SOFTENIT: A Methodology for Boosting the Software
Content of System-on-Chip Designs

Abhishek Mitra
Dept. of Computer Science
Univ. of California, Riverside

amitra@cs.ucr.edu

ABSTRACT

Embedded software is a preferred choice for implementing sys-
tem functionality in modern System-on-Chip (SoC) designs, dueto
the high flexibility, and lower engineering costs provided by soft-
ware over hardware. With continuous improvements in embedded
processor performance, many system functions, which have tradi-
tionally been implemented using dedicated hardware (such asthose
with real-time performance requirements), are becoming potential
candidates for software implementation. For complex SoCs con-
taining many different components, identifying such functions (or
hardware blocks), and re-implementing them as embedded soft-
ware, is a labor-intensive, manual, and error-prone process. In
this paper we present techniques for the transformation of behav-
iors of selected hardware blocks into equivalent software imple-
mentations. In particular, we describe SOFTENIT, a methodology
for “softening” of SoC hardware, that takes as input, a partitioned
and mapped system description, and generates a modified system
architecture in which the fraction of system functionality imple-
mented using embedded softwareis significantly boosted. Applica
tion of this methodology to an IEEE 802.11 MAC processor design
demonstratesthat it can be used to generate new, “ softened” system
architectures, that yield large reductions in hardware complexity,
while satisfying performance requirements, at very low computa-
tional cost.

Categories and Subject Descriptors
C.5.4[Computer System Implementation]: [VLSI Systems]

General Terms
Design, Algorithms, Experimentation

Keywords
Embedded Systems, HW/SW Codesign, RTOS, Partitioning

1. INTRODUCTION

In many application domains, especialy those affected by in-
ternational standards, drastic changes to application behavior are
relatively infrequent, due to the slow rate at which new standards
(or revisions to existing ones) are approved and deployed. For
example, the first revision to the encryption algorithms for |IEEE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GLSVLSI'05April 17-19, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-057-4/05/0004 ...$5.00.

Marcello Lajolo
NEC Laboratories America
Princeton, NJ

lajolo@nec-labs.com

361

Kanishka Lahiri
NEC Laboratories America
Princeton, NJ

klahiri@nec-labs.com

802.11 Wireless LANs occurred more than 5 years after their in-
troduction [1], while for over a decade, MPEG-2 remains the most
widely used technique for video compression. On the other hand,
hardware implementations of these applications have demonstrated
rapid and steady improvements in performance, silicon area, and
power consumption. As a result, in such cases, the capabilities of
the underlying hardware often exceed the requirements imposed
by the applications. In such scenarios, it is crucia to effectively
exploit improvements in semiconductor technology to reduce de-
sign cost, time-to-market, and improve design flexibility. A natural
way to achieve this god is to, over time, reduce the amount of
application-specific hardware used in the system, and realize the
same functionality using embedded software.

The gradual migration of application tasks from hardware to
software is standard practice for design teams wishing to remain
competitive under rapidly advancing technology. In an ideal sce-
nario, this goal can be achieved by periodically revisiting the sys-
tem specification, and making use of automatic HW/SW codesign
toolsto arrive at a system architecture that is optimized for the new
technology. However, aunified high-level model of the system, and
corresponding tool flows for system synthesis are rarely available.
Hence, in practice, designers are forced to effectively re-design the
system manually, starting with an informal specification of applica
tion functionality, leading to high design cost and turn-around-time.
With rising system complexity, thistask of manually fine-tuning the
hardware/software boundary with every advance in semiconductor
technology will require significant effort, making it important to
identify systematic methodologies to help in part, automate this
process. In this work, we consider an approach in which design-
ers take advantage of the existing designi.e., the starting point is
a partitioned and mapped system architecture, and incrementally
modify it to exploit the capabilities of improved technology.

1.1 Paper Contributionsand Overview

In this paper, we describe SOFTENIT, a methodology for semi-
automatic “ softening” of hardware components in System-on-Chip
designs. The methodology performs incremental, software-biased,
fine-grained re-partitioning of an existing design in order to boost
the fraction of application functionality implemented using embed-
ded software. The proposed techniques are applicable to system
architectures that have been previously partitioned and mapped to
a set of components, but deserve re-examination due to availabil-
ity of either a new fabrication technology (resulting in higher op-
erating clock frequency), or a higher performance embedded pro-
cessor, both of which result in increased availability of process-
ing headroom. Key to our solution is the concept of “software
co-processors’, which enables hardwarecomponents to selectively
off-load computation tasks to standard (or customized) embedded
processors. To this end, SOFTENIT uses a template architecture to
which the new system is mapped. We describe this template archi-
tecture, and the various steps involved in the softening process in

detail, and illustrate their application to an IEEE 802.11 MAC pro-
cessor design [1, 2]. A prototype of the SOFTENIT flow has been
implemented, and using it, we were able to efficiently modify the
MAC processor architecture and achieve substantial reductions in
hardware complexity, while being able to satisfy the stringent data-
rate requirements imposed by modern Wireless LANS, with low
computational effort.

