

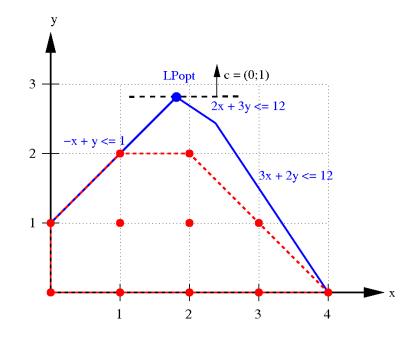
CS141: Intermediate Data Structures and Algorithms

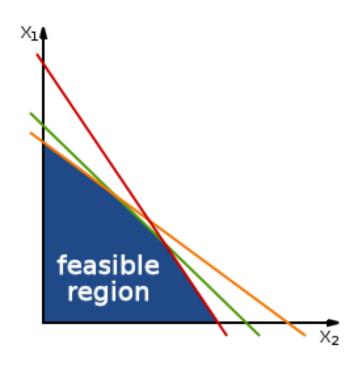
Dynamic Programming

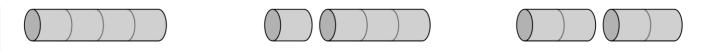
Amr Magdy

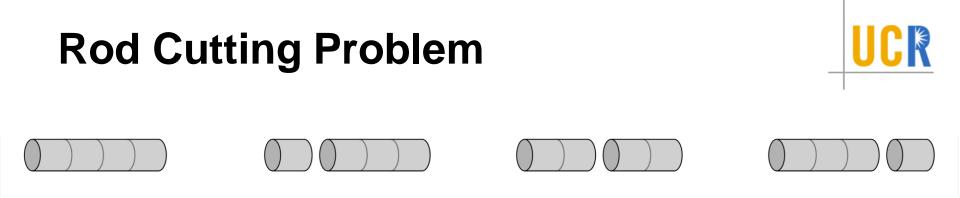
Programming?

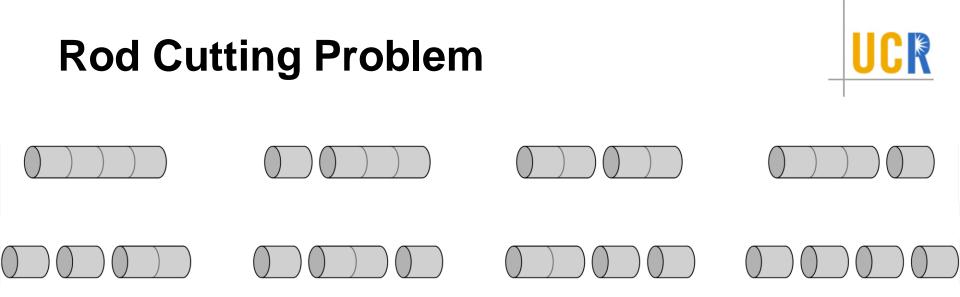
- > In this context, programming is a tabular method
- > Other examples:
 - Linear programing
 - Integer programming

