

CS141: Intermediate Data Structures and Algorithms

NP-Completeness

Amr Magdy

Why Studying NP-Completeness?

- > Two reasons:
 - In almost all cases, if we can show a problem to be NP-complete or NP-hard, the best we can achieve (NOW) is mostly exponential algorithms.
 - This means we cannot solve large problem sizes efficiently
 - 2. If we can solve only one NP-complete problem efficiently, we can solve ALL NP problems efficiently (major breakthrough)
- More details come on what does these mean

Topic Outline

- 1. Background
 - Decision vs. Optimization Problems
 - Models of Computation
 - Input Encoding
- 2. Complexity Classes
 - > P
 - > NP
 - Polynomial Verification
 - Examples
- 3. NP-hardness
 - Polynomial Reductions
- 4. NP-Complete Problems
 - > Definition and Examples
 - Weak vs. Strong NP-Complete Problems

> Decision problem: a problem expressed as a yes/no question

- > Decision problem: a problem expressed as a yes/no question
 - > Examples:
 - Is graph G connected?
 - > Is path P: $u \rightarrow v$ shortest?

- Decision problem: a problem expressed as a yes/no question
 - > Examples:
 - Is graph G connected?
 - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
 - In continuous optimization, the answer is real valued objective function (either min or max)

- Decision problem: a problem expressed as a yes/no question
 - > Examples:
 - Is graph G connected?
 - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
 - In continuous optimization, the answer is real valued objective function (either min or max)
 - > Examples:
 - > Find a maximum fully-connected subgraph (clique) size in a graph.
 - > Find the least cost of multiplying a chain of matrices.

- Decision problem: a problem expressed as a yes/no question
 - > Examples:
 - Is graph G connected?
 - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
 - In continuous optimization, the answer is real valued objective function (either min or max)
 - > Examples:
 - > Find a maximum fully-connected subgraph (clique) size in a graph.
 - Find the least cost of multiplying a chain of matrices.
- > Converting optimization problem \rightarrow decision problem?
 - > Put a bound on the objective function.

- Decision problem: a problem expressed as a yes/no question
 - > Examples:
 - Is graph G connected?
 - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
 - In continuous optimization, the answer is real valued objective function (either min or max)
 - > Examples:
 - > Find a maximum fully-connected subgraph (clique) size in a graph.
 - Find the least cost of multiplying a chain of matrices.
- > Converting optimization problem \rightarrow decision problem?
 - > Put a bound on the objective function.
 - Does G have a clique of size k? for k= 3, 4, 5,...(finding max clique)

Take Home Messages

(1) Computation theory focuses on decision problems

> MoC: informally a theoretic description of a way to compute

- MoC: informally a theoretic description of a way to compute
- > Example: mask model

Mask Model (on paper)

Mask Realization (fabric instance)

UCR

- > At a low level:
 - Finite State Automata (FSA)
 - Pushdown Automata (PDA)
 - Turing Machine (TM)
 - >

Focus of other courses

 (e.g., Theory of Computation, Compilers Design, ...etc)

- > At a high level:
 - RAM (Random Access Machine)
 - > Pointer Machine
 - >

- > A model of computation determines two things:
 - > What are the possible operations
 - > What is the cost of each operation

- > A model of computation determines two things:
 - What are the possible operations
 - > What is the cost of each operation
- > w-Random Access Machine (w-RAM) MoC:
 - > The one we used throughout the course
 - > Possible operations in $\Theta(1)$:
 - > Access any memory word at random
 - Read variable
 - Write variable
 - Basic mathematical operations (add, multiply, assign,...etc)
 - Single-command output operations (print, return, ...etc)

>

- > A model of computation determines two things:
 - What are the possible operations
 - > What is the cost of each operation
- > w-Random Access Machine (w-RAM) MoC:
 - > The one we used throughout the course
 - > Possible operations in $\Theta(1)$:
 - > Access any memory word at random
 - Read variable
 - Write variable
 - Basic mathematical operations (add, multiply, assign,...etc)
 - Single-command output operations (print, return, ...etc)

- What the cost of appending to a list in w-RAM model? Sorting? Finding maximum?

