
GPU Rasterization for Real-Time Spatial
Aggregation over Arbitrary Polygons

✤ Problem Statement and Challenges

✤ Graphics Pipeline

✤ Raster Join

✤ Bounded Raster Join

✤ Accurate Raster Join

✤ Experimental Evaluation

Outline

Problem Statement

✤ A set of points: P(location, attribute 1, attribute 2, …)

✤ A set of regions: R(id, geometry), can be arbitrary
polygon

✤ Aggregation: AGG (include the count of points and
average of the attribute ai)

Application

Distribution of NYC taxi pick- ups (data set) in the month of June 2012 using a heat map over two
resolutions: neighborhoods and census tracts.

Setting P as pickup locations of the taxi data; R as either neighborhood (a) or census tract (b) polygons; AGG as COUNT(*); and filtered on time
(June 2012).

Application

Interactive Urban Planning

Change polygon boundaries or various laws (e.g., new construction rules, building policies for different building
types), view how the other aspects of the city (represented by urban data sets) vary with the new change, and inspect
the aggregation of the data sets until a particular configuration is satisfied.

Place new resources (e.g., bus stops, police stations), and inspect the coverage with respect to different
urban data sets. The coverage is commonly computed by using a restricted Voronoi diagram [1] to
associate each resource with a polygonal region, and then aggregating the urban data over these polygons.

[1]M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer-
Verlag TELOS, Santa Clara, CA, USA, 3rd edition, 2008.  

✤ Find which polygons contain each point - spatial join

The join is first solved using approximations (e.g., minimum bounding rectangles - MBRs, bounding
boxes), this returns a set of possible matches.

False matches are removed by comparing the geometries (e.g., Point-in-polygon (PIP) tests), which is
a computationally expensive task.

✤ Finally, the aggregates are computed over the materialized join results.

Challenges

GPU Rasterization-based Methods

✤ Insight 1: It is not necessary to explicitly materialize the result of the spatial
join since the final output of the query is simply the aggregate value;

✤ Advantage: No memory needs to be allocated for storing join results.

✤ Insight 2: A spatial join between two data sets can be considered as “drawing”
the two data sets on the same canvas, and then examining their intersections;

✤ Advantage: Exploit the rasterization operation, which is highly optimized for
GPU.

✤ Insight 3: When working with visualizations, small errors can be tolerated if
they cannot be perceived by the user in the visual representation.

✤ Advantage: Enables a mechanism to completely avoid the costly point-in-
polygon tests.

Graphics Pipeline

Graphics Pipeline

✤ The coordinates of all the points or vertices (of the polygons)
that compose the scene are transformed into a common world
coordinate system, and then projected onto the screen space.

Graphics Pipeline

✤ Next, polygons or points falling outside the screen
(also called viewport) are discarded, while those
partially outside are clipped.

Graphics Pipeline

Graphics Pipeline

Graphics Pipeline

✤ Rasterization converts each triangle in the screen space into a collection of fragments.
A fragment can be considered as the data corresponding to a pixel.

✤ Each fragment is appropriately colored and displayed onto the screen.

Raster Join

✤ Step 1. Draw points
Use the color channels of a pixel for storing the count of points falling in that pixel.
(e.g., the red channel of the pixel is incremented by 1).

A

0

0

0

Raster Join

✤ Step 2. Draw polygons
✤ Triangulated -> Transformed -> Rasterization.
✤ When processing a fragment corresponding to a polygon with ID i, the count of

points corresponding to this pixel is added to the result A[i] corresponding to
polygon i. A

0

0

0

A

15

6

11

Bounded Raster Join

✤ Raster join introduces some false positive and false negatives points.

✤ With an appropriately high resolution, we can converge to the actual aggregate
result.

✤ Give the -bound (error bound, the error is measured using Hausdorff distance
✤): the required resolution is , w X h are the dimensions of the

bounding box of the polygon data set, .

Accurate Raster Join

✤ Step1. Draw the outline of all the polygons
Assign a predetermined color to the fragments corresponding
to the boundaries of the polygons. At the end of this step, only
pixels on the boundary will have a color.  
 

✤ Step2. Draw points.
Points falls into a boundary pixel: perform PIP test; A:
stores the partial query result corresponding to data
points that fall on the boundary of the polygons;
Points inside the polygons: stores the count of points fall
into each of its pixels.

Accurate Raster Join

✤ Step3. Render polygons
Fragment on a boundary pixel: discard;
Fragment inside polygon: A[i] = A[i] + point number of pixel(x, y), pixel (x, y) belong to
polygon i.

A

13

6

9

Experimental Evaluation

Scaling with points for Taxi▹Neighborhood.
Bounded Raster Join has the best scalability as it
eliminates all PIP tests. Accurate Raster Join
performs fewer PIP tests than the Baseline.

Scaling with polygons. Note that
increasing the number of polygons has
almost no effect on Bounded Raster Join.

✤ Query time analysis

Experimental Evaluation

(a) Accuracy-time trade-off. (b) Accuracy-ε-bound trade-off. The box plot shows the
distribution of the percent error over the polygons for different ε-bounds.

✤ Accuracy analysis for bounded raster join

Experimental Evaluation

The scatter plot shows, for each polygon, the accurate value against the approximate value
for ε = 20 m. The red error bars indicate the expected result intervals (see the enlarged
highlighted region).

✤ Accuracy analysis for bounded raster join

✤ Thank you!