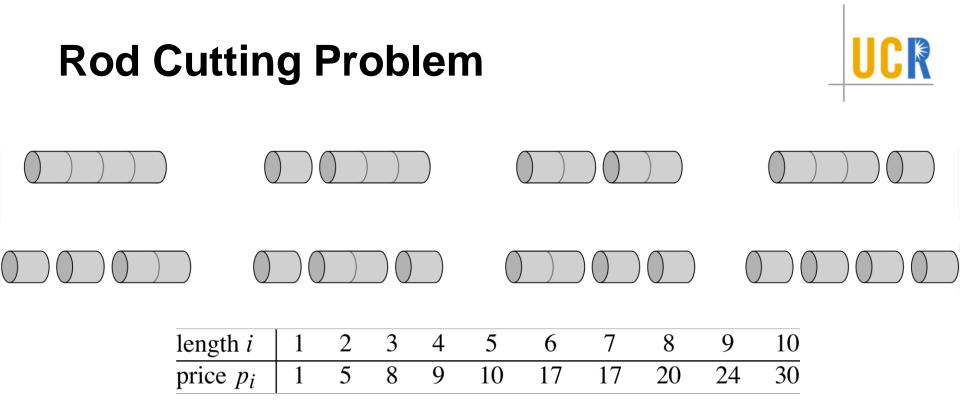


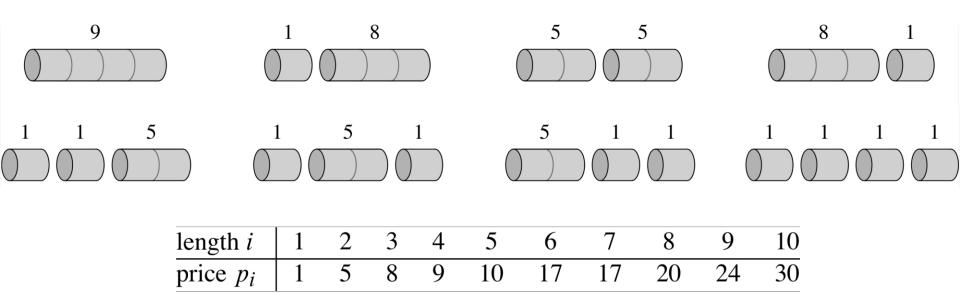


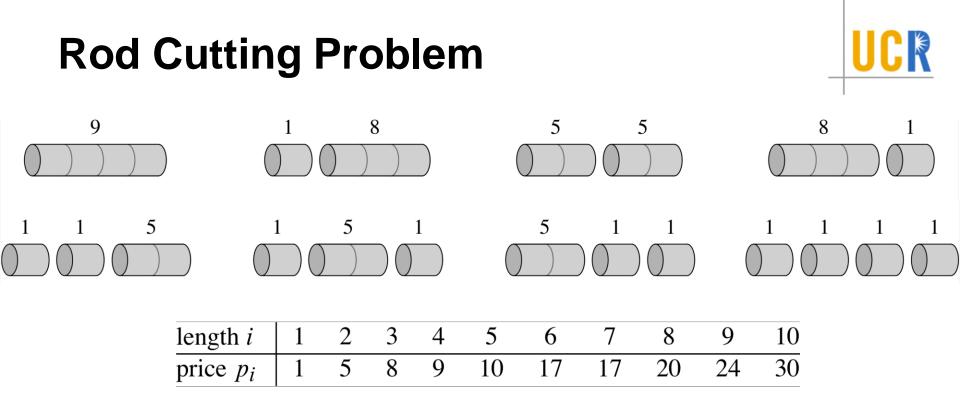












- Given a rod of length n and prices p_i, find the cutting strategy that makes the maximum revenue
 - > In the example: (2+2) cutting makes r=5+5=10

> Naïve: try all combinations

- > Naïve: try all combinations
 - > How many?

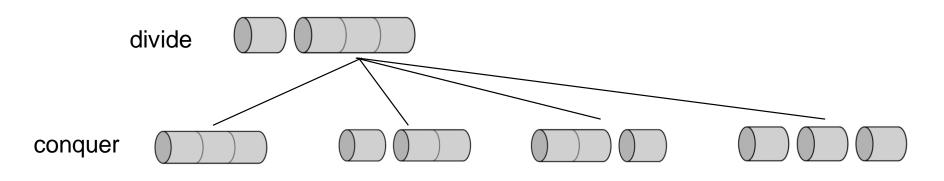
- > Naïve: try all combinations
 - > How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$

- > Naïve: try all combinations
 - > How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - > Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)

- > Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?

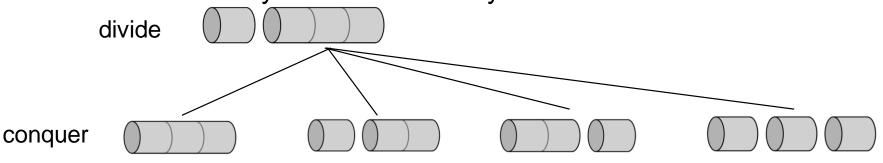
- > Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?

- > Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - > Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?



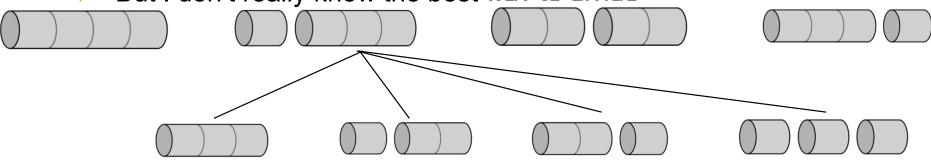
UCR

- Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - > Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?
 - > But I don't really know the best way to divide



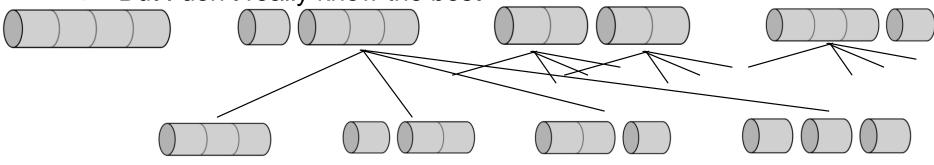
UCR

- Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - > Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?
 - But I don't really know the best way to divide

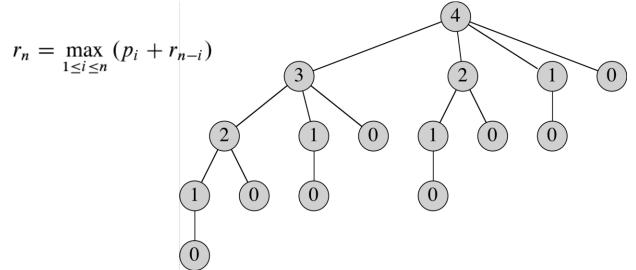


UCR

- Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - Total: O(nⁿ)
- > Better solution? Can I divide and conquer?
 - But I don't really know the best way to divide



- > Naïve: try all combinations
 - How many?
 - > 0 cut: 1 1 cut: (n-1) 2 cuts: ${}^{n-1}C_2 = \Theta(n^2)$
 - > 3 cuts: ${}^{n-1}C_3 = \Theta(n^3) \dots n$ cuts: ${}^{n-1}C_{n-1} = \Theta(1)$
 - > Total: $\Theta(1+n+n^2+n^3+...+n^{n/2}+...+n^3+n^2+n+1)$
 - > Total: O(nⁿ)
- > Better solution? Can I divide and conquer?
 - But I don't really know the best way to divide



Recursive top-down algorithm

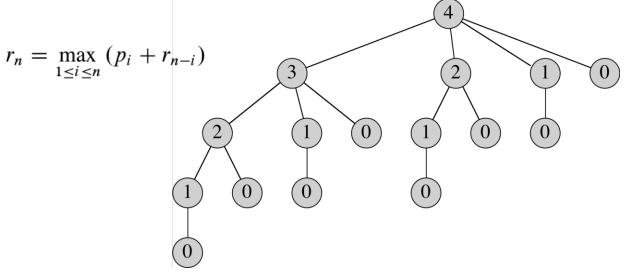
$$r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right)$$

 $\operatorname{CUT-ROD}(p,n)$

- 1 **if** *n* **==** 0
- 2 return 0
- 3 $q = -\infty$
- 4 **for** i = 1 **to** n
- 5 $q = \max(q, p[i] + \text{CUT-ROD}(p, n i))$