- > A model of computation determines two things:
 - What are the possible operations
 - > What is the cost of each operation
- > Pointer Machine (PM) MoC:
 - > A machine with only dynamic allocated memory through pointers
 - > Possible operations in $\Theta(1)$:
 - Follow pointer (no random memory anymore)
 - Read pointed variable
 - Write pointed location
 - >

- > A model of computation determines two things:
 - What are the possible operations
 - > What is the cost of each operation
- > Pointer Machine (PM) MoC:
 - > A machine with only dynamic allocated memory through pointers
 - > Possible operations in $\Theta(1)$:
 - Follow pointer (no random memory anymore)
 - Read pointed variable
 - Write pointed location
 - >
- What the cost of accessing any memory location in PM model? Sorting? Finding maximum?
 - Function of the basic operations

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by the computation model

Assume multiplying two decimal integers

(basic operation, single digit op)

> 12*12 = (1*10+2)*(1*10+2)= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops, 4 shift ops)

> O(n²) operations for n-digit number

Assume multiplying two decimal integers

(basic operation, single digit op)

▶ 12*12 = (1*10+2)*(1*10+2)

 $= 1^{10^{11}} + 1^{10} + 1^{10^{2}} + 2^{11^{10}} + 2^{12^{10}} + 2^{1$

(4 mult ops, 4 add ops, 4 shift ops)

- O(n²) operations for n-digit number
- Assume multiplying two binary integers
 - > $(10)_b * (10)_b = (1*2+0)*(1*2+0)$ = 1*2*1*2+1*2*0+0*1*2+0*0

(4 mult ops, 4 add ops, 4 shift ops)

> O(n²) operations for n-digit number

Same input (2x2),

different encoding

Assume multiplying two decimal integers

>

(basic operation, single digit op)

>
$$12*12 = (1*10+2)*(1*10+2)$$

(4 mult ops, 4 add ops, 4 shift ops)

- > O(n²) operations for n-digit number
- Assume multiplying two binary integers

$$(10)_{b}^{*}(10)_{b} = (1^{*}2+0)^{*}(1^{*}2+0)$$

= 1^{*}2^{*}1^{*}2+1^{*}2^{*}0+0^{*}1^{*}2+0^{*}0

(4 mult ops, 4 add ops , 4 shift ops)

> O(n²) operations for n-digit number

Assume multiplying two decimal integers

> 2*2 = 4

(basic operation, single digit op)

= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops, 4 shift ops)

- O(n²) operations for n-digit number
- Assume multiplying two binary integers

Same input (2x2), different encoding

 (10)_b * (10)_b = (1*2+0)*(1*2+0) = 1*2*1*2+1*2*0+0*1*2+0*0 (4 mult ops, 4 add ops, 4 shift ops)

- > O(n²) operations for n-digit number
- Input representation (encoding) affects the amount of computations for same input

Exercise

 design a divide & conquer algorithm to multiply two n-bits integers in O(n²)

> Note:

- > Multiplying by 2^n for binary numbers is shifting by n bits $\rightarrow \Theta(n)$
- > Multiplying by 10^n for decimal numbers is shifting by n digits $\rightarrow \Theta(n)$

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by the computation model

(3) Algorithm complexity is affected by the input encoding/length

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:(a) the computation model(b) the input encoding/length

> Binary strings are the standard encoding for computing now

- Binary strings are the standard encoding for computing now
- > Integer $n \rightarrow$ binary number (in $\log_2(n)$ bits)
 - ► Example: 999 → 01111100111

- Binary strings are the standard encoding for computing now
- Integer n \rightarrow binary number (in $\log_2(n)$ bits)
 - Example: 999 → 01111100111
- Array of n integers → sequence of integers (in n*log₂(n) bits)
 Example: 9,15,3 → 1001,1111,0011

- Binary strings are the standard encoding for computing now
- > Integer $n \rightarrow$ binary number (in $\log_2(n)$ bits)
 - > Example: 999 → 01111100111
- > Array of n integers \rightarrow sequence of integers (in n*log₂(n) bits)
 - ► Example: 9,15,3 → 1001,1111,0011
- String of n chars → sequence of integer codes (in n*log₂(n) bits), e.g., ASCII codes
 - ► Example: Amr → 1000001,1101101,1110010

- Binary strings are the standard encoding for computing now
- > Integer $n \rightarrow$ binary number (in $\log_2(n)$ bits)
 - ► Example: 999 → 01111100111
- > Array of n integers \rightarrow sequence of integers (in n*log₂(n) bits)
 - ► Example: 9,15,3 → 1001,1111,0011
- String of n chars → sequence of integer codes (in n*log₂(n) bits), e.g., ASCII codes
 - > Example: Amr \rightarrow 1000001,1101101,1110010
- Graph G of n vertices and m edges:
 - > Each vertex with integer id \rightarrow n integers
 - > Each edge with integer id and weight \rightarrow m integers + m floats
 - > m is maximum of $n^2/2$, i.e., m=O(n^2)