The rest of this paper is organized as follows. In Section 1.2 we
discuss related work. Section 2 illustrates, using the MAC proces-
sor as an example, the effect of applying the proposed techniques
on an existing design. In Section 3, we provide an overview and
details of the SOFTENIT methodology. Section 4 presents the re-
sults of experiments conducted on the MAC processor to evaluate
the proposed flow. Finally, Section 5 concludes the paper with a
discussion on areas for future research.

1.2 Related Work

Extensive research has been performed in the past to aid in auto-
matic HW/SW partitioning for application-specific systems. These
include those that partition system functionality into hardware and
software starting from an implementation independent specifica-
tion of system behavior (e.g., [3, 4, 5]), as well as those that start
with an al software [6], or al hardware [7] description. Most
previous work in the area is targeted towards the early stage, first
time design of asystem architecture, and involves making relatively
coarse-grained HW/SW partitioning decisions.

More recently, numerous techniques have been proposed for
fine-grained migration of functionality from software to hardware
in designs where an initial coarse-grained partitioning has already
been performed [8, 9, 10, 11, 12]. Such “performance-driven”,
fine-grained HW/SW partitioning is achieved via automatic syn-
thesis of customized hardware accelerators (or custom functional
units within an embedded processor) to implement performance-
critical software loops. Our work is similar in that we consider
the migration of functionality in an existing designi.e., in a sys-
tem that has aready been partitioned into hardware and software,
and mapped to a set of architectural components. However, we
are concerned with a complementary need, that of reducing the
complexity of the hardware portion of the application in scenarios
where the embedded processor has increased availability of pro-
cessing resources. In summary, our work targets “ cost/flexibility-
driven”, fine-grained HW/SW re-partitioning, based on using SW
co-processors for increased flexibility, in contrast to the notion of
using HW co-processors for improved performance

2. EXAMPLE: |IEEE 802.11 MAC

PROCESSOR

Figure 1 illustrates the application of the proposed techniques
to a design of an IEEE 802.11 MAC Processor that implements
the WPA encryption and data integrity functions of IEEE 802.11
Wireless LANs [1]. While functional details of the system are
presented in Section 4, for the purposes of this section, it is suf-
ficient to observe that the original system architecture consists of 8
dedicated hardware components (FillData, MIC, Tkipl, Fag, ICV,
Weplnit, WepEncrypt, F§%nd 6 shared memories (MSDU, MP-
DUs, crcTable, Sbox, Sbox(L), SboxX(Wotethat, in thisexample,
the original system is entirely mapped to hardware. However, the
proposed techniques are equally applicable to systems that contain
one or more processors that execute a portion of application func-
tionality.

In Figure 1, portions of modules Tkip1, ICV, Weplnitave been
identified as targets for softening (indicated by the shaded blocks).
The lower half of the illustration shows the resulting system archi-
tecture after application of the proposed techniques. The following
changes to the system architecture should be noted:

e Theresulting system is enhanced with a“ SW co-processor”.

362

MSDU | MPDUs |

crcTable
=

StartWeplnitOut =1;

Wait \

nitin);

© p
\ Weplnit
?

Fragmentation = startcrcout =1;

Wait
(DoneCrc1in)}

ICV

Shkox(U)

b

Wep

Encrypt
N

StartTkip1Out =1;
Wait
(DoneTki plln);/

FCS

FillData

Tkip}

Originai-Arch.
Softened Arch.

1

while(1) { — 7 ; N
task_id = read_mem(..); T - N‘/ ~ o ™
switch(task_id) { N ._;‘) %‘ ol ¢ Memory

case 1 -- P PE) £ f
Soften_Tkip(); o /g o 54 |o MPDUs
Done_TkipL =1

ez HW, | | HW; | | HW, ‘
Soften_CRC1();

C;J;ngfmm =1 YSTEM BUS Sbox(L)
Soften_wepinit(); SW Sbhox(V)
Done_Weplnit=1; RTOS -

’7HW5 ﬁw6 FW7 st—‘

Figure 1. Application of proposed SOFTENIT techniquesto an
|EEE 802.11 MAC Processor.