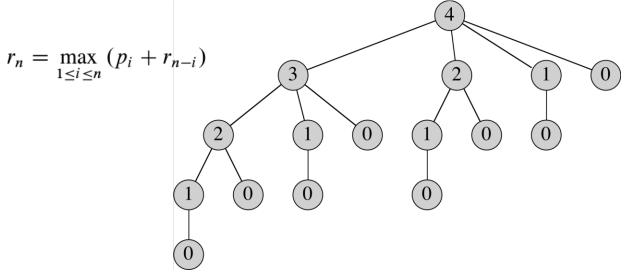
6 return q

- > Better solution? Can I divide and conquer?
 - > But I don't really know the best way to divide



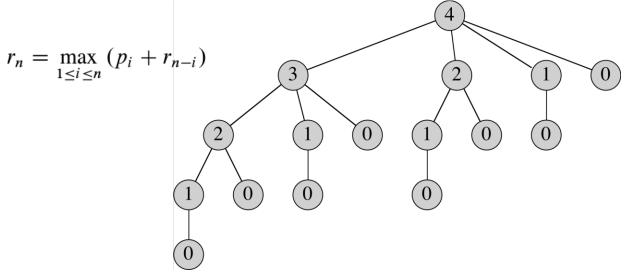
> How many subproblems (recursive calls)?

- > Better solution? Can I divide and conquer?
 - > But I don't really know the best way to divide



> How many subproblems (recursive calls)? $T(n) = 1 + \sum_{j=0}^{n-1} T(j) .$

- Better solution? Can I divide and conquer? >
 - But I don't really know the best way to divide >

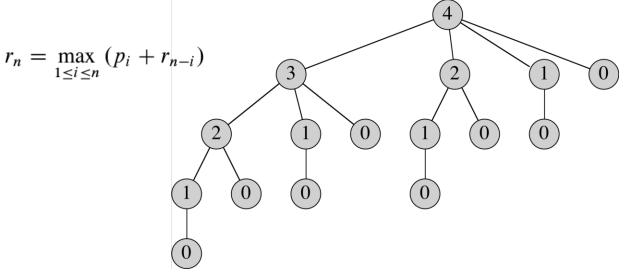


How many subproblems (recursive calls)? > $T(n) = 1 + \sum_{j=0}^{n} T(j) .$ $T(n) = 2^{n}$

Rod Cutting Recursive Complexity

- > Find the complexity of $T(n) = 1 + \sum_{j=0}^{n-1} T(j)$
- > Proof by induction:
 - Assume the solution is some function X(n)
 - Show that X(n) is true for the smallest n (the base case), e.g., n=0
 - Prove that X(n+1) is a solution for T(n+1) given X(n)
 - You are done
- Given $T(n) = 1 + \sum_{j=0}^{n-1} T(j)$
- Assume $T(n) = 2^n$
- > $T(0) = 1 + \sum_{j=0}^{-1} T(j) = 1 = 2^0$ (base case)
- > $T(n+1) = 1 + \sum_{j=0}^{n} T(j) = 1$ + $\sum_{j=0}^{n-1} T(j) + T(n) = T(n) + T(n) = 2T(n) = 2 * 2^{n} = 2^{n+1}$
- > Then, $T(n) = 2^n$

- > Better solution? Can I divide and conquer?
 - > But I don't really know the best way to divide



> How many subproblems (recursive calls)?

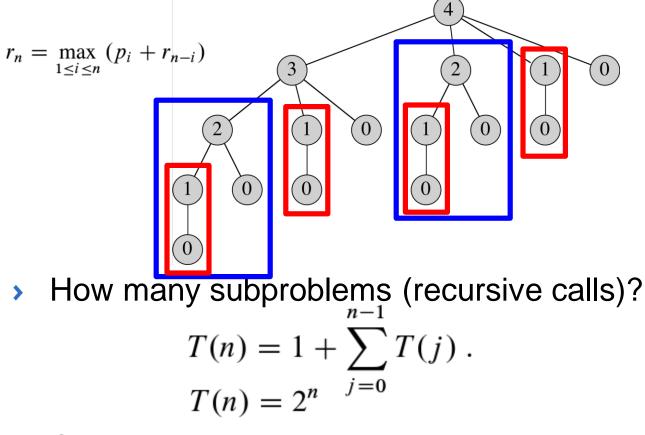
$$T(n) = 1 + \sum_{j=0}^{n} T(j) .$$

$$T(n) = 2^{n}$$
 (Prove by induction)

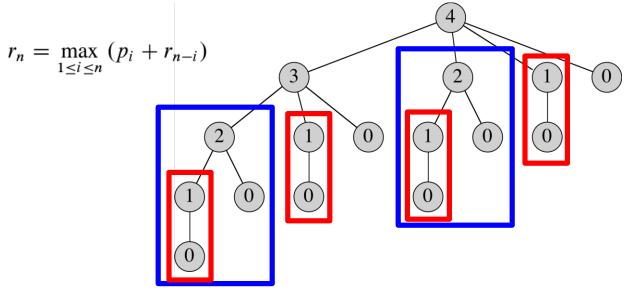
> Can we do better?

>

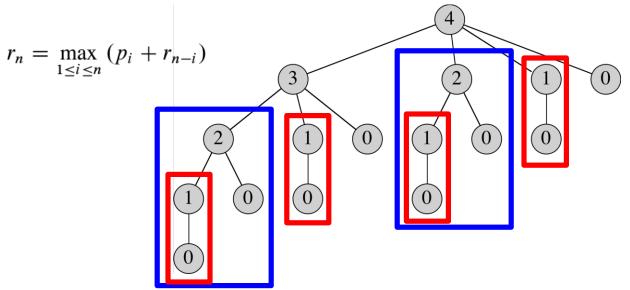
- > Better solution? Can I divide and conquer?
 - > But I don't really know the best way to divide



Can we do better?