UCR

Input string

- > Binary strings are the standard encoding for computing now
- Integer
 - ► Example: 999 → 01111100111 ←
- Array of n integers
 - ► Example: 9,15,3 → 1001,1111,0011
- String of n chars
 - ► Example: Amr → 1000001,1101101,1110010
- > Graph G of n vertices and m edges:

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:(a) the computation model(b) the input encoding/length

(3) Binary input string (concrete input) is different in length than the algorithm abstract input

Complexity Class

- UCR
- Complexity class:
 A set of problems that share some complexity characteristics
 - > Either in time complexity
 - > Or in space complexity

Complexity Class

- UCR
- Complexity class:
 A set of problems that share some complexity characteristics
 - > Either in time complexity
 - > Or in space complexity
- In this course, our discussion is limited to only two time complexity classes: P and NP
 - Other courses cover more content (e.g., Theory of Computation course)

Ρ

- P is a complexity class of problems that are *decidable* in polynomial-time of input string length, i.e., O(m^k)
 - where <u>m the input string length</u> and <u>k is constant</u>
- For simplicity, P is the set of problems that are solvable in polynomial time
 - i.e., has O(m^k) algorithm to find a solution

Ρ

- P is a complexity class of problems that are *decidable* in polynomial-time of input string length, i.e., O(m^k)
 - where <u>m the input string length</u> and <u>k is constant</u>
- For simplicity, P is the set of problems that are solvable in polynomial time
 - i.e., has O(m^k) algorithm to find a solution
- > Examples:
 - > Shortest paths in graph
 - Matrix chain multiplication
 - > Activity scheduling problem

>

NP

- NP is a complexity class of problems that are verifiable in polynomial-time of input string length
- For simplicity, given a solution of an NP problem, we can verify in polynomial time O(m^k) if this solution is correct

Is $P \subset NP$?

Is $P \subset NP$?

- > Yes
- > What does this mean?

Is $P \subset NP$?

- > Yes
- What does this mean?
 - Every problem that is solvable in polynomial time is verifiable in polynomial time as well

> What does this mean?

- > What does this mean?
 - > There are polynomial time algorithms to solve NP problems

- > What does this mean?
 - > There are polynomial time algorithms to solve NP problems
- Nobody yet knows
 - > The question posed in 1971

- > What does this mean?
 - > There are polynomial time algorithms to solve NP problems
- Nobody yet knows
 - > The question posed in 1971
 - You think it is old?
 - Check Alhazen's problem then

- What does this mean?
- > There are polynomial time algorithms to solve NP problems
- Nobody yet knows

>

- > The question posed in 1971
- You think it is old?
 - Check Alhazen's problem then
- Computer Science theoreticians
 "thinks" P ≠ NP, but no proof

- > What does this mean?
 - > There are polynomial time algorithms to solve NP problems
- Nobody yet knows
 - The question posed in 1971
 - You think it is old?
 - Check Alhazen's problem then
- Computer Science theoreticians
 "thinks" P ≠ NP, but no proof

47

> Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

> Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

> How to solve this problem?

> Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

- > How to solve this problem?
 - Brute force: O(n!)

> Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

Travelling Salesman Movie

https://www.youtube.com/watch?v=6ybd5rbQ5rU

> Example: SAT Problem

Given a Boolean circuit S, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

> Example: SAT Problem

Given a Boolean circuit S, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

> Example: **3-CNF Problem**

Given a Boolean circuit S in 3-CNF form, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

- 3-CNF formula: a set ANDed Boolean clauses, each with 3 ORed literals (Boolean variables)
- Example: v = OR, ^ = AND, ¬ = NOT (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)

> Example: **3-CNF Problem**

Given a Boolean circuit S in 3-CNF form, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

- 3-CNF formula: a set ANDed Boolean clauses, each with 3 ORed literals (Boolean variables)
- Example: v = OR, ^ = AND, ¬ = NOT (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)
- Solution: O(k2ⁿ) for k clauses and n variables

Example: (Max) Clique Problem
 Given a graph G=(V,E), find the clique of maximum size.
 Clique: fully connected subgraph.