In this example, the methodology results in the introduction
of anew embedded processor (NEC'sv850), since the origi-
nal system was entirely mapped to hardware. In general, the
SW co-processor could be realized by making use of avail-
able processing bandwidth on existing processors in the de-
sign.

In the new architecture, the application-specific hardware
components of the resulting system are either identical to
the origina components (e.g., FillData, MIC, Tkip2, WepEn-
crypt, FCS, or simplified, in cases where operations pre-
viously implemented in hardware are migrated to software
(e.g., Tkip1, ICV, Weplnit

A new hardware component, labeled HW-RTOS, is included
in the new system. In general, more than one hardware block
may be selected for softening (as in this example). Since
hardware blocks execute concurrently, at any given time, the
system may potentially have several pending softened tasks
to execute 1. However, dynamic scheduling of the poten-
tially large number of softened tasks could result in the con-
sumption of valuable processor resources that could other-
wise be devoted to executing application functionality. To
maximize the migration of functionality from hardware to
software, it is crucia to minimize the extent to which the
processor is involved in performing such operations. For
this reason we propose a mixed HW/SW solution for im-
plementing scheduling support. The HW-RTOS component
performs scheduling operations and serializes requests to the
processor, asillustrated in Figure 1, while the SW-RTOS (il-
lustrated by the code fragment on the lower-left portion of
Figure 1) is only responsible for task invocation. It might be
argued that the HW-RTOS acts very similarly to a standard
interrupt controller. In a certain sense this is true, but the
main difference here isthat the scheduling policy is not fixed
(astandard interrupt controller generally implements a static
priority scheduling policy), but instead is customizable.
Note that, in either architecture, data objects that are accessed by
the hardware modules selected for softening are mapped to the

IWe use the term “softened” tasks to refer to software tasks that
execute on the SW co-processor (as a result of the migration of
functionality from hardware to software), and “ softened hardware”
to refer to hardware components that have off-loaded part of their
functionality to the SW co-processor.

shared on-chip memories. The memory is connected to the bus,
and is hence, addressable by the processor. In addition, while in
this work we consider single processor based systems, it should
be noted that the target architecture could in general, include more
than one SW co-processor, where each executes computations off-
loaded from a set of softened hardware components.

3. SOFTENIT METHODOLOGY

We next present an overview and details of the proposed SOFT-
ENIT methodology for off-loading selected portions of hardware-
mapped system functionality onto software co-processors. The
methodology involves two major tasks: (i) migration of system
functionality from hardware to software, and (ii) generation of in-
terfaces and handshaking mechanisms between the remaining hard-
ware and the new software. The user, with the help of profil-
ing/analysis tools, selects the softening targets in the original sys-
tem architecture, and then uses a semi-automated flow to generate
the modified system architecture. Intherest of this section, wefirst
present an overview of the various steps in the methodology, and
then describe each step in detail.

3.1 Overview

The methodology takes as input a partitioned and mapped sys-
tem description, which contains at |east one hardware-mapped task.
The result is a modified system architecture in which the fraction
of system functionality implemented in software has been boosted,
by “softening” certain hardware modules. The methodology, illus-
trated in Figure 2, consists of the following steps. Step 1 involves
semi-automatic selection of softening targets. Step 2 identifies the
set of variables that need to be communicated across the HW/SW
boundary as aresult of the increase in the system’s software con-
tent. In Step 3 (Co-processor interface synthesis), identified soft-
ening targets are modified to incorporate a communication mecha-
nism that enables the resulting hardware to communicate with the
softened tasks (running on the SW co-processor), and the HW-
RTOS. In Step 4, the softening targets are converted to function-
ally equivalent optimized C code (softened tasks) compatible with
the target embedded processor. In Step 5, a customized HW-RTOS
is generated for run-time arbitration among the set of pending soft-
ened tasks. The RTOS can be customized in terms of the scheduling
strategy (e.g.,round robin, topological sort, earliest deadline first).

In our work, we consider hardware that is modeled at the cycle-
accurate functional level, an increasingly popular level of abstrac-
tion for design entry [13, 14, 15]. The subject of trandating hard-
ware modeled at lower levels of abstraction (e.g, traditional struc-
tural RTL descriptions) to software is not dealt with in this work,
and could form the basis for future research. We next describe the
steps of this methodology in more detail.

Initial System —
Architecture

1 Softening
Target
Selection

100%

!

