
3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n

t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n

m := max(aiaj , m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k

starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k

than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S �= 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj }


