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Abstract 
 

We analyze the performance of a high performance 
Reconfigurable Computing system viz. the SGI RASC 
RC100 Blade. We calculate the interface throughput, as 
well as its effect on the performance of 1-D 5-3 DWT 
algorithm compiled using ROCCC. We also demonstrate 
that with large image sizes, it is possible to achieve a 
speedup of 16.5 times when compared to the software 
implementation running on Intel Core2Extreme CPU. 
 
1. Introduction 
 

FPGA based reconfigurable computing systems are 
being commonly used to achieve speedups ranging 
between 10x to 1000x for various applications. FPGAs 
allow speedup of slow sequential software by efficient 
hardware execution. The typical application scenario 
includes profiling the software code to ascertain the 
slowest executing components and compiling the software 
code to equivalent HDL. Thereafter the HDL code is 
synthesized and implemented on FPGA. Simulation after 
Place and Route can provide an accurate representation of 
the theoretical speedup, provided by the FPGA. However 
when the actual design is actually implemented on a 
Reconfigurable Computing system, the end to end 
speedup may be quite less due to the issues such as data 
transfer overhead. This paper tries to highlight the 
performance of 5-3 1D DWT (Discrete Wavelet 
Transform) in practice. 
 
2. System Overview 
 

We target the SGI RASC RC100 Blade, consisting of 
two Virtex-4 LX 200 FPGAs, with 40 MB of SRAM 
logically organized as two 16MB blocks (as shown in Fig. 
1) and an 8MB block. The SRAM are 36Bit QDR devices 
with 4 bit parity, thus transferring 128bit data every clock 
cycle. The RC100 Blade is connected using the low 
latency NUMALink interconnect to the SGI ALtix 4700 
Host System, for a rated peak bandwidth of 6.4GB per 
second. Around one-tenth of the area on each FPGA is  
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Figure 1: System Overview of an FPGA on the SGI 
RC100 Blade 

used by the Core Services which is the logic used to 
interface the FPGA to the NUMALink and SRAM 
memories. The HDL code representing the algorithm is 
synthesized along with the Core Services, and the 
resulting bitstream is programmed on the FPGA. 

 
2.1 System Interfaces 
 

The RASC Abstraction layer provides various DMA 
based I/O interfaces to the FPGA on the RC100 Blade [1]. 

 
2.1.1. Direct I/O 
 

Direct I/O involves allocating memory for input and 
output data on the hugetlb space using appropriate API 
calls. The data is transferred from the host memory in the 
hugetlb to the SRAM on the RC100 Blade (Fig. 1 Green 
Lines). Once the input data is transferred to the SRAM, 
the FPGA starts processing and stores the output onto the 
on-board SRAM (Fig. 1 Purple Lines). After conclusion of 
processing the data by the FPGA, output data is 
transferred back to the host memory in the hugetlb (Fig 1. 
Orange Lines). On the RASC blade it is possible to 
achieve 2.2GByte/s throughput (Fig. 2) when more than 
1MByte is transferred in one go.  
 
2.1.2. Buffered I/O 
 

Buffered I/O works similar to Direct I/O except that it  
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involves allocating memory for input and output data in 
the user space on the host. Unfortunately transferring the 
data to / from the SRAM on RC100 blade using buffered 
I/O involves an additional copy in the kernel memory 
space, thus lowering the maximum throughput to only 
1.4GByte/s (Fig. 2) on the RC100 blade. Buffered I/O is 
best avoided, unless hugetlb system is unavailable on the 
host. 

 
2.1.3. Streaming DMA I/O  
 

Streaming I/O does away with using the SRAMs on 
the RC100 blades for transferring data, though the SRAMs 
may be still be used by the algorithm hardware for local 
storage. On the RASC blade, it is possible to achieve a 
throughput of 2.4GByte/s using streaming.  
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Figure 2: Read / Write Throughput using three I/O 

interfaces to RC100 on SGI Altix 4700 platform 
 

3. ROCCC and 1D DWT 
 
ROCCC (RIVERSIDE OPTIMIZING COMPILER FOR 
CONFIGURABLE COMPUTING) is built on the SUIF2 
and Machine-SUIF platforms. It compiles C code into 
VHDL for mapping onto the FPGA fabric. ROCCC 
performs unrolling and also a very extensive set of loop 
analysis and transformations, aiming at maximizing 
parallelism and minimizing area.  

for(i=0;  i<LEN ; i=i+4)
{       

Lift1_2 = a[i+1] - (a[i]+a[i+2])/2;
Lift1_3 = a[i+3] - (a[i+2]+a[i+4])/2;

Lift2_1 = a[i] + (Lift1_2 + Lift1_1 + 2)/4;
Lift2_2 = a[i+2] + (Lift1_2 + Lift1_3 + 2)/4;
Lift1_1 = Lift1_3;

b[i] = Lift1_2;
b[i+1] = Lift1_3;
b[i+ROW/2] = Lift2_1;
b[i+1+ROW/2] = Lift2_2;

}

 
 
Figure 3: The C code of the lifting implementation of 

5-3 DWT, used for accelerating on RC100 
 

We have utilized the 5-3 DWT [2] algorithm based on the 
lifting scheme. The C code used to generate VHDL using 
ROCCC is illustrated in Fig. 3. We prepare the 9-bit input 
image data from OpenJPEG using 16-bit representation in 
C. The algorithm in Fig. 3 processes 5 pixels and 
generates 4 output pixels each clock cycle. Since the 
hardware transfers 128bit data (8 pixels) every clock 
cycle, we unroll the loop [3] once to maximize the 
interface throughput. The implemented pipeline runs at 
200MHz on the FPGA, with a peak theoretical throughput 
of 1.6Giga Pixels/s. 
 
4. Experimental Results 
 
We run the 5-3 DWT algorithm on five image components 
of sizes 0.1, 1.0, 2.0, 4.0 and 8.0 Megapixels respectively. 
The software implementation uses the OpenJPEG library 
running on a Core2Extreme X6800 (2.93GHz) CPU. It 
can be seen that the FPGA implementation performs better 
(upto 16X) with increasing image sizes, when compared to 
the software implementation (Fig. 4). Moreover for all but 
the 0.1 Megapixel data, the FPGA provides speedup.  
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Figure 4: Throughput of 1-D DWT on FPGA and 

CPU 
5. Conclusions  
 
In order to obtain useful speedup from the RC100 Blade, it 
is necessary to run the algorithm on large data sizes (of the 
order of megabytes) to effectively amortize the I/O 
overhead. As a result, more complex algorithms would 
provide better speedup, since more processing is done per 
byte of data transferred from the host to the FPGA. 
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We analyze the performance of the SGI RASC RC100 
BLADE and highlight the actual performance attained vis-à-
vis 5-3 1D DWT for varying data size, and compare the 
speedups when compared to an Intel Core 2 Duo Extreme 
Edition Processor.  
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