Functionality

Performance
Requirements

2[Extraction of
interface
variables

]

System

4

SW code
generation

1

8 Co-processor HW/SwW
interface 5 RTOS
synthesis generation

100%
HW

Functionality

System

sw

Figure2: SOFTENIT methodology: Overview

363

doneCrcCalcOut = 0;
wait(startCrcln);
noOfBytes = bufferSizeln;

W HW/SW IIF
variables
HW / SW Communication Interface

I*SW-BEGIN*/

crc_temp = OxFFFFFFFF; //Inij
index = (crc_temp >> 24) & 0;
crc_temp = (crc_temp << 8) A
i=0;

while (i <noOfBytes) #-----

ialize the CRC
FF;
crc_table[index];

HW

noOfBytes

if (selectMemln == 0)

data = plainText[i];
else if (selectMemIn == 1)

data = cipherText[i];
index = ((crc_temp >> 24) ~ data) & OxFF;
crc_temp = (crc_temp << 8) ~ crc_table[index];
i=i+1;

HW

!

selectMemin |

SW

startCrcSWOut

»
t doneCrcSWOut |

crc_temp

}

wait(1);
r--» crc_temp = crc_temp * OXFFFFFFFF;
| I*SW-END*/

1———* crcOut = crc_temp;
doneCrcCalcOut = 1;

(a) (b)
Figure 3. Softening of CRC hardware: (a) Softening target
with interfacevariables, (b) HW/SW communication interface.

3.2 Softening Target Selection

In this step, each hardware component is analyzed, and specific
computation sub-tasks are selected for migration to software. Cur-
rently, the methodology does not automate the process of target
selection, but provides the designer with automatic tools to ana-
lyze the potential advantages of softening different sub-tasks. The
designer is empowered with fast architectural simulation 2, and an
efficient softening methodology (aswill be borne out by the results
presented in Section 4) to enable exploration of a large number
of softening alternatives with relative ease. This enables the de-
signer to choose potential softening targets based on automatically
obtained estimates of hardware savings, and system performance.
This selection of softening targets is performed by enclosing be-
tween /* SW-BEGIN*/ and /* SW-END*/ tokens, the portions of the
original hardware behavior that need to be softened (Figure 3(a).
Each hardware module may be instrumented to contain an arbitrary
number of non-overlapping pairs of these tokens.

3.3 Extraction of I nterface Variables

This step of the methodology involves the identification of vari-
ables that need to be communicated across the HW/SW boundary.
Thisis achieved using conventional data-flow analysis techniques.
Inputs to the softened task include those variables that are defined
outside the softening target, but are read from within it. Similarly,
this step also identifies variables that are updated within the soft-
ening target, and are used outside it. These variables become the
outputs of the softened task. Figure 3 shows aportion of an original
hardware behavior (which corresponds to the CRC computation in
the MAC processor) in which the softening target has been spec-
ified using /*SW-BEGIN*/ and /* SW-END*/ tokens. The dotted
lines indicate data dependences, which result in the identification
of variables that need to be included in the HW/SW interface. In
this example, the variables noOfBytesand selectMemlrbecome in-
puts to the softened task, and crc_tempbecomes an output of the
softened task.

3.4 Co-processor Interface Synthesis

Once the variables that need to be communicated across the
HW/SW boundary have been identified, the origina hardware de-
scription is stripped of the functionality that has been softened, and
enhanced with an interface that enables it to communicate with the
softened task that executes on the SW co-processor. Figure 3(b) il-
lustrates the communication interface that corresponds to the soft-
ening target identified in Figure 3(a). Figure 4 illustrates the mod-
ified hardware description that implements the interface behavior.

2Inouri mplementation, we used the Classmate simulator, which is
part of NEC's C-based design flow [15]

Set up inputs for
softened task

doneCrcCalcOut = 0;
wait(startCrcln);

noOfBytes = bufferSizeln;
noOfBytesOut = noOfBytes;
selectMemInOut = selectMemin;

------------------------------ "} Assert start signal for |
softened task

startGetCrcSWOut = 1;

wait(doneGetCrcSWIn)
startGetCrcSWOut = 0;

crcOut = crc_templn;
doneCrcCalcOut = 1;

-

Figure4: A HW/SW communication interface generated in the
CRC module, after the core CRC computation has been soft-
ened.

