

CS 141: Intermediate Data Structures and Algorithms

Discussion - Week 5, Winter 2018

Divide and Conquer

- General idea
- Examples
- Group activities

General idea

You should think of a divide-and-conquer algorithm as having three parts:

- 1. **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
 If they are small enough, solve the subproblems as base cases.
- 3. **Combine** the solutions to the subproblems into the solution for the original problem.

Reference: https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/divide-and-conquer-algorithms

UC RIVERSITY OF CALIFORNIA

General idea

Reference: https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/divide-and-conquer-algorithms

UC RIVERSITY OF CALIFORNIA

General idea

Reference: https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/divide-and-conquer-algorithms

UC RIVERSITY OF CALIFORNIA

Example 1: Merge sort

Example 2: Count full nodes in a Binary tree

 $count(T) = 1 + count(T_{\rm L}) + count(T_{\rm R})$ if $T \neq \emptyset$

Efficiency: $\Theta(n)$. Why?

Example 3: Compute the height of a binary tree

 $h(T) = \max\{h(T_L), h(T_R)\} + 1$ if $T \neq \emptyset$ and $h(\emptyset) = -1$ Efficiency: $\Theta(n)$.

UCRIVERSITY OF CALIFORNIA UCRIVERSITY OF CALIFORNIA

How to solve a given problem with D&C?

- Look at sub-problems.
- The base case for the recursion are subproblems of constant size.
- Figure out how to combine sub-solutions.
- Analysis can be done using recurrence equations or Master Theorem.

Review assignment #2