
UNIVERSITY OF CALIFORNIA
RIVERSIDE

”MAGIC CAMERA”

A project report submitted in partial satisfaction of the requirements of the degree of

Master of Science

in

Computer Science

by

Adam Meadows

June 2006

Project Committee:
Dr. Eamonn Keogh
Dr. Doug Tolbert



Copyright by
Adam Meadows

2006



The Project Report of Adam Meadows is approved:

Committee Chairperson

University of California, Riverside



ABSTRACT OF PROJECT REPORT

”Magic Camera”

BY

Adam Meadows

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2006

Dr. Kim Possible, Chairperson

The magic camera is a piece of software that takes as its input a picture of a collection of

objects in front of a common, solid background. The output is another picture, containing

the same set of objects in front of the same solid background, organized so that similar

objects are grouped close to one another and made to ”face” the same way when

applicable. The objects in the input picture are assumed to be separated by some

noticeable margin, objects that are touching will be treated as one object. Pictures are

assumed to have been taken with appropriate lighting to avoid shadowing effects. The

perspective of camera which took the picture is assumed to be parallel to the surface being

photographed, to minimize distortion.



Magic Camera

Adam Meadows

June 12, 2006

1 Introduction

This project is designed to create a piece of software which transforms an image into
a more organized version of that image. The resulting image will be organized based on
the similarities of the various objects contained in the original image. These similarities
can be based on a number of different criterion. The three currently supported criteria are
shape, color, and texture. Not only will similar objects appear close to one another in the
resulting image, but all objects will ”face” the same way. This orientation is accomplished
by using the physical properties of each object, such as major axis and center of mass, to
determine which way they should ”face.”

2 Motivation

The motivation behind this project is to be able to automatically organize collections
of objects and display them visually. Ideally, this software would be incorporated into a
digital camera, allowing users to take photographs of a collection of objects and instantly
be able to see patterns in that collection. Possible uses for such a camera could be: cat-
egorizing archeological finds such as bones or arrowheads, visualizing similarities in the
color of butterfly wings, organizing insect boards, etc. With a little additional work and
in combination with a robotic arm, this software could even produce an automatic sorter
to organize collections of objects.

3 Background

Here is a little background into the visualization of dissimilarities among objects. While
both MDS and SOMs are both possible solutions, for this project I chose to use MDS
because it seemed simpler to use and doesn’t suffer from the local optima problem that
SOMs face.

5



3.1 Multidimensional Scaling

”Multidimensional scaling (MDS) is a set of related statistical techniques often used in
data visualisation for exploring similarities or dissimilarities in data.” [4] A dissimilarity
matrix, which contains the distances between each pair of objects, is converted into a set of
coordinates in low dimensional (usually 2d or 3d) space. The euclidean distances between
these coordinate points reflect the original distances given in the dissimilarity matrix. In
classical MDS, which was used in this project, when computing the coordinates for each
object, ”an eigenvector problem is solved to find the locations that minimize distortions to
the distance matrix” [4]

3.2 Self-Organizing Maps

Similar to MDS, self-organizing maps (SOMs) are a way to visualize similarities between
objects in low dimensional space. Instead of using eigenvectors to determine where to place
each object, SOMs use a number of iterations, during which similar objects are gradually
moved toward one another, and dissimilar objects are repelled. After enough iterations, the
movement will stabilize, yielding the resulting map. However, it is possible that a different
initial arrangement could result in a better resulting map. This local optima problem is
not present when using MDS.

4 Stepping Through Magic Camera

4.1 Identifying Objects

The first step in magic camera is to identify the individual objects in the input image.
The image is first converted from color to grayscale. The grayscale image is then converted
to a black and white image, where the background will be black, and all the objects will
be white. The threshold for this conversion from grayscale to black and white can be
computed automatically, using Matlab’s graythresh [1] function, or specified by the user.
The user need only specify a threshold if the background color is very similar to the color
of one or more of the objects in the image. Since objects are assumed to be separated
by some noticeable margin, each connected component of the black and white image is
considered to be an object.

