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Euler path and tour

Euler path and tour

Definition 1.1
An Euler tour in a graph G is a simple circuit containing every edge
of G. An Euler path in G is a simple path containing every edge of G.
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Euler path and tour

Euler tour

I An Euler tour (or Eulerian tour, Euler circuit) traverses each edge
of the graph exactly once.

I Graphs that have an Euler tour are called Eulerian.
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Euler path and tour

Necessary and sufficient conditions for Euler circuits
and paths

Theorem 1
An undirected graph has a closed Euler circuit iff it is connected and
each vertex has an even degree.

Theorem 2
An undirected graph has an Euler path but not an Euler tour iff it has
exactly two vertices of odd degree.
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Euler path and tour

Euler tour

I So this graph is not Eulerian:
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Euler path and tour

Euler tour

I Mohammed’s Scimitars:
10.5 Euler and Hamilton Paths 697
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FIGURE 6 Mohammed’s Scimitars.

EXAMPLE 3 Many puzzles ask you to draw a picture in a continuous motion without lifting a pencil so that
no part of the picture is retraced. We can solve such puzzles using Euler circuits and paths.
For example, can Mohammed’s scimitars, shown in Figure 6, be drawn in this way, where the
drawing begins and ends at the same point?

Solution: We can solve this problem because the graph G shown in Figure 6 has an Euler circuit.
It has such a circuit because all its vertices have even degree. We will useAlgorithm 1 to construct
an Euler circuit. First, we form the circuit a, b, d, c, b, e, i, f, e, a. We obtain the subgraph H

by deleting the edges in this circuit and all vertices that become isolated when these edges are
removed. Then we form the circuit d, g, h, j, i, h, k, g, f, d in H . After forming this circuit we
have used all edges in G. Splicing this new circuit into the first circuit at the appropriate place
produces the Euler circuit a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a. This circuit gives a
way to draw the scimitars without lifting the pencil or retracing part of the picture. ▲

Another algorithm for constructing Euler circuits, called Fleury’s algorithm, is described in
the premble to Exercise 50.

We will now show that a connected multigraph has an Euler path (and not an Euler circuit) if
and only if it has exactly two vertices of odd degree. First, suppose that a connected multigraph
does have an Euler path from a to b, but not an Euler circuit. The first edge of the path contributes
one to the degree of a. A contribution of two to the degree of a is made every time the path
passes through a. The last edge in the path contributes one to the degree of b. Every time the
path goes through b there is a contribution of two to its degree. Consequently, both a and b have
odd degree. Every other vertex has even degree, because the path contributes two to the degree
of a vertex whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of odd degree,
say a and b. Consider the larger graph made up of the original graph with the addition of an
edge {a, b}. Every vertex of this larger graph has even degree, so there is an Euler circuit. The
removal of the new edge produces an Euler path in the original graph. Theorem 2 summarizes
these results.

THEOREM 2 A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly
two vertices of odd degree.

EXAMPLE 4 Which graphs shown in Figure 7 have an Euler path?

Solution: G1 contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler
path that must have b and d as its endpoints. One such Euler path is d, a, b, c, d, b. Similarly, G2
has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that must have
b and d as endpoints. One such Euler path is b, a, g, f, e, d, c, g, b, c, f, d . G3 has no Euler
path because it has six vertices of odd degree. ▲

Returning to eighteenth-century Königsberg, is it possible to start at some point in the
town, travel across all the bridges, and end up at some other point in town? This question can
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EXAMPLE 3 Many puzzles ask you to draw a picture in a continuous motion without lifting a pencil so that
no part of the picture is retraced. We can solve such puzzles using Euler circuits and paths.
For example, can Mohammed’s scimitars, shown in Figure 6, be drawn in this way, where the
drawing begins and ends at the same point?

Solution: We can solve this problem because the graph G shown in Figure 6 has an Euler circuit.
It has such a circuit because all its vertices have even degree. We will useAlgorithm 1 to construct
an Euler circuit. First, we form the circuit a, b, d, c, b, e, i, f, e, a. We obtain the subgraph H

by deleting the edges in this circuit and all vertices that become isolated when these edges are
removed. Then we form the circuit d, g, h, j, i, h, k, g, f, d in H . After forming this circuit we
have used all edges in G. Splicing this new circuit into the first circuit at the appropriate place
produces the Euler circuit a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a. This circuit gives a
way to draw the scimitars without lifting the pencil or retracing part of the picture. ▲

Another algorithm for constructing Euler circuits, called Fleury’s algorithm, is described in
the premble to Exercise 50.

We will now show that a connected multigraph has an Euler path (and not an Euler circuit) if
and only if it has exactly two vertices of odd degree. First, suppose that a connected multigraph
does have an Euler path from a to b, but not an Euler circuit. The first edge of the path contributes
one to the degree of a. A contribution of two to the degree of a is made every time the path
passes through a. The last edge in the path contributes one to the degree of b. Every time the
path goes through b there is a contribution of two to its degree. Consequently, both a and b have
odd degree. Every other vertex has even degree, because the path contributes two to the degree
of a vertex whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of odd degree,
say a and b. Consider the larger graph made up of the original graph with the addition of an
edge {a, b}. Every vertex of this larger graph has even degree, so there is an Euler circuit. The
removal of the new edge produces an Euler path in the original graph. Theorem 2 summarizes
these results.