- Subproblem overlapping
 - No need to re-solve the same problem



- Subproblem overlapping
 - No need to re-solve the same problem
- > Idea:
 - > Solve each subproblem once
 - > Write down the solution in a lookup table (array, hashtable,...etc)
 - > When needed again, look it up in $\Theta(1)$

Rod Cutting Problem $r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right)$ 0 3 00 0 **Dynamic Programming** Subproblem overlapping > No need to re-solve the same problem > Idea: > Solve each subproblem once > Write down the solution in a lookup table (array, hashtable,...etc) >

> When needed again, look it up in $\Theta(1)$

- Recursive top-down dynamic programming algorithm MEMOIZED-CUT-ROD(p, n)
 - 1 let r[0..n] be a new array
 - 2 **for** i = 0 **to** n

3
$$r[i] = -\infty$$

4 **return** MEMOIZED-CUT-ROD-AUX(p, n, r)

```
MEMOIZED-CUT-ROD-AUX(p, n, r)
```

```
if r[n] \geq 0
1
  return r[n]
2
3 if n == 0
  q = 0
4
5
  else q = -\infty
       for i = 1 to n
6
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
7
  r[n] = q
8
                                                                   32
9
   return q
```


- Recursive top-down dynamic programming algorithm MEMOIZED-CUT-ROD(p, n)
 - 1 let r[0..n] be a new array
 - 2 **for** i = 0 **to** n

3
$$r[i] = -\infty$$

4 **return** MEMOIZED-CUT-ROD-AUX(p, n, r)

```
MEMOIZED-CUT-ROD-AUX(p, n, r)
```

```
if r[n] \geq 0
1
                                                          \Theta(n^2)
      return r[n]
2
3 if n == 0
  q = 0
4
5
  else q = -\infty
       for i = 1 to n
6
            q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
7
  r[n] = q
8
                                                                     33
9
   return q
```


- Bottom-up dynamic programming algorithm
 - > I know I will need the smaller problems \rightarrow solve them first
 - > Solve problem of size 0, then 1, then 2, then 3, ... then n

- Bottom-up dynamic programming algorithm
 - > I know I will need the smaller problems \rightarrow solve them first
 - > Solve problem of size 0, then 1, then 2, then 3, ... then n

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0 ...n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```


- Bottom-up dynamic programming algorithm
 - > I know I will need the smaller problems \rightarrow solve them first
 - > Solve problem of size 0, then 1, then 2, then 3, ... then n

```
BOTTOM-UP-CUT-ROD(p, n)
   let r[0..n] be a new array
2 r[0] = 0
3
 for j = 1 to n
4
       q = -\infty
                                                \Theta(n^2)
5
       for i = 1 to j
6
           q = \max(q, p[i] + r[j - i])
7
       r[j] = q
8
   return r[n]
```

Elements of a Dynamic Programming Problem

- > Optimal substructure
 - Optimal solution of a larger problem comes from optimal solutions of smaller problems
- Subproblem overlapping
 - > Same exact sub-problems are solved again and again



Dynamic Programming vs. D&C

> How different?

Dynamic Programming vs. D&C

- > How different?
 - > No subproblem overlapping
 - > Each subproblem with distinct input is a new problem
 - > Not necessarily optimization problems, i.e., no objective function

Reconstructing Solution

- > Rod cutting problem: What are the actual cuts?
 - > Not only the best revenue (the optimal objective function value)

Reconstructing Solution

- > Rod cutting problem: What are the actual cuts?
 - > Not only the best revenue (the optimal objective function value)

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)let $r[0 \dots n]$ and $s[1 \dots n]$ be new arrays 1 2 r[0] = 03 **for** j = 1 **to** n4 $q = -\infty$ 5 for i = 1 to j**if** q < p[i] + r[j - i]6 q = p[i] + r[j - i]7 s[j] = i8 9 r[j] = q**return** r and s 10

Reconstructing Solution

- > Rod cutting problem: What are the actual cuts?
 - > Not only the best revenue (the optimal objective function value)

PRINT-CUT-ROD-SOLUTION(p, n)

1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p,n)

2 **while**
$$n > 0$$

B print
$$s[n]$$

$$4 n = n - s[n]$$

> Let's trace examples

> How to multiply a chain of four matrices $A_1A_2A_3A_4$?

> How to multiply a chain of four matrices $A_1A_2A_3A_4$?

 $(A_1(A_2(A_3A_4)))$ $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $((A_1(A_2A_3))A_4)$ $(((A_1A_2)A_3)A_4)$

> How to multiply a chain of four matrices $A_1A_2A_3A_4$?

 $(A_1(A_2(A_3A_4)))$ $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $((A_1(A_2A_3))A_4)$ $(((A_1A_2)A_3)A_4)$

Does it really make a difference?

> How to multiply a chain of four matrices $A_1A_2A_3A_4$?

 $(A_1(A_2(A_3A_4)))$ $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $((A_1(A_2A_3))A_4)$ $(((A_1A_2)A_3)A_4)$

- Does it really make a difference?
- # of multiplications:
 A.rows*B.cols*A.cols

MATRIX-MULTIPLY (A, B)

if A. columns \neq B. rows 1 error "incompatible dimensions" 2 else let C be a new A.rows \times B.columns matrix 3 for i = 1 to A. rows 4 5 for j = 1 to B. columns 6 $c_{ii} = 0$ 7 for k = 1 to A. columns 8 $c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}$

return C

9

- Does it really make a difference?
- # of multiplications:A.rows*B.cols*A.cols
- Example: A1*A2*A3

Dimensions: 10x100x5x50

MATRIX-MULTIPLY(A, B)if A. columns \neq B. rows 1 error "incompatible dimensions" 2 3 else let C be a new A.rows \times B.columns matrix for i = 1 to A. rows 4 5 for j = 1 to B. columns 6 $c_{ii} = 0$ for k = 1 to A. columns 7 8 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 9 return C

