All-Digital Quadrature Modem

 for Hligh Sipeed WirelessCommunications

Abhishek Mitra 19991003
IIIT Allahabad
$27^{\text {th }}$ Jan 2003 to $2^{22^{\text {nd }}}$ May 2003

Under guidance of
Mr. Vishwajit Mitra
HFCL R\&D

Fiejerences

- A VLSI Architecture for a High-Speed All-Digital Quadrature Modulator and Demodulator for Digital Radio Applications. "Henry Samueli and Bennett C. Wong", IEEE Journal on Selected Areas in Communications, Vol8, No 8, October '90
- A BPSK / QPSK Timing - Error Detector for Sampled Receivers. "Floyd M Gardner", IEEE Transactions on Communications, Vol. COM-34, No 5, May ' 86
A survey of CORDIC algorithms for FPGA based computers. "Ray Andraka", FPGA 98, Monterey, CA, USA

Moderss

- QPSK (Quadrature Phase Shift Keying)
- 10MHz Data rate
- IF at 10MHz
- Upto 40MHz Data rate
- Reconfigurable Devices (FPGA)
- Digital Filtering
- Digital Modulation and Demodulatiion
- Applications: Point to Point W/Less Links and Satellite Communications.

OPSK Modulation

Input	(I) Mixer	(Q) Mixer	Sum	Sum (solved)
00	$-\sin \omega c t$	$-\cos \omega c t$	$-\sin \omega c t-\cos \omega c t$	$\sin \left(\omega c t-135^{\circ}\right)$
01	$-\sin \omega c t$	$\cos \omega c t$	$-\sin \omega c t+\cos \omega c t$	$\sin \left(\omega c t+135^{\circ}\right)$
10	$\sin \omega c t$	$-\cos \omega c t$	$\sin \omega c t-\cos \omega c t$	$\sin \left(\omega c t-45^{\circ}\right)$
11	$\sin \omega c t$	$\cos \omega c t$	$\sin \omega c t+\cos \omega c t$	$\sin \left(\omega c t+45^{\circ}\right)$

Waveform	Sample Tn	Sample $\mathrm{Tn}+1$	Sample $\mathrm{Tn}+2$	Sample Tn+3
Sine (Q)	0	1	0	-1
Cosine (I)	1	0	-1	0

Modulatior

- 32 bit RRC filtering
-IF at 10 MHz
- Analog LPF with B/W 13MHz
- 10bit precision digital output
- Parallel multiplication (LUT based)
- When I carrier is sampled '1' or ' -1 ', the Q carrier is sampled ' 0 ' which means at any sampling instant we need to process only one of the carrier.
- PRBS Generator used to generate Random Sequence

Modulatior

Digjital Filter

- Root Raised Cosine (Low Pass)
- Avoids ISI
- Digital Filter Coefficients:

7	4	-7	-16	-12	9	33	38	8	-48	-93	-77	27	203	390	511
511	390	203	27	-77	-94	-48	8	38	33	9	-12	-16	-7	4	7

- Transmit filter has to meet the following specifications:
- Operating Frequency : 10 MHz .
- No. of Taps : 32
- Roll of factor ? : 0.3
- Pass band Bandwidth : $\quad 13 \mathrm{MHz}$

Impulse Response

Frequency Response

Tィ Su'b Filter

| $H 0^{*} D n+7$ | $h 3^{*} d n+6$ | $h 7^{*} d n+5$ | $h 11^{*} d n+4$ | $h 15^{*} d n+3$ | $h 19^{*} d n+2$ | $h 23^{*} d n+1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$h 27^{*} d n$

To normalizer and DAC

Trensisnit Spectiruss

Simulated, 10 MHz

Actual, 10 MHz

Dersiochulatios

- 10 MHz IF, sampling rate $=40 \mathrm{MHz}$
- 32 bit RRC Filter
- 16bit I,Q rail subfilters, clocked at 20 MHz
- Automatic Gain Control
- Demodulation = De-Multiplexing and Inversion Control
- Timing Recovery
- Carrier Recover

CMA Equalizer

Dersodulator Block Diagranss

Receiver Block Diagram

Fix Su's Filter (pipelined)

D15	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4
d3	d2	d1	d0								

Arsibigulitios

Clock Ambiguity

- Carrier Ambiguity
- Polarity Ambiguity
- I / Q Channel Ambiguity
- Resolving

Clock Recovery
Carrier Recovery / Derotation
Differential Encoding Internal Channel Selector

Clock Fiecovery

- Garderner's Zero Crossing Detector
$\cdot e(n)=I(n-1 / 2)[(n)-I(n-1)]+Q(n-1 / 2)[Q(n)-Q(n-1)]$
- Error = Sum of both I and Q channels
- 10 bit digital error output converted to analog
- Error signal is used to control the VCXO

Cajrier Fiecovery

- Carrier ambiguities result in a rotating constellation
- De-rotation is needed
- Using CORDIC algorithms (iterative algorithm for coordinate rotation)
- If the rotation angle is limited to $\tan \left(2^{-i}\right)$ then multiplication by tangent term becomes a shift operation.
- The final equation results in

$$
\begin{gathered}
X^{\prime}=\cos \phi[X-Y \tan \phi] \\
Y^{\prime}=\cos \phi[Y+X \tan \phi] \\
X i+1=K i\left[X i-Y i . d i .2^{-1}\right] \\
Y i+1=K i\left[Y i+X i . d i .2^{-1}\right]
\end{gathered}
$$

Carrier Fiecovery

3Figure No． 2
Fie Edit View Insert Tools Window Help

Before

Filigure No． 3
File Edid Wew Inseet Tools Window Help
口回量 A A ス 1 －

After
CMAA Eguallizer

- Iterative Algorithm, Step size = 2
- The algorithm fits the constellation points to a circle of constant magnitude.
- Dependent on the accuracy of the AGC
- Decision directed algorithm
- C=C+cmaerror
\lrcorner Cma error $=(\text { Radius CMA })^{\wedge} 2-(\text { Radius C })^{\wedge} 2$
ГPG
- Reprogrammable Digital Hardware
- Extremely Customizable and parallel execution
- Very fast speed (150 MHz)
- Very low design turnaround time
- Simulation / Synthesis Tools
- Testing, Debugging, and Implementation
- XC 2S 200 (200 K system gates)

XC 2V 1500 (1.5 M system gates)

Issplersiententions

- Quadrature Modulator (Tested)
- Quadrature Demodulator (Tested)
- PRBS generator (24 bit Maximal Length)
- Digital Filters

Parallel Execution (Tx) (Tested)
Pipelined Execution (Rx) (Tested)

- Timing Recovery (Tested)
- Carrier Recovery (Under Test)
\lrcorner CMA Equalizer (Under Test)
- est Peruc'r

Spectrum Analyzer

- Oscilloscope
- Personal Computer
- Xilinx ISE
- ModelSim Simulator
- MATLAB
- Modulator Board
- Demodulator Board

Test Setup

Fiecejver

Clock Fiecovery

vCXO

