EXAMPLE 7
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In Section 4.1, we will show that n < 2" whenever n is a positive integer. Show that this
inequality implies that n is O (2"), and use this inequality to show that logn is O (n).

Solution: Using the inequality n < 2", we quickly can conclude that n is O (2") by taking k =
C =1 as witnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of this inequality shows that

logn < n.
It follows that
logn is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have log;, n is O (n)
because
logn n

1 =
81 logh = logh

whenever 7 is a positive integer. We take C = 1/logb and k = 1 as witnesses. (We have used
Theorem 3 in Appendix 2 to see that log, n = logn /logb.) <

As mentioned before, big- O notation is used to estimate the number of operations needed to
solve a problem using a specified procedure or algorithm. The functions used in these estimates
often include the following:

1, logn, n, nlogn, n?, 2", n!

Using calculus it can be shown that each function in the list is smaller than the succeeding
function, in the sense that the ratio of a function and the succeeding function tends to zero
as n grows without bound. Figure 3 displays the graphs of these functions, using a scale for
the values of the functions that doubles for each successive marking on the graph. That is, the
vertical scale in this graph is logarithmic.
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FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.



