All-Digital Quadrature Modem for High Speed Wireless Communications

> Abhishek Mitra 19991003 IIIT Allahabad 27th Jan 2003 to 22nd May 2003

Under guidance of Mr. Vishwajit Mitra HFCL R&D

References

- A VLSI Architecture for a High-Speed All-Digital Quadrature Modulator and Demodulator for Digital Radio Applications. "Henry Samueli and Bennett C. Wong", IEEE Journal on Selected Areas in Communications, Vol8, No 8, October '90
- A BPSK / QPSK Timing Error Detector for Sampled Receivers. "Floyd M Gardner", IEEE Transactions on Communications, Vol. COM-34, No 5, May '86
- A survey of CORDIC algorithms for FPGA based computers. "Ray Andraka", FPGA 98, Monterey, CA, USA

Modem

- QPSK (Quadrature Phase Shift Keying)
- 10MHz Data rate
- IF at 10MHz
- Upto 40MHz Data rate
- Reconfigurable Devices (FPGA)
- Digital Filtering
- Digital Modulation and Demodulation
- Applications: Point to Point W/Less Links and Satellite Communications.

QPSK Modulation

Input	(I) Mixer	(Q) Mixer	Sum	Sum (solved)
00	– sin wct	— cos w ct	$-\sin wct - \cos wct$	sin(<i>wct</i> -135°)
01	- sin w ct	cos Wct	$-\sin wct + \cos wct$	sin(<i>wct</i> +135°)
10	sin wct	$-\cos Wct$	$\sin wct - \cos wct$	$\sin(Wct-45^{\circ})$
11	sin w ct	cos <i>wct</i>	$\sin wct + \cos wct$	$\sin(wct + 45^\circ)$

Waveform	Sample Tn	Sample Tn+1	Sample Tn+2	Sample Tn+3
Sine (Q)	0	1	0	-1
Cosine (I)	1	0	-1	0

Modulator

- 32 bit RRC filtering
- IF at 10MHz
- Analog LPF with B/W 13MHz
- 10bit precision digital output
- Parallel multiplication (LUT based)
- When I carrier is sampled '1' or '-1', the Q carrier is sampled '0' which means at any sampling instant we need to process only one of the carrier.
 PRBS Generator used to generate Random
- Sequence

Modulator

Block Diagram (Modulator Section)

Digital Filter

32

13 MHz

- Root Raised Cosine (Low Pass)
- Avoids ISI -
- Digital Filter Coefficients:
- 7 4 -7 -16 -12 9 33 38 8 -48 -93 -77 27 203 390 511 511 390 203 27 -77 -94 -48 8 38 33 9 -12 -16 -7 4 7
- Transmit filter has to meet the following specifications:
- 10 MHz. **Operating Frequency**
- No. of Taps 0.3
- Roll of factor ?
- Pass band Bandwidth

Impulse Response

Frequency Response

Transmit Spectrum

HE LIGHT AT LO COLO

Simulated, 10 MHz

Actual, 10MHz

Demodulator

- 10MHz IF, sampling rate = 40MHz
- 32 bit RRC Filter
- 16bit I,Q rail subfilters, clocked at 20MHz
- Automatic Gain Control
- Demodulation = De-Multiplexing and Inversion Control
- Timing Recovery
- Carrier Recover
- CMA Equalizer

Demodulator Block Diagram

Receiver Block Diagram

Ambiguities

Clock Ambiguity Carrier Ambiguity Polarity Ambiguity I / Q Channel Ambiguity Resolving **Clock Recovery Carrier Recovery / Derotation Differential Encoding Internal Channel Selector**

Clock Recovery

- Garderner's Zero Crossing Detector
 e(n) = I(n-1/2)[I(n) I(n-1)] + Q(n-1/2) [Q(n) Q(n-1)]
 Error = Sum of both I and Q channels
- I 0 bit digital error output converted to analog
- Error signal is used to control the VCXO

Carrier Recovery

- Carrier ambiguities result in a rotating constellation
- De-rotation is needed
- Using CORDIC algorithms (iterative algorithm for coordinate rotation)
- If the rotation angle is limited to tan(2⁻ⁱ) then multiplication by tangent term becomes a shift operation.
- The final equation results in $X' = \cos f[X - Y \tan f]$ $Y' = \cos f[Y + X \tan f]$ $Xi + 1 = Ki[Xi - Yi.di.2^{-i}]$ $Yi + 1 = Ki[Yi + Xi.di.2^{-i}]$

Carrier Recovery

Before

After

CMA Equalizar

- Iterative Algorithm, Step size = 2
- The algorithm fits the constellation points to a circle of constant magnitude.
- Dependent on the accuracy of the AGC
- Decision directed algorithm
- C=C+cmaerror
- Cma error = (Radius CMA)^2 (Radius C)^2

FPGA

- Reprogrammable Digital Hardware
- Extremely Customizable and parallel execution
- Very fast speed (150 MHz)
- Very low design turnaround time
- Simulation / Synthesis Tools
- Testing, Debugging, and Implementation
- XC 2S 200 (200 K system gates)
- XC 2V 1500 (1.5 M system gates)

Implementation

Quadrature Modulator (Tested) Quadrature Demodulator (Tested) PRBS generator (24 bit Maximal Length) **Digital Filters** Parallel Execution (Tx) (Tested) Pipelined Execution (Rx) (Tested) Timing Recovery (Tested) Carrier Recovery (Under Test) CMA Equalizer (Under Test)

Test Bench

Spectrum Analyzer Oscilloscope Personal Computer Xilinx ISE ModelSim Simulator MATLAB Modulator Board Demodulator Board

Test Setup

