

Performance Analysis of SGI RASC RC100 Blade on 1-D DWT

Abhishek Mitra, Ge Yao
Dept of Computer Sc, UC Riverside

amitra@cs.ucr.edu, gyao@cs.ucr.edu

Abstract

We analyze the performance of a high performance
Reconfigurable Computing system viz. the SGI RASC
RC100 Blade. We calculate the interface throughput, as
well as its effect on the performance of 1-D 5-3 DWT
algorithm compiled using ROCCC. We also demonstrate
that with large image sizes, it is possible to achieve a
speedup of 16.5 times when compared to the software
implementation running on Intel Core2Extreme CPU.

1. Introduction

FPGA based reconfigurable computing systems are
being commonly used to achieve speedups ranging
between 10x to 1000x for various applications. FPGAs
allow speedup of slow sequential software by efficient
hardware execution. The typical application scenario
includes profiling the software code to ascertain the
slowest executing components and compiling the software
code to equivalent HDL. Thereafter the HDL code is
synthesized and implemented on FPGA. Simulation after
Place and Route can provide an accurate representation of
the theoretical speedup, provided by the FPGA. However
when the actual design is actually implemented on a
Reconfigurable Computing system, the end to end
speedup may be quite less due to the issues such as data
transfer overhead. This paper tries to highlight the
performance of 5-3 1D DWT (Discrete Wavelet
Transform) in practice.

2. System Overview

We target the SGI RASC RC100 Blade, consisting of
two Virtex-4 LX 200 FPGAs, with 40 MB of SRAM
logically organized as two 16MB blocks (as shown in Fig.
1) and an 8MB block. The SRAM are 36Bit QDR devices
with 4 bit parity, thus transferring 128bit data every clock
cycle. The RC100 Blade is connected using the low
latency NUMALink interconnect to the SGI ALtix 4700
Host System, for a rated peak bandwidth of 6.4GB per
second. Around one-tenth of the area on each FPGA is

Walid Najjar
Dept of Computer Sc, UC Riverside

najjar@cs.ucr.edu

Figure 1: System Overview of an FPGA on the SGI
RC100 Blade

used by the Core Services which is the logic used to
interface the FPGA to the NUMALink and SRAM
memories. The HDL code representing the algorithm is
synthesized along with the Core Services, and the
resulting bitstream is programmed on the FPGA.

2.1 System Interfaces

The RASC Abstraction layer provides various DMA
based I/O interfaces to the FPGA on the RC100 Blade [1].

2.1.1. Direct I/O

Direct I/O involves allocating memory for input and
output data on the hugetlb space using appropriate API
calls. The data is transferred from the host memory in the
hugetlb to the SRAM on the RC100 Blade (Fig. 1 Green
Lines). Once the input data is transferred to the SRAM,
the FPGA starts processing and stores the output onto the
on-board SRAM (Fig. 1 Purple Lines). After conclusion of
processing the data by the FPGA, output data is
transferred back to the host memory in the hugetlb (Fig 1.
Orange Lines). On the RASC blade it is possible to
achieve 2.2GByte/s throughput (Fig. 2) when more than
1MByte is transferred in one go.

2.1.2. Buffered I/O

Buffered I/O works similar to Direct I/O except that it

Core ServicesM
E
M

1

16MB

M
E
M

0

16MB

ASIC connecting to external System via NUMAlink

Algorithm

Virtex-4 LX 200

36 36

72

involves allocating memory for input and output data in
the user space on the host. Unfortunately transferring the
data to / from the SRAM on RC100 blade using buffered
I/O involves an additional copy in the kernel memory
space, thus lowering the maximum throughput to only
1.4GByte/s (Fig. 2) on the RC100 blade. Buffered I/O is
best avoided, unless hugetlb system is unavailable on the
host.

2.1.3. Streaming DMA I/O

Streaming I/O does away with using the SRAMs on
the RC100 blades for transferring data, though the SRAMs
may be still be used by the algorithm hardware for local
storage. On the RASC blade, it is possible to achieve a
throughput of 2.4GByte/s using streaming.