Once each object has been identified, the Matlab function regionprops [2] is used to find
out some useful information about each object. Specifically, each object’s bounding box,
orientation, and centroid. Each objects is then cropped to it’s bounding box (plus a five
pixel border). Unfortunately, this is not always good enough. If the objects are shaped
correctly and spaced close enough together, there is a possibility that the bounding box
for one object may contain part of another object as well. To account for this, all pixels

6



that do not correspond to the object being copped are filtered out and replaced with the
solid background color. Figure 1 shows the results of this filtering.

Figure 1: Filtering Cropped Image

Once the objects are separated into their own images, it’s time to rotate them. The
orientation is used to rotate the object so that its major axis is in line with the image’s
major axis. If the original image is wider than tall, each object is rotated so that its major
axis is horizontal. Likewise, if the original object is taller than wide, each object will be
rotated to be vertical. Once the major axis is aligned, one more check is performed. If
the centroid of the object is not on the left/bottom half of the image (depending on the
horizontal/vertical orientation), then the object is rotated so that it is. This should ensure
that the same object, regardless of its original orientation will always be ”facing” the same
way in the resulting image.

4.2 Calculating Similarities

To calculate the similarities among the objects, each object is first converted to a numer-
ical representation. The method for converting the object to a numerical representation
is determined by the basis of comparison among objects. Currently three comparisons are
supported: shape, color, and texture. Once each object has a numerical representation, a
dissimilarity matrix is constructed. The distance between each pair of objects is computed
(currently using Euclidean distance).

4.2.1 Shape

When comparing by shape, each object is converted into a time series. The time series
represents a trace along the perimeter of the object, where each point in the time series is
a distance between the center of the object, and the perimeter at that point. The code for
this extraction was provided by Dr. Keogh. Figure 2 shows how a time series is extracted
from an image.

7



Figure 2: Converting an image to a time series

4.2.2 Color

When comparing by color, the numerical representation is simply the R G B values for
the color of the object. To extract the color, the R, G, and B values are independently
averaged over 1000 random pixels within the object. The pixels sampled are not unique,
so that it does not matter if the objects contain less than 1000 pixels.

4.2.3 Texture

When comparing by texture, the numerical representation is a single numerical approx-
imation of the texture of the object. This approximation is calculated by sampling 1000
random pixels within the object, computing the standard deviation of the nine pixel neigh-
borhood surrounding that pixel, and averaging those values. Figure 3 shows a nine pixel
neighborhood.

4.3 Creating New Image

Creating the new image consists of three main parts: extracting the background, finding
the new positions for each object, and fixing overlaps that occur because of those new
positions.

8



Figure 3: A nine pixel neighborhood

4.3.1 Extracting the background

Extracting the background of the image is accomplished in the same manner as deter-
mining the color of the individual objects. A random sample of 1000 pixels is taken, only
this time the pixels are all chosen from the background of the image. The black and white
image is used to identify the pixels which make up the background of the image. The RGB
values of the background are then independently averaged to produce a solid color for the
background. A new image, consisting only of this solid, average color, and having the same
dimensions as the original input image is then created.

4.3.2 Finding new positions

The new positions for the objects are calculated by using classical multidimensional
scaling. The dissimilarity matrix computed earlier is passed into the MDS algorithm [3],
which returns a set of coordinates for each object in 2D. The y-values of each location are
reversed due to the fact that images are indexed top-down (see Figure 4).

Figure 4: Top-down indexing of images

9



4.3.3 Fixing overlaps

Unfortunately, simply using the locations produced by the MDS algorithm is not suf-
ficient. Due to the varying size of the objects being organized, simply placing them all
at their appropriate positions can cause overlaps which obstruct the view of some of the
objects. A simple approach is used to compensate for this. The objects are placed in the
blank background image in a specific order. Since the only knowledge of the similarity
between these objects is their respective positions in the resulting image, the order used
to place them is that position. Of course, there are still many orders to choose from. For
the purposes of this project, four possible orders are considered: left-right-top-down, left-
right-bottom-up, right-left-top-down, and right-left-bottom-up. The user can choose on of
these orderings, or specify that one should be chosen at random.