> Example: (Max) Clique Problem

Given a graph G=(V,E) of n vertices, find the clique of maximum size.

Clique: fully connected subgraph.

- > Solution:
 - Assume max clique size k and
 |V| = n
 - > Brute force: O(n2ⁿ)
 - Combinations of k: O(n^k k²)
 - > Try for k=3,4,5,...
 - k is not constant, so this is not polynomial

NP Problems: Polynomial Verification

- UCR
- Given a solution, can I verify if it is correct in polynomial time?
- > TSP Problem: Yes
 - > Is there a tour with weight W?
- SAT Problem: Yes
- 3-CNF Problem: Yes
- Max Clique Problem: Yes
 - > Is there a clique of size k?

(the decision version)

(the decision version)

NP-hard Problems

> Informally:

an NP-hard problem B is a problem that is at least as hard as the hardest problems in NP class

> Formally:

B is NP-hard if $\forall A \in NP, A \leq_P B$ (i.e., A is polynomial reducible to B)

Polynomial Reductions

> Polynomial reduction $A \leq_P B$ is converting an instance of A into an instance of B in polynomial time.

Polynomial Reductions

- > Polynomial reduction $A \leq_P B$ is converting an instance of A into an instance of B in polynomial time.
- > How to solve A given a solver to B?

Polynomial Reductions

- > Polynomial reduction $A \leq_P B$ is converting an instance of A into an instance of B in polynomial time.
- > How to solve A given a solver to B?

- Reduce 3-CNF to k-size Clique
- Example: three 3-CNF clauses (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)

- Reduce 3-CNF to k-size Clique
- Example: three 3-CNF clauses (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)

 $C_1 = x_1 \vee \neg x_2 \vee \neg x_3$

- Reduce 3-CNF to k-size Clique
- Example: three 3-CNF clauses (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)

 $C_1 = x_1 \vee \neg x_2 \vee \neg x_3$

- Reduce 3-CNF to k-size Clique
- Example: three 3-CNF clauses (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)
- Given: S: k-clause 3-CNF formula
- > Reduction Algorithm:
 - > Compose a graph G of k sets of vertices, each set has three vertices
 - > Connect all pairs of vertices (u,v) such that:
 - u and v belong to two different sets
 - > If u=xi, then $v \neq \neg xi$
 - If there is k-size clique in G, there is a satisfying assignment to S (assign 1 to each vertex in the clique).

NP-hard Proofs

- > To prove B an NP-hard problem:
 - Show a polynomial time reduction algorithm from B to ONE of the existing NP-hard problems.

NP-Complete Problems

UCR

- > B is NP-complete problem if:
 - 1. B ∈ NP
 - 2. B is NP-hard

NP-Complete Problems: Examples

NP-Complete Problems: Examples

Hamiltonian Cycle Problem: Given an undirected or directed graph G, is there a cycle in G that visits each vertex exactly once?

Take Home Messages: Remember?

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:(a) the computation model(b) the input encoding/length

(3) Binary input string (concrete input) is different in length than the algorithm abstract input

Strong vs Weak NP-Completeness

- > Abstract input vs Concrete input:
 - > Input array of n integers:
 - Abstract input size: a = n (# of integers)
 - Concrete input size in binary: b = n log n (# of bits of the array)
- Weak NP-complete problem:
 - > An NP-complete problem that has a known polynomial solution in terms of the abstract input size.
- > Strong NP-complete problem:
 - An NP-complete problem that does not have a known polynomial solution in terms of either abstract or concrete input size.

Weak NP-Completeness: Examples

UCR

- > Subset-Sum Problem:
 - Given set S of n integers and integer T
 - Dynamic Programming solution: O(nT)
 - > Abstract input: $a_1 = n$ (integers of S) $a_2 = 1$ (integer T)
 - > Concrete input: $b_1 = n \log n$

$$b_2 = \log T$$

- O(nT) = O(b₁ 2^{b2}) → exponential in concrete input but polynomial in abstract input → weak NP-complete
- > Partition Problem:
 - Given set S of n integers, divide S into two disjoint subsets of equal sum
 - Same solution (and complexity) as Subset-Sum
- > 0-1 Knapsack Problem
 - Similar solution to subset-sum (O(nW) for knapsack of weight W)⁵

Weak NP-Completeness

 For weak NP-complete problems, we are able to solve many instances in practical input sizes.

Book Readings

> Ch. 34