From the figure we observe that the part enclosed between /* SW-
BEGIN*/ and /* SW-END*/ has been commented out, and new |/O
signals have been generated to (i) exchange data with the softened
task, and (ii) handshake with the operating system. Two new output
signals are generated at the hardware component interface, namely,
noOfBytesOutnd selectMeminto pass input parameters to the
softened task. The startGetCrcOusignal isthen asserted to request
the HW-RTOS to execute the corresponding softened task. Having
asserted this signal, the hardware waits for the completion of the
software task’s execution, which is indicated by the doneGetCrc-
SWinsignal. At this point, the startGetCrcOutsignal is reset, and
the result of the software computation is returned via the signal
crc_templn which is then used to update the internal variable cr-
cOut Finaly, the signal doneCrcCalcOuis set high, which in-
forms the scheduler that the execution of the softened task has been
completed.

Once the signals have been generated, addresses are selected for
the memory-mapped hardware registers. Since communication be-
tween the hardware and the SW co-processor occurs over the sys-
tem bus, businterface logic is automatically synthesized to connect
the hardware to the bus.

3.5 Software Code Generation

In this step, software code that is compatible with the target
SW co-processor is generated, starting from the identified soften-
ing target in Step 1. We assume the availability of behavioral, or
cycle-accurate, functional descriptions of hardware. Input parame-
ters are passed from hardware to software using memory-mapped
registers. Hence, the transformations required to generate corre-
sponding software tasks include declaring (and using) pointers to
refer to memory mapped registers and data memory regions. Prior

" #define noOfBytesIn (__ABS_MEMORY+0x8000)
/" #define crc_temp (__ABS_MEMORY+0x8002)
g , #define noOfBytes (*v_noOfBytesin)
#define crc_temp (*v_crc_tempOut)
/ #define wait(d)
/void GetCrcSW(){
/ v_noOfBytesIn = (short int *) noOfBytesIn;

Pointer declarations |
for memory mapped |
interface variables |

Pointer de-
referencing for

v_selectMemiInIn = (short int *) selectMemiInin;
v_crc_tempOut = (int *) crc_tempOut;
v_doneGetCrcSWOut = (short int *)
doneGetCrcSWOut;

arithmetic/logic ops |

{

I*SW-BEGIN*/

intindex = 0; inti=0;

intcrc_temp =0;

crc_temp = OxFFFFFFFF; /*Initialize the CRC*/

ir{dex = ((crc_temp >> 24) ~ data) & OxFF;
. crc_temp = (crc_temp << 8) » crc_table[index];
N isiHL

1
wait(1);
crc_temp = crc_temp * OxFFFFFFFF;
*v_doneGetCrcSWOut = ONE;
SW-END }

Figure5: Softened CRC task: generated software code.

364

to the execution of the softened task, all inputs are fetched from
hardware output registers using simple |/O operations. Similarly,
outputs generated by the softened task are transfered to hardware
by writing the results into memory-mapped registers. Other trans-
formations that need to be applied include removal (or substitution)
of hardware-specific constructs, such as synchronization directives
and bit-level manipulations, that might appear in the original hard-
ware description and are not supported by a standard C compiler.
Figure 5 shows the softened task that is generated for the softening
target specified in Figure 3.

3.6 RTOSGeneration

In Step 5, a scheduling support is generated, whose purpose is
to resolve, at run time, conflicting requests from different hardware
blocks, each of which need to execute a certain softened task on
a SW co-processor. As described in Section 2, in order to mini-
mize consumption of processor cycles, in our approach, a mixed
HW/SW RTOS is generated. The hardware-mapped portion im-
plements the actua scheduling algorithm. The software-mapped
portion of the RTOS is only responsible for the computationally
inexpensive operation of task invocation.

As illustrated in Figure 1, the original hardware modules that
have been softened are augmented with two additional 1/0 signals
(Startand Doné. These signals are used for handshaking with the
RTOS, which gathers pending requests and chooses the next soft-
ware task to run based on a customizable scheduling policy. The
selected task is communicated to the CPU using an integer task
identifier task.id that is sent on the bus. The CPU then calls the
appropriate software routine based on the value of taskid.

An additional advantage of implementing the scheduler in HW
is that the hardware has a complete view of the system. More-
over, since the hardware executes much faster than software, it is
possible to implement some scheduling algorithms that are gen-
eraly not considered in a software based RTOS. One example is
topologica sorting, which is a classic technique used to schedule
event driven descriptions in commercial event driven simulators.
Dynamic scheduling policies like Earliest Deadline First (EDF)
are rarely implemented in software due to the difficulty involved
in computing deadlines. The hardware scheduler is advantageous
for this purpose, due to more predictable latency characteristics (as
compared to software, where pipeline stalls and cache misses com-
plicate matters significantly).

4. EXPERIMENTAL RESULTS

In this section, we present the results of applying the described
softening techniques to an |EEE 802.11 MAC processor design.
We first present an overview of the functionality of the system, and
the experimental methodology used. Next, we present results that
evaluate the impact of the proposed softening techniques on system
performance, the corresponding savings in hardware complexity,
and the computational efficiency of the proposed techniques.

4.1 |EEE 802.11 MAC Processor

The system we consider implements the integrity and secu-
rity functionality deemed mandatory for Wi-Fi Protected Access
(WPA) compliance in |IEEE 802.11 based systems. We provide a
brief overview of the functionality of the system. Full details are
available in [1, 2]. The system functionality is distributed among
seven communicating tasks, illustrated in Figure 6. Dataisreceived
from the host in the form of MAC Service Data Units (MSDUSs),
which may vary in size from 1300 to 2300 bytes. MSDUs are
processed by the Message Integrity Check (MIC) task, and may
be fragmented into multiple MAC Protocol Data Units (MPDUS),
ranging in size from 256 to 1300 bytes. The Tempora Key In-
tegrity Protocol (TKIP) consists of two functions: TKIP Phase 1
executes once every 65536 MPDUSs, while TKIP Phase 2 executes

Table 1: Design space of different softening alternatives

Softening Application- Perfor mance Throughput
Targets Specific HW Hardware Softened Task (M bps)
(sq. um) Block

None (all HW) 80308 1731
MIC 79373 2.61 cycles/B 13.82 cycles/B 173.1
ICV 82278 5.0 cycles/B 20.0 cycles/B 173.1
TKIP Phase 1 60332 264 cycles 8664 cycles 173.1
TKIP Phase 2 64877 69 cycles 1220 cycles 173.1
Wep_Init 64785 1794 cycles 20203 cycles 86.7
Wep_Encrypt 77925 16.62 cycles/B | 155.0 cycles/B 20.4
FCS 72278 5.0 cycles/B 20.0 cycles/B 173.1
SAl 25936 163.0
SA2 25936 86.8
SA3 29378 84.1
SA4(all SW) 0 13.9

SALl: MIC, TKIP Phasel, TKIP Phase2, FCS softened, SA2: MIC, TKIP Phasel, TKIP Phase2, ICV softened,
SA3: TKIP Phasel, TKIP Phase2, Wep_Init blocks softened, SA4: All blocks softened

once for esch MPDU and computes the encryption key. The In-
tegrity Checksum Vector (ICV) task computes a 32-bit CRC on
each un-encrypted MPDU. In paralel with the ICV, the encryp-
tion tasks (WEPINIT and WEPENCRY PT) encrypt each MPDU
using the RC4 ciphering algorithm. Thereafter the Frame Check-
sum Sequence (FCS) task computes a 32-bit CRC on the encrypted
MPDU and MAC header, thereby generating a frame ready to be
transmitted over the air. Corresponding operations take place at the
receiver, while fragmented MPDUs are aggregated to regenerate
the corresponding MSDU.

4.2 Experimental Methodology

To evaluate the proposed SOFTENIT flow, the WPA-based |EEE
802.11 MAC processor was first implemented at the cycle-accurate
functional level using a commercial C-based hardware design
flow [15], with dedicated hardware units for each of the functions
described in the previous subsection. The hardware architecture
used as a starting point for our experiments is illustrated in Fig-
ure 1. The SOoFTENIT methodology was implemented and inte-
grated with this design flow. NEC'sv850 [16] embedded processor
was used as a SW co-processor. NEC's cycle-accurate architectural
simulator Classmate [15] was used to drive selection of the soften-
ing targets, and for the large number of experiments that were per-
formed to analyze the resulting systems. In cases where multiple
blocks were softened, a round-robin scheduling strategy was used
by the HW-RTOS. The system clock frequency for all experiments
was set at 300 Mhz, and the data rate requirement of the system is
50 Mbps. To obtain hardware area estimates, the Cyber behavioral
synthesis tool [15], and Synopsys Design Compiler [17] were used
to generate gate-level implementationsusing NEC'sCB12 0.15 pm
standard cell library [18].

