CS141: Intermediate Data Structures and Algorithms

Graphs

Amr Magdy
Graph Data Structure

- A set of nodes (vertices) and edges connecting them
Graph Applications

- Road network
- Social media networks
- Knowledge bases
Graph Representations

- Adjacency matrix
  - Storage and access efficient when many edges exist
Graph Representations

- Adjacency matrix
  - Storage and access efficient when many edges exist

![Graph Diagram]
Graph Representations

- Incidence Matrix
  - Expensive storage, not popular

```
\[
\begin{pmatrix}
A & B & C & D & E \\
E1 & E2 & E3 & E4 & E5 & E6 & E7 & E8 \\
\end{pmatrix}
\]
```
Graph Representations

- Adjacency list
  - Storage efficient when few edges exit (sparse graphs)
  - Sequential access to edges (vs random access in matrix)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

![Directed Graph](image1)

![Undirected Graph](image2)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

There are three component of above unconnected graph
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

![Acyclic Graph](image1)

![Cyclic Graph](image2)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
  - Tree: directed acyclic graph with max of one path between any two nodes
  - Forest: set of disjoint trees
Basic Graph Algorithms

- Graph traversal algorithms
  - Bread-first Search (BFS)
  - Depth-first Search (DFS)
- Topological Sort
- Graph Connectivity
- Cycle Detection
Breadth-first Search (BFS)

- How to traverse?
Breadth-first Search (BFS)

- How to traverse?
- Use a queue
Breadth-first Search (BFS)

- How to traverse?
- Use a queue
- Start at a vertex s
- Mark s as visited
- Enqueue neighbors of s
- while Q not empty
  - Dequeue vertex u
  - Mark u as visited
  - Enqueue unvisited neighbors of u
Breadth-first Search (BFS)

(a) Breadth-first Search (BFS)

(b) Breadth-first Search (BFS)

(c) Breadth-first Search (BFS)

(d) Breadth-first Search (BFS)

(e) Breadth-first Search (BFS)

(f) Breadth-first Search (BFS)

(g) Breadth-first Search (BFS)

(h) Breadth-first Search (BFS)

(i) Breadth-first Search (BFS)

Q \\[\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
\end{array}\]

Q \\[\begin{array}{c}
w \\
r \\
s \\
t \\
u \\
v \\
w \\
x \\
y \\
\end{array}\]

Q \\[\begin{array}{c}
\emptyset \\
v \\
w \\
x \\
y \\
z \\
\end{array}\]
Depth-first Search (DFS)

How to traverse?
Depth-first Search (DFS)

› How to traverse?
› Use a stack
Depth-first Search (DFS)

- How to traverse?
- Use a stack
- Start at a vertex s
  - Mark s as visited
  - Push neighbors of s
while Stack not empty
  - Pop vertex u
  - Mark u as visited
  - Push unvisited neighbors of u
Complexity of Graph Traversal

For $G = (V,E)$, $V$ set of vertices, $E$ set of edges

- **BFS**
  - Time: $O(|V|+|E|)$
  - Space: $O(|V|)$ (plus graph representation)

- **DFS**
  - $O(|V|+|E|)$
  - Space: $O(|V|)$ (plus graph representation)
Graph Connectivity

- Checking if graph is connected:
Graph Connectivity

- Checking if graph is connected: IsConnected(G)

```c
DFS(G)
if any vertex not visited
    return false
else
    return true
```

Time Complexity: $O(|V|+|E|)$
Graph Connected Components

Getting the graph connected components

Fig(ii):
Unconnected Graph

There are three component of above unconnected graph
Graph Connected Components

- Getting the graph connected components
- Mark all nodes as unvisited
  
  \[ visitCycle = 1 \]
  
  while (there exists unvisited node n)
  
  \{ 
  
  - Start DFS(G) at n, mark visited node with \( visitCycle \)
  