- # of multiplications in ((A1*A2)*A3)=10*100*5+10*5*50=7.5K
- # of multiplications in (A1*(A2*A3))=100*5*50+10*100*50=75K

> Given n matrices $A_1 A_2 \dots A_n$ of dimensions $p_0 p_1 \dots p_n$, find the optimal parentheses to multiply the matrix chain

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- $> A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$
- > Sub-chains C1 = $(A_1 A_2 A_3), C2 = (A_4 A_5 ... A_n)$

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$
- > Sub-chains C1 = $(A_1 A_2 A_3), C2 = (A_4 A_5 ... A_n)$
- > Total Cost C = $cost(C1)+cost(C2)+p_0p_3p_n$

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$
- > Sub-chains C1 = $(A_1 A_2 A_3), C2 = (A_4 A_5 ... A_n)$
- > Total Cost C = $cost(C1)+cost(C2)+p_0p_3p_n$
- Then, if cost(C1) and cost(C2) are minimal (i.e., optimal), then C is optimal (optimal substructure holds)

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$
- > Sub-chains C1 = $(A_1 A_2 A_3), C2 = (A_4 A_5 ... A_n)$
- > Total Cost C = $cost(C1)+cost(C2)+p_0p_3p_n$
- Then, if cost(C1) and cost(C2) are minimal (i.e., optimal), then C is optimal (optimal substructure holds)
- > Proof by contradiction:
 - Given C is optimal, are cost(C1)=c1 and cost(C2)=c2 optimal?
 - Assume c1 is NOT optimal, then ∃ an optimal solution of cost c1' < c1</p>
 - > Then c1'+c2+p < c1+c2+p \rightarrow C' < C
 - > Then C is not optimal \rightarrow contradiction!
 - > Then C1 has to be optimal \rightarrow optimal substructure holds

- Given n matrices A₁ A₂ ... A_n of dimensions p₀ p₁ ... p_n, find the optimal parentheses to multiply the matrix chain
- > $A_1 A_2 A_3 A_4 A_5 \dots A_n$
- > $(A_1 A_2 A_3)(A_4 A_5 ... A_n)$
- > Sub-chains $C1 = (A_1 A_2 A_3), C2 = (A_4 A_5 ... A_n)$
- > Total Cost C = $cost(C1)+cost(C2)+p_0p_3p_n$
- Then, if cost(C1) and cost(C2) are minimal (i.e., optimal), then C is optimal (optimal substructure holds)
- > Optimal C1, C2 might be one of different options

>
$$C1 = (A_1 A_2), C2 = (A_3 A_4 A_5 \dots A_n)$$

>
$$C1 = (A_1), C2 = (A_2 A_3 A_4 A_5 \dots A_n)$$

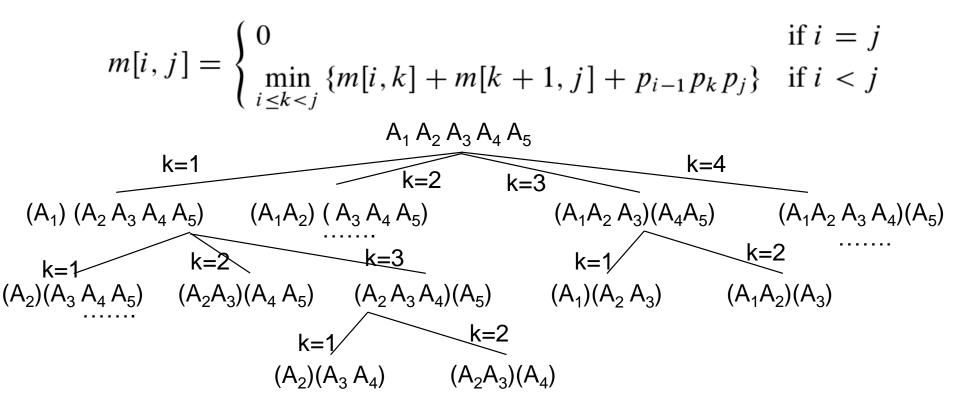
> $C1 = (A_1 A_2 A_3 A_4), C2 = (A_5 \dots A_n)$

- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- Then, solve each sub-chains recursively

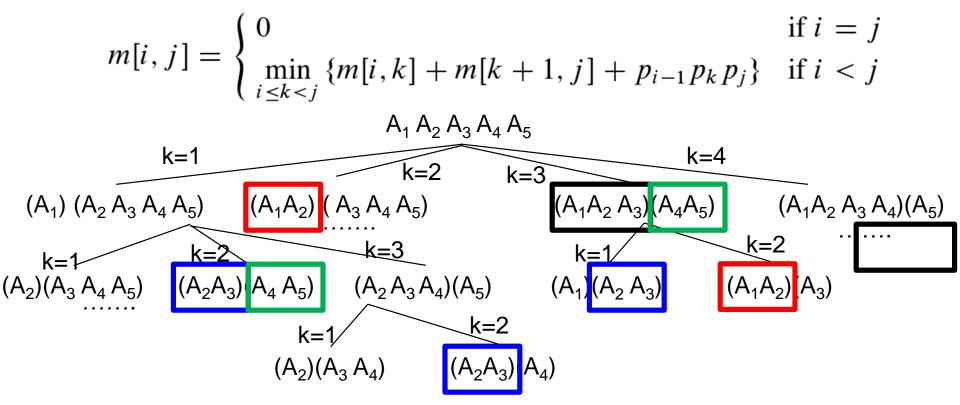
- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- > Then, solve each sub-chains recursively

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1} p_k p_j\} & \text{if } i < j \end{cases}$$

- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- Then, solve each sub-chains recursively



- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- Then, solve each sub-chains recursively



- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- Then, solve each sub-chains recursively

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1} p_k p_j\} & \text{if } i < j \end{cases}$$

Obviously, a lot of overlapping subproblems appear

- > Generally: $A_i \dots A_k \dots A_j$ of dimensions $p_i \dots p_k \dots p_j$
- > $(A_i \dots A_k)(A_{k+1} \dots A_j)$, where k=i,i+1,...j-1
- Then, solve each sub-chains recursively

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1} p_k p_j\} & \text{if } i < j \end{cases}$$

- Obviously, a lot of overlapping subproblems appear
- Optimal substructure + subproblem overlapping = dynamic programming

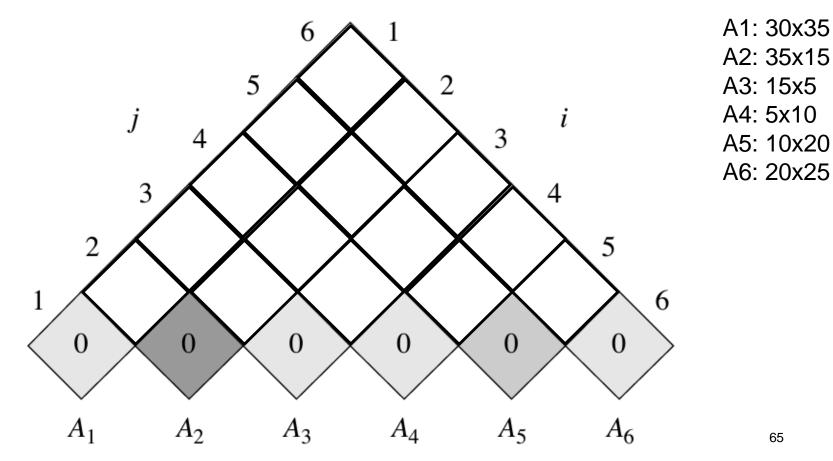
> What is the smallest subproblem?

UCR

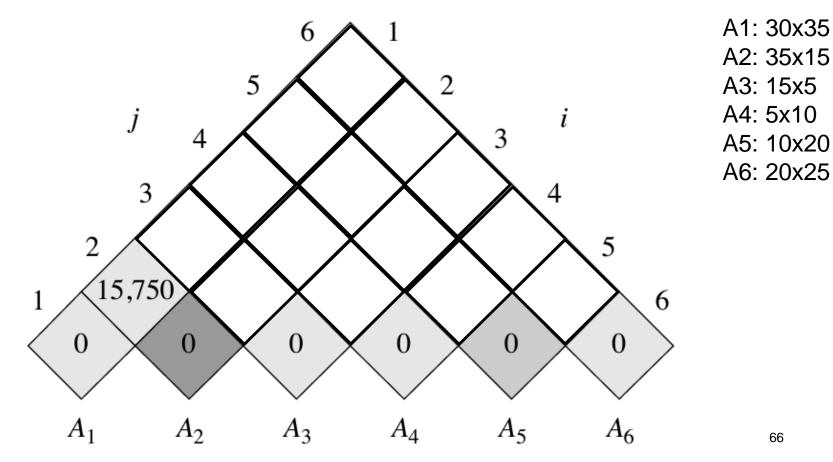
- > What is the smallest subproblem?
 - > A chain of length 2

- > What is the smallest subproblem?
 - > A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n

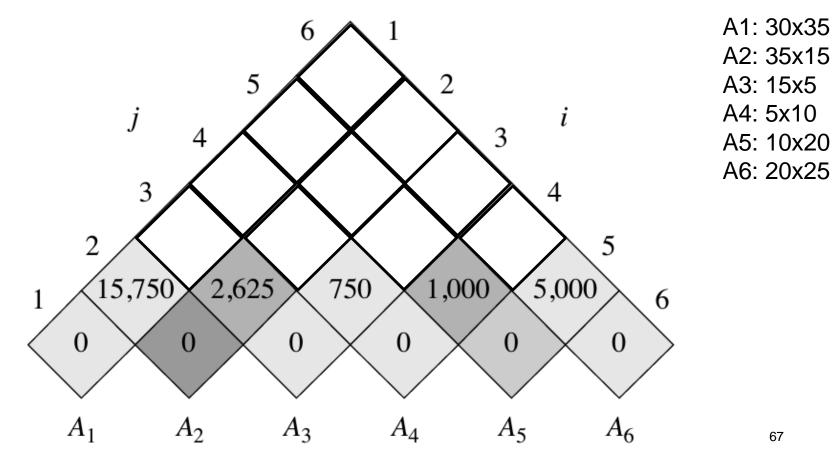
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



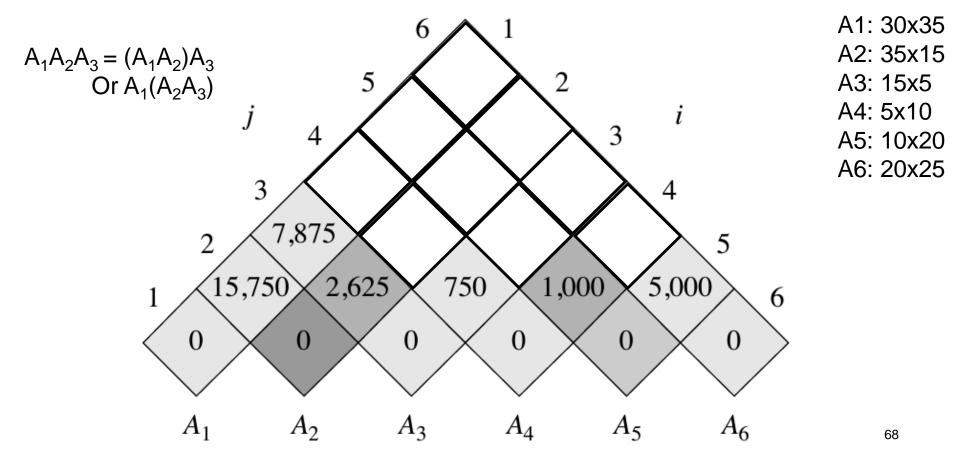
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