4.3 Performance/Areal mpact of SOFTENIT
The first set of experiments compares the performance impact

SAL SA3 1 7

e ———

\ 5
1 = - |
= [TKIP Weplnit Wep
E> e E> Encrypt

PR
-=" SA2
3

<
Ol | e
MSDU | M B2 N
RS Bl
g s . \ H >
<) v 1
T K ——
L") icv

Figure 6: 1EEE 802.11 MAC Processor: functional specifica-
tion and ar chitecture dependent system critical paths.

when different parts of the MAC processor are softened, and the
corresponding savings achieved in terms of hardware complexity.
Table 1 lists different softening alternatives, including cases where
individual as well as a collection of hardware blocks are softened.
Columns 3 and 4 indicate the performance impact of softening on
individual tasks. Column 5 indicates the performance impact on the
overall system. Column 2 indicates the corresponding reductions
achieved in application-specific hardware complexity.

From the table, we make several observations. First, softening
of system hardware may have significantly variable impact on the
performance of individual blocks. For example, softening causes
a 33X slowdown for TKIP Phase I, but only a 4X slowdown for
ICV. While this is an important metric to consider when selecting
which blocks to soften, it is more important to examine the im-
pact of this slowdown from a system-level standpoint. In fact, the
results indicate that, in spite of significant deterioration in the per-
formance of specific tasks, overall system performanceis often rel-
atively immune to softening. For example, softening the MIC, ICV
and TKIP tasks have no impact on system performance. The results
also demonstrate the relatively small impact when multiple blocks
are judiciously selected (SA-1 through SA-3), and the relatively
large impact where a poor selection (SA-4) is made. We observe
that significant number of solutions can be found where in spite
of softening, the system is capable of satisfying the 50 Mbps re-
quirement. These results can be explained by analyzing the critical
paths in the system functionality, which varies, depending on the
exact set of tasks that are softened. The critical paths for the four
architectures are illustrated in Figure 6. In addition, we observe
that softening can achieve substantial savingsin terms of hardware
complexity. For example, on average, architectures SA-1 through
SA-3 achieve 66% savings in the complexity of application-specific
hardware used in the design.

For this system, the overall system performance is aso deter-
mined, to a large extent, by the characteristics of the input traffic.
From the above results, since SA-1 through SA-3 appear to be good
candidate softened architectures, the next experiment we performed
was to evaluate their ability to satisfy performance requirements
across varying MPDU sizes. Theresults of this experiment are pre-
sented in Figure 7. From these results, we observe that while SA-1
and SA-2 are capable of satisfying the 50 Mbps requirement at all
frame sizes, SA-3 fails to do so for frame sizes below 450 bytes.

These resultsindicate that significant opportunities exist for soft-
ening in complex designs, which, if carefully exploited, can result
in substantial savings in hardware complexity, and a boost in the
fraction of functionality that is mapped to software, without paying
significant penalties in terms of overall performance.

4.4 Computational Efficiency of SOFTENIT
We finally report on the computational complexity of the SOFT-

200

180 -

160 - /-/"ﬁ
?’; 140 4 /_'/._F/_m —— All Hardware
g 120 Ve -= Soft Arch 1
5 100 Soft Arch2
2 80 —eme—e - Soft Arch 3
2 60 /_/_'/ — Soft Arch 4
2 40 —

6] T T
0 500 1000 1500

MPDU Size (Bytes)

Figure 7: Variation of throughput with MPDU size for candi-
date softened ar chitecturesof the |EEE 802.11 M AC processor.

ENIT methodology. Table 2 reports on the measurements of CPU
time consumed in generating 4 candidate softened architectures.
All the measurements were performed on a Dell PowerEdge server
with a2.8 Ghz Intel Xeon processor and 4 GB RAM. The column
labeled SOFTENIT refersto the time taken to execute our tool (steps
2 through 5 of Figure 2). The total timeincludes the softening time
and the software compile time, and varies, depending on the num-
ber of softened tasks. In all cases, the time taken is less than a
minute. In comparison, the time taken by an experienced designer
to manually construct a new system description from an old one,
when provided the selection of softening targets, for the MAC pro-
cessor system, was in excess of 2 days. From these results we con-
clude that the proposed methodology is computationally efficient,
and thereby facilitates fast exploration of numerous softening al-
ternatives in a short span of time. To put these results into proper
perspective, we also report the time consumed in generating hard-
ware for the blocks that were chosen to be softened. The reported
time includes the time spent in performing behavioral and logic
synthesis. Whilethisinitself isupto 30X slower than the softening
process, the actual CPU time spent in hardware design would in
practice, be significantly higher, owing to the large computational
effort required by physical design tools.

