links




Challenges

-functional limitations
1.distance measure
2.training data
3.flexibility

-performance deficiencies



The implementation system
-IRoad Sytem Architecture

Moving Ob]ecl

Query ‘Answer Location ! updales
iRoad
Query State
Processor Predictive Manager
Tree Builder
Nﬂworthph Pt!dcive Tne Tnjocloq
“"
0 () 0
=)
Fig. 1. 1Road System Architecture

State Manager: R-tree , trajectory buffer , predictive tree

Predictive Tree builder:the moving object's trajectory buffer, the moving object's
current predictive tree, the tunable parameters

Query processor
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Fig. 2. Example Of The Proposed Index Structure



Predictive Tree Construction

* Initialization

visited nodes list: record nodes processed so fa

min-heap:order the nodes based on distance to
the root

* Expansion

continuously pop the root from the min-heap and

expand the predictive tree
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(a) Road Network  (b) Imitialize Tree (c) Expand B
Fig. 4. Example of Constructing And Expanding The Predictive Tree Started At Node A.
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Predictive Tree Maintenance

Main ldea:

update the root and prune the unnecessary
part
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(a) Given Road Network (b) Trip Start (c) Tree Pruning (d) No More Children

Demonstration Example For An Object Trip And Predictive Tree Maintenance



basic query and extensions

 predictive point query
-to find out the moving objects with their
corresponding probabillities that are expected

to be around a specified query node in the
road network within a future time period

extension to range gueries, aggregate queries,
KNN