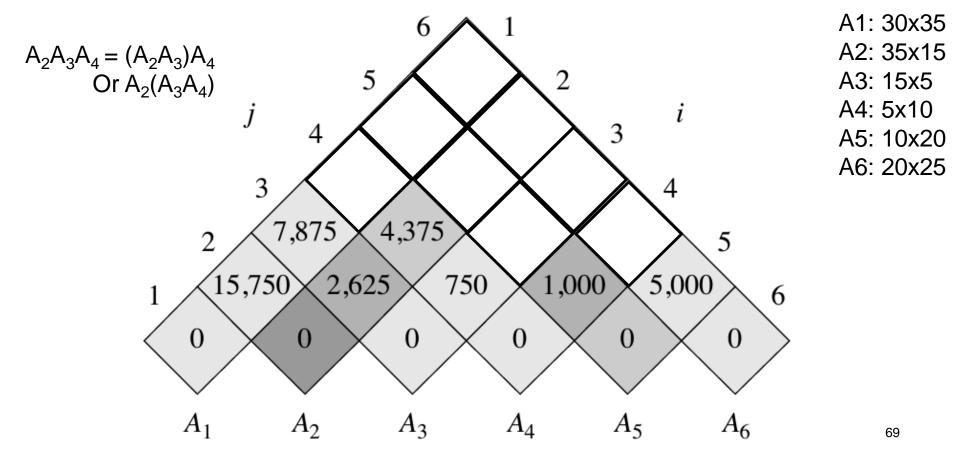
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



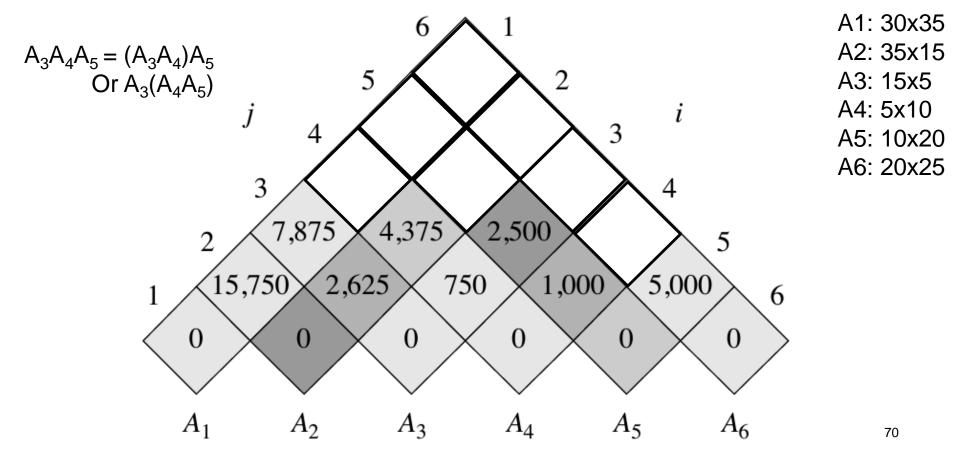
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



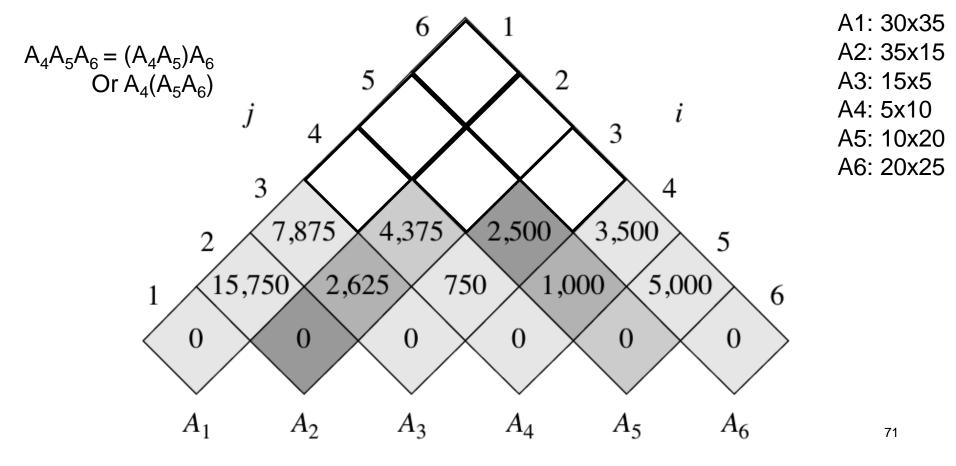
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



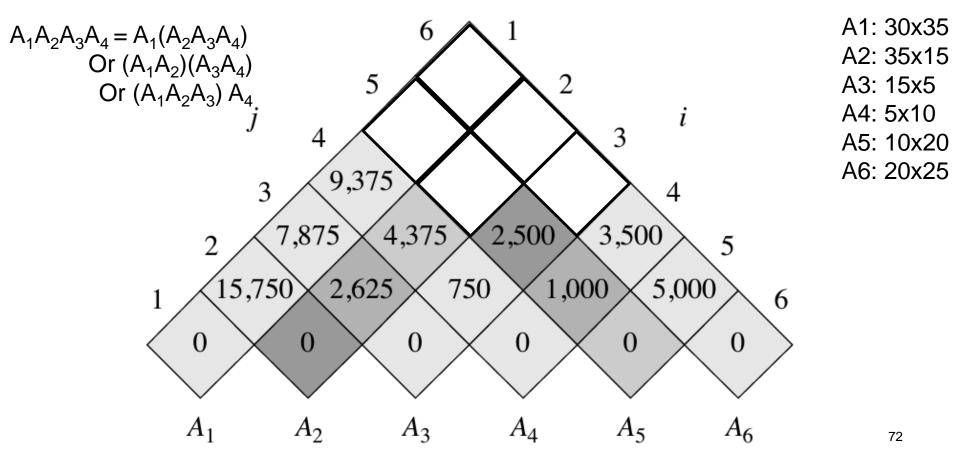
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