THEOREM 2 A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly
two vertices of odd degree.

EXAMPLE 4 Which graphs shown in Figure 7 have an Euler path?

Solution: G1 contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler
path that must have b and d as its endpoints. One such Euler path is d, a, b, c, d, b. Similarly, G2
has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that must have
b and d as endpoints. One such Euler path is b, a, g, f, e, d, c, g, b, c, f, d . G3 has no Euler
path because it has six vertices of odd degree. ▲

Returning to eighteenth-century Königsberg, is it possible to start at some point in the
town, travel across all the bridges, and end up at some other point in town? This question can

a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a
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Euler path and tour

Euler tour

I Determine weather the given graph has an Euler circuit:

10.5 Euler and Hamilton Paths 703
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FIGURE 13 The Digital Representation of the
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FIGURE 14 A Hamilton
Circuit for Q3.

circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ▲

Exercises

In Exercises 1–8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.
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No. It has nodes with odd degree...
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Euler tour

I Determine weather the given graph has an Euler circuit1:
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circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ▲

Exercises
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Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.
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Yes, all nodes have even degree...

1
Have a look at Rosen’s book [pg.696] for an algorithm...
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Hamiltonian path and circuit

Hamiltonian path and circuit

Definition 2.1
A simple path in a graph G that passes through every vertex exactly
once is called a Hamilton path, and a simple circuit in a graph G that
passes through every vertex exactly once is called a Hamilton circuit.
That is, the simple path x0, x1, . . . , xn1, xn in the graph G = (V,E) is a
Hamilton path if V = x0, x1, . . . , xn1, xn and xi 6= xj for 0 ≤ i < j ≤ n,
and the simple circuit x0, x1, . . . , xn1, xn, x0 (with n > 0) is a Hamilton
circuit if x0, x1, . . . , xn1, xn is a Hamilton path.
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Hamiltonian path and circuit

Hamiltonian Cycle

I Hamiltonian Cycle (or Hamilton circuit/tour) is a graph cycle (i.e.,
closed loop) through a graph that visits each node exactly once

I Graphs that have an Hamilton tour are called Hamiltonian.
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Hamiltonian path and circuit

Conditions for the existence of Hamilton circuits

Theorem 3 (Dirac’s Theorem)

If G is a simple graph with n vertices with n ≥ 3 such that the degree of
every vertex in G is at least n

2 , then G has a Hamilton cycle.

Theorem 4 (Ore’s Theorem)

If G is a simple graph with n vertices with n ≥ 3 such that
d(u) + d(v) ≥ n for every pair of nonadjacent vertices u and v in G,
then G has a Hamilton cycle.
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Hamiltonian path and circuit

Conditions for the existence of Hamilton circuits

I Both Ore’s theorem and Dirac’s theorem provide sufficient
conditions for a connected simple graph to have a Hamilton circuit.

I However, these theorems do not provide necessary conditions for
the existence of a Hamilton circuit.

I For example, the graph C5 has a Hamilton circuit but does not
satisfy the hypotheses of either Ore’s theorem or Dirac’s theorem.

10.2 Graph Terminology and Special Types of Graphs 655

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for
n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one
pair of distinct vertex not connected by an edge is called noncomplete. ▲

K1 K2 K3 K4 K5 K6

FIGURE 3 The Graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2, . . . , vn and edges {v1, v2},
{v2, v3}, . . . , {vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in
Figure 4. ▲

C3 C4 C5 C6

FIGURE 4 The Cycles C3, C4, C5, and C6.

EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3,
and connect this new vertex to each of the n vertices in Cn, by new edges. The wheels W3, W4,
W5, and W6 are displayed in Figure 5. ▲

W3 W4 W5 W6

FIGURE 5 The Wheels W3, W4, W5, and W6.

EXAMPLE 8 n-Cubes An n-dimensional hypercube, or n-cube, denoted by Qn, is a graph that has vertices
representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position. We display Q1, Q2, and Q3 in Figure 6.

Note that you can construct the (n + 1)-cube Qn+1 from the n-cube Qn by making two
copies of Qn, prefacing the labels on the vertices with a 0 in one copy of Qn and with a 1 in the
other copy of Qn, and adding edges connecting two vertices that have labels differing only in
the first bit. In Figure 6, Q3 is constructed from Q2 by drawing two copies of Q2 as the top and
bottom faces of Q3, adding 0 at the beginning of the label of each vertex in the bottom face and
1 at the beginning of the label of each vertex in the top face. (Here, by face we mean a face of
a cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space
with copies of Q2 as the top and bottom faces of a cube and then drawing the projection of the
resulting depiction in the plane.) ▲
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Hamiltonian path and circuit

Hamiltonian Cycle

I Show that neither graph displayed has a Hamilton circuit:

700 10 / Graphs
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FIGURE