Once an ordering for placement of the objects has been decided, each object is placed,
in order, into the image. Once an object is placed, it is not moved. Before placing each
object, a check is made to see if placing the object at its specified location will create an
overlap with previously placed objects. If no overlap is detected, the object is placed in
its specified position. However, if an overlap is detected, the minimum safe distance to be
moved is calculated. This minimum safe distance is defined to be the minimum distance (in
one of the four cardinal directions) in which the object can be moved to avoid an overlap
(see Figure 5). If no movement in any direction corrects the overlap, a random direction
is chosen, and the process repeated. In such a manner, each object ”walks” around the
image, placing itself in the first free space it finds.

Figure 5: Fixing overlaps

5 Results

The following examples show input and output images of the magic camera to demon-
strate its effectiveness in organizing collections of objects. Figures 6 and 7 show the input
and output images of a very simple example of organizing objects by shape. Figures 8 - 11
show the varying output images using different orderings of placement of the objects into
the blank background image. Figures 12 and 13 show the input and output images of a
simple color example. In this case, the objects are not organized by their shape, but by

10



their respective color. Figures 14 and 15 show the input and output images of an example
of organizing a collection of eggs by texture. Figures 16 and 17 show the input and out-
put images for an example of organizing a collection of skulls by shape. In this example,
rotating the individual objects so that their center of mass was in the bottom/left of the
object, did not increase clarity. In response to this result, an input parameter was added
to magic camera allowing for the user to choose whether magic camera should try to rotate
the objects or not. Figures 18 and 19 show the same example, with the no-rotation flag
set. Figure 20 shows the same after image as Figure 19 with labels showing that the six
species present in the original skull image are separated in the resulting image.

6 Conclusion

Magic camera takes an input image, consisting of a collection of objects in front of a solid
background, separated by some noticeable difference, and creates an output image, consist-
ing of the same set of objects, in front of the same solid background, where similar objects
are grouped close to one another and rotated to ”face” the same direction. Supported
criteria for similarity measures are currently shape, color, and texture. Multidimensional
scaling is used to determine the new locations of each object in the output image. Objects
are placed in the output image in a specific order (user specified or randomly chosen).
When overlaps occur, the object being placed is moved the minimum distance in one of
the four cardinal directions to correct the overlap. If all movements create new overlaps,
then a random direction is chosen, and the process is repeated. If the rotation performed
by magic camera fails to increase clarity in the resulting image, it can be turned off by the
user.

7 Future Work

Future work on magic camera will include further development of the color similarity
measure, adding the ability to combine similarity measures, and an optional how-to option.
Developing the color similarity measure should involve testing it on some real-world data
(butterfly wings, etc.). Combining similarity measures will include finding some way to
average the similarities calculated by different means (color and shape, texture and color,
etc.) The how-to option might include displaying the original image, and upon a user
selecting an object, displaying its new location in the output image.

11



Figure 6: Simple Shape Example: Before

Figure 7: Simple Shape Example: After (R-L B-T)

12



Figure 8: Simple Shape Example: After 1 (L-R T-B)

Figure 9: Simple Shape Example: After 2 (L-R B-T)

13



Figure 10: Simple Shape Example: After 3 (R-L T-B)

Figure 11: Simple Shape Example: After (R-L B-T)

14



Figure 12: Simple Color Example: Before

Figure 13: Simple Color Example: After

15



Figure 14: Eggs Texture Example: Before

16



Figure 15: Eggs Texture Example: After

17



Figure 16: Skulls Shape Example: Before

Figure 17: Skulls Shape Example: After

18



Figure 18: Skulls Shape Example: Before

Figure 19: Skulls Shape Example: After No Rotation

19



Figure 20: Skulls Shape Example: After No Rotation Labeled

20



References

[1] Mathworks Inc. Image Processing Toolbox: graythresh. http://www.mathworks.com/
access/helpdesk/help/toolbox/images/graythresh.html; accessed June 7, 2006.

[2] Mathworks Inc. Image Processing Toolbox: regionprops. http://www.mathworks.com/
access/helpdesk/help/toolbox/images/regionprops.html; accessed June 6, 2006.

[3] Michael D. Lee. http://www.socsci.uci.edu/∼mdlee/; accessed June 6, 2006.

[4] Wikipedia. Multidimensional scaling. http://en.wikipedia.org/wiki/
Multidimensional scaling; accessed June 7, 2006.

[5] Wikipedia. Self-organizing map. http://en.wikipedia.org/wiki/Self-organizing
map; accessed June 7, 2006.

21