5. CONCLUSIONS

A shift toward software helps reduce time to market, increase
the opportunities for design reuse, increase flexibility, and reduce
cost. Given a system that was previously designed for certain per-
formance constraints and hardware capabilities, under a revised
version of the same design, numerous aternatives for migrating
system functionality from hardware to software often emerge, due
to increased availability of processing bandwidth. In this paper,
we proposed automatic softening of hardware as a technique for
efficiently boosting the proportion of system functionality imple-
mented using embedded software over the life time of an applica-
tion. We presented SOFTENIT, an initial step toward the develop-
ment of systematic techniques for achieving this goal, and thereby
simplify the inevitably error-prone effort of periodically and man-
ually re-designing the entire system, and studied its application to
a hardware-dominated design of an IEEE 802.11 MAC processor.

While the results presented in this paper are promising, severa

Table 2: Computational effort of softening methodology

Computational Effort in Softening Hardware Synthesis
Arch. — -

SOFTENIT Compilation Total HLS Loglc'

(sec) (sec) (sec) Synthesis

(se0) (sec)
SAl 14.2 19.9 341 291 308
SA2 13.8 19.9 33.7 2.91 308
SA3 12.7 145 27.2 14.7 282
SA4 16.2 35.7 51.9 15.88 423

366

research challenges remain to be addressed to make such tech-
niques widely used by modern design teams. The large number
of legacy designs will make it important to support transformation
of detailed structural (RTL) hardware descriptions into optimized
software running on the SW co-processors. The recent emergence
of configurable embedded processors raises the possibility of ad-
dressing the performance impact issue (when functionality is mi-
grated from hardware to software) through automatic instruction set
customization techniques. Increasing system complexity implies
that the potential number of softening alternatives may be huge, re-
quiring efficient search techniques for exploring the design space
of softening target selection. Finally, for SoCs containing large
number of softening targets, and more than one processor, multiple
SW co-processor based solutions would need to be developed. In
summary, we believe that this work provides a new perspective on
system partitioning and a valuable starting point for future research
in automatic softening techniques for System-on-Chip designs.

6. REFERENCES

[1] J. Edney and W. A. Arbaugh, Real 802.11 Security: Wi-Fi
Protected Access and 802.1Aiddison Wesley, 2003.

[2] “WirelessLAN Medium Access Control (MAC) and

Physical Layer (PHY') Specifications (Chapter 8).” IEEE

Computer Society LAN/MAN Standards Committee, IEEE

Std 802.11-1999 Edition.

D. Ggjski, F. Vahid, S. Narayan, and J. Gong, Specification

and Design of Embedded Systefrentice Hall, 1994.

F.Balarin, M.Chiodo, P.Giusto, H.Hsieh, A .Jureska,

L.Lavagno, C.Passerone, A.Sangiovanni-Vincentelli,

E.Sentovich, K.Suzuki, and B.Tabbara, Hardware-software

Co-Design of Embedded Systems: The POLIS Approach

Kluwer Academic Publishers, Norwell, MA., 1997.

A. Kaavade and E. Lee, “A hardware-software codesign

methodology for DSP applications,” IEEE Design and Test

of Computersvol. 10, pp. 1628, Sep. 1993.

R.Ernst, J.Henkel, and T.Benner, “Hardware-software

cosynthesis for microcontrollers,” IEEE Design & Test of

Computerspp. 64-75, Dec. 1993.

R.K.Guptaand G. Micheli, “Hardware/Software

Co-synthesis for Digital Systems,” pp. 2941, Sep. 1993.

T. J. Cdllahan, J. R. Hauser, and J. Wawrzynek, “The Garp

Architecture and C Compiler,” IEEE Computervol. 33,

pp. 6269, Apr. 2000.

http://www.tensilica.com.

http://www.synfora.com.

http://www.criticalblue.com.

G. Stitt, F. Vahid, and S. Nemetebaksh, “ Energy Savings and

Speedups from Partitioning Critical Software Loops to

Hardware in Embedded Systems,” IEEE Trans. Embedded

Computer Systemsol. 03, pp. 218-232, Feb. 2004.

http://www.systemc.org.

http://wwu.systemverilog.org.

K. Wakabayashi and T. Okamoto, “C-Based SoC Design

Flow and EDA Tools: An ASIC and System Vendor

Perspective,” IEEE Trans. Computer-Aided Desigrol. 19,

pp. 1507-1522, Dec. 2000.

[16] http://www.necel.com/micro/english/v850/

product/index.html.
[17] http://www.synopsys.com/products/logic/.
[18] http://www.necel.com/cbic/en/product/cb12.html.

(3]
(4]

(5]

(6]

(7]
(8]

(9]
[10]
[11]
[12]

[13]
[14]
[19]