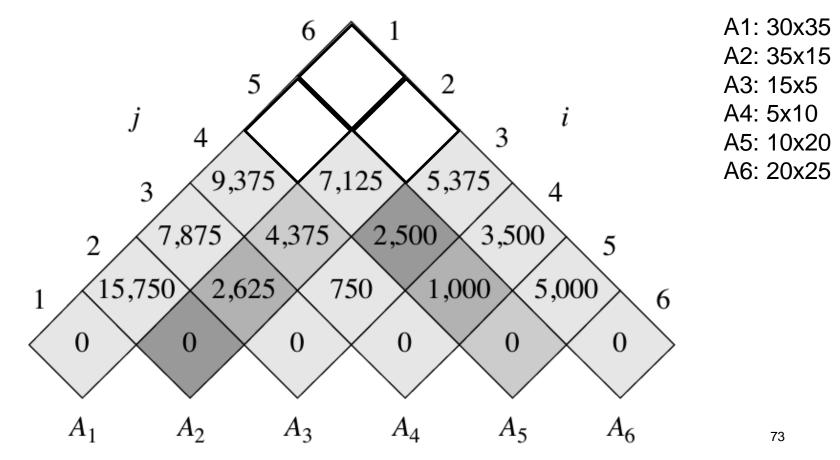
- > What is the smallest subproblem?
 - > A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



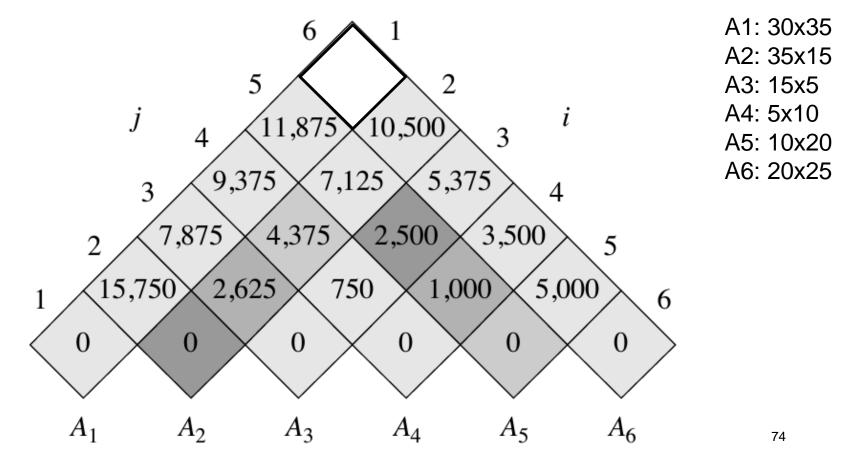
- > What is the smallest subproblem?
 - A chain of length 2
- Solve all chains of length 2, then 3, then 4, ...n



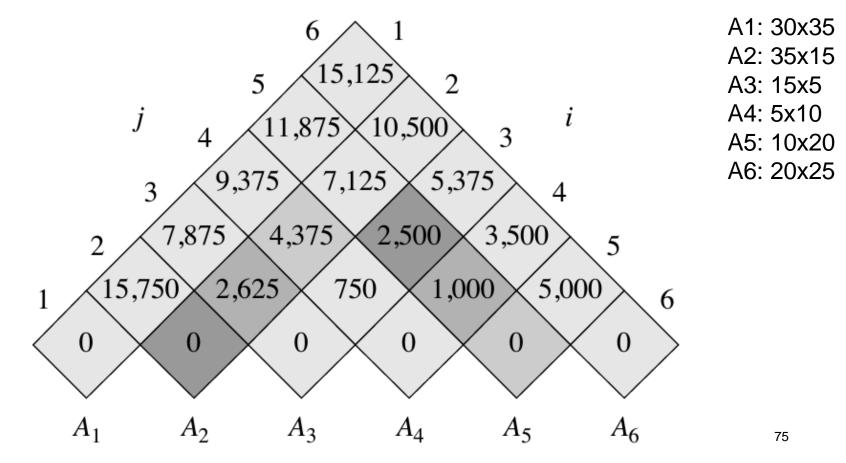
- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



- > What is the smallest subproblem?
 - A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



- > What is the smallest subproblem?
 - > A chain of length 2
- > Solve all chains of length 2, then 3, then 4, ...n



MATRIX-CHAIN-ORDER(p)

1
$$n = p.length - 1$$

2 let $m[1 \dots n, 1 \dots n]$ and $s[1 \dots n - 1, 2 \dots n]$ be new tables
3 **for** $i = 1$ **to** n
4 $m[i, i] = 0$
5 **for** $l = 2$ **to** n // l is the chain length
6 **for** $i = 1$ **to** $n - l + 1$
7 $j = i + l - 1$
8 $m[i, j] = \infty$
9 **for** $k = i$ **to** $j - 1$
10 $q = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j$
11 **if** $q < m[i, j]$
12 $m[i, j] = q$
13 $s[i, j] = k$
14 **return** m and s

Longest Common Subsequence

- > Required reading:
 - Book section 15.4

Book Readings

> Ch. 15: 15.1-15.4