I/O Throughput Chart of the Virtex 4 LX 200 FPGA on RC 100

0.0

500.0

1000.0

1500.0

2000.0

2500.0

128 16,384 160,000 1,600,000 16,000,000

Data Sent / Received

T
h
ro

u
g
h
p
u
t
(M

eg
ab

yt
es

 /
se

c)

Direct I/O (Mbytes/s)

Buffered I/O (Mbytes/s)

Streaming I/O (Mbytes/s)

Figure 2: Read / Write Throughput using three I/O

interfaces to RC100 on SGI Altix 4700 platform

3. ROCCC and 1D DWT

ROCCC (RIVERSIDE OPTIMIZING COMPILER FOR
CONFIGURABLE COMPUTING) is built on the SUIF2
and Machine-SUIF platforms. It compiles C code into
VHDL for mapping onto the FPGA fabric. ROCCC
performs unrolling and also a very extensive set of loop
analysis and transformations, aiming at maximizing
parallelism and minimizing area.

for(i=0; i<LEN ; i=i+4)
{

Lift1_2 = a[i+1] - (a[i]+a[i+2])/2;
Lift1_3 = a[i+3] - (a[i+2]+a[i+4])/2;

Lift2_1 = a[i] + (Lift1_2 + Lift1_1 + 2)/4;
Lift2_2 = a[i+2] + (Lift1_2 + Lift1_3 + 2)/4;
Lift1_1 = Lift1_3;

b[i] = Lift1_2;
b[i+1] = Lift1_3;
b[i+ROW/2] = Lift2_1;
b[i+1+ROW/2] = Lift2_2;

}

Figure 3: The C code of the lifting implementation of

5-3 DWT, used for accelerating on RC100

We have utilized the 5-3 DWT [2] algorithm based on the
lifting scheme. The C code used to generate VHDL using
ROCCC is illustrated in Fig. 3. We prepare the 9-bit input
image data from OpenJPEG using 16-bit representation in
C. The algorithm in Fig. 3 processes 5 pixels and
generates 4 output pixels each clock cycle. Since the
hardware transfers 128bit data (8 pixels) every clock
cycle, we unroll the loop [3] once to maximize the
interface throughput. The implemented pipeline runs at
200MHz on the FPGA, with a peak theoretical throughput
of 1.6Giga Pixels/s.

4. Experimental Results

We run the 5-3 DWT algorithm on five image components
of sizes 0.1, 1.0, 2.0, 4.0 and 8.0 Megapixels respectively.
The software implementation uses the OpenJPEG library
running on a Core2Extreme X6800 (2.93GHz) CPU. It
can be seen that the FPGA implementation performs better
(upto 16X) with increasing image sizes, when compared to
the software implementation (Fig. 4). Moreover for all but
the 0.1 Megapixel data, the FPGA provides speedup.

Data Throughput of the 1-D DWT Algorithm

0

100

200

300

400

500

600

700

800

900

1000

0.1 1 2 4 8

Source Image Size (Mega Pixels)

T
h
ro

u
g
h
p
u
t
(M

eg
a

P
ix

el
s

/ s
ec

)

RC100 using (Direct IO)

RC100 using (Streaming IO)

OpenJPEG on C2D X6800

Figure 4: Throughput of 1-D DWT on FPGA and

CPU
5. Conclusions

In order to obtain useful speedup from the RC100 Blade, it
is necessary to run the algorithm on large data sizes (of the
order of megabytes) to effectively amortize the I/O
overhead. As a result, more complex algorithms would
provide better speedup, since more processing is done per
byte of data transferred from the host to the FPGA.

6. References

[1] SGI, “Reconfigurable Application-Specific Computing
User’s Guide”, pp 121-122, pp 161-180.
[2] Majid Rabbani, “The JPEG2000 Still Image Compression
Standard”, pp77, pp83.
[3] B. A. Buyukkurt, Z. Guo, W. Najjar. “Impact of Loop
Unrolling on Throughput, Area and Clock Frequency in

ROCCC: C to VHDL Compiler for FPGAs” (ARC 2006)  Delft,
The Netherlands.

We analyze the performance of the SGI RASC RC100
BLADE and highlight the actual performance attained vis-à-
vis 5-3 1D DWT for varying data size, and compare the
speedups when compared to an Intel Core 2 Duo Extreme
Edition Processor.

MEM 1

128

1-D DWT Block

MEM 0

128

1-D DWT Block

128

128

DWT to Host via
NUMALink

Image
From Host via

NUMALink

Image
From Host via

NUMALink

DWT to Host via
NUMALink

Streaming I/ODirect I/O