  - Output all nodes with current \( visitCycle \) as one connected component
  
  - \( visitCycle = visitCycle + 1 \)
  
  \}

Time Complexity: \( O(|V|+|E|) \)
Cycle Detection

- Does a connected graph G contain a cycle? (non-trivial cycle)
- General idea: if DFS procedure tries to revisit a visited node, then there is a cycle
Cycle Detection

Does a graph G contain a cycle? (non-trivial cycle)

IsAcyclic(G) {
    Start at unvisited vertex s
    Mark “s” as visited
    Push neighbors of s in stack
    while stack not empty
        Pop vertex u
        Mark u as visited
        if u has visited neighbors
            return true
        Push unvisited neighbors of u
    return false
}
Cycle Detection in Directed Graphs

visitFlag = 1
while there exist unvisited node n {
    - Call IsAcyclic(G) with start node n and visitFlag
    - visitFlag = visitFlag + 1
}

IsAcyclic pseudo code will be modified to have:
    if u has visited neighbors marked with visitFlag
        return true
Topological Sort

- Determine a linear order for vertices of a directed acyclic graph (DAG)
  - Mostly dependency/precedence graphs
  - If edge \((u,v)\) exists, then \(u\) appears before \(v\) in the order
Topological Sort

L ← Empty list
S ← Set of all nodes with no incoming edge
while S is non-empty do
  remove a node n from S
  add n to end of L
  for each node m with an edge e from n to m do
    remove edge e from the graph
    if m has no other incoming edges then
      insert m into S
  return L (a topologically sorted order)
Spanning Tree

- Given a connected graph $G=(V,E)$, a spanning tree $T \subseteq E$ is a set of edges that “spans” (i.e., connects) all vertices in $V$.
- A Minimum Spanning Tree (MST): a spanning tree with minimum total weight on edges of $T$.
- Application:
  - The wiring problem in hardware circuit design.
Spanning Tree: Example
Spanning Tree: Not MST

Total weight = 21
Spanning Tree: MST

Total weight = 16
Spanning Tree: Another MST

![Graph showing a spanning tree with nodes A, B, C, D, E, F and edges with weights 1, 2, 4, 4, 5. The total weight is 16.]
Finding MST: Kruskal’s algorithm

- Sort all the edges by weight
- Scan the edges by weight from lowest to highest
- If an edge introduces a cycle, drop it
- If an edge does not introduce a cycle, pick it
- Terminate when n-1 edges are picked
  (n: number of vertices)
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm

- **A**
- **B**
- **C**
- **D**
- **E**
- **F**

Weights:
- AB: 1
- BC: 4
- BD: 4
- BE: 2
- BF: 7
- CD: 3
- DE: 3
- EF: 4
Finding MST: Kruskal’s algorithm
Finding MST

- Kruskal’s algorithm: greedy
  - Greedy choice: least weighted edge first
  - Complexity: $O(E \log E)$ – sorting edges by weight
  - Edge-cycle detection: $O(1)$ using hashing of $O(V)$ space

- Prim’s algorithm: greedy
  - Complexity: $O(E + V \log V)$ – using Fibonacci heap data structure
Shortest Paths in Graphs

Given graph $G=(V,E)$, find shortest paths from a given node $source$ to all nodes in $V$. (Single-source All Destinations)
Shortest Paths in Graphs

- Given graph $G=(V,E)$, find shortest paths from a given node $source$ to all nodes in $V$. (Single-source All Destinations)

- If negative weight cycle exist from $s \rightarrow t$, shortest is undefined
  - Can always reduce the cost by navigating the negative cycle

- If graph with all +ve weights $\rightarrow$ Dijkstra’s algorithm

- If graph with some -ve weights $\rightarrow$ Bellman-Ford’s algorithm
Dijkstra’s Algorithm

Initialize:

Q: A B C D E
0 ∞ ∞ ∞ ∞

S: {}
Prev: {A,U,U,U,U,U}
Dijkstra’s Algorithm

Q: A B C D E

0  ∞  ∞  ∞  ∞  ∞
Dijkstra’s Algorithm

\[ Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array} \]

\[ S: \{ A \} \]

\[ \text{Prev: \{A,A,A,U,U\}} \]
Dijkstra’s Algorithm

Q: A B C D E

0 10 3

Prev: {A, A, A, U, U}

S: {A, C}
Dijkstra’s Algorithm

\[ S: \{ A, C \} \]

\[ Prev: \{ A, C, A, C, C \} \]
Dijkstra’s Algorithm

Q: A  B  C  D  E
   0  ∞  ∞  ∞  ∞
   10 3  ∞  ∞  ∞
   7  3  11  5

S: { A, C, E }

Prev: { A, C, A, C, C }
Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Q: A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: \{ A, C, E \}
Prev: \{A,C,A,C,C\}
Dijkstra’s Algorithm

$Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 7 & 11 & 5 & \\
7 & 11 & \\
\end{array}$

$S: \{ A, C, E, B \}$

$Prev: \{ A, C, A, C, C \}$
Dijkstra’s Algorithm

\[ Q: \begin{matrix} A & B & C & D & E \\ 0 & \infty & \infty & \infty & \infty \\ 10 & 3 & \infty & \infty & \infty \\ 7 & \boxed{7} & 11 & 11 & 5 \end{matrix} \]

\[ S: \{ A, C, E, B \} \]

\[ \text{Prev: \{A,C,A,B,C\}} \]
Dijkstra’s Algorithm

$S: \{ A, C, E, B, D \}$
$Prev: \{ A, C, A, B, C \}$
### Dijkstra’s Algorithm

**Q:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S:** \{ A, C, E, B, D \}

**Prev:** \{A,C,A,B,C\}

- **A:** A → A
- **B:** A → C → B
- **C:** A → C
- **D:** A → C → B → D
- **E:** A → C → E
Dijkstra's Algorithm

function Dijkstra(Graph, source):
    create vertex set Q

    for each vertex v in Graph: //Initialization
        Dist[v] ← INFINITY //Unknown distance from source to v
        Prev[v] ← UNDEFINED //Previous node in path from source to v
        add v to Q //All nodes initially unvisited (in Q)

    Dist[source] ← 0 // Distance from source to source = 0
    Prev[source] ← source

    while Q is not empty:
        u ← vertex in Q with min Dist[u] //Node with the least distance
        // will be selected first

        remove u from Q

        for each neighbor v of u in Q: //v is still in Q.
            tmp ← Dist[u] + edge_length(u, v) //trying u as “source->u->v”
            if tmp < Dist[v]: //A shorter path to v has been found
                Dist[v] ← tmp
                Prev[v] ← u

    return Dist[], S[]
Network Max Flow

- What is the maximum amount we can ship from Vancouver to Winnipeg?
Network Max Flow

- What is the maximum amount we can ship from Vancouver to Winnipeg?
- Pseudo code
  
  ```
  MaxFlow(G, s, t) {
    max_flow = 0
    while (∃ a simple path p:s→t) {
      curr_flow = min weight in p
      max_flow = max_flow + curr_flow
      for each (edge e ∈ p) {
        e.weight = e.weight - curr_flow
      }
    }
    return max_flow
  }
  ```
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

$max_{\text{flow}} = 12$
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

\[ \text{max_flow} = 12 \]
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 16
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

\[
\text{max\_flow} = 16
\]
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

\[ \text{max}_\text{flow} = 16 \]
What is the maximum amount we can ship from Vancouver to Winnipeg?

$\text{max}_\text{flow} = 23$
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 23
Book Readings & Credits

› Book Readings:
  › Ch. 22, 23.2, 24.3, 26.1, 26.2

› Credits:
  › Figures:
    › Wikipedia
    › btechsmartclass.com
  › Prof. Ahmed Eldawy notes
  › Laksman Veeravagu and Luis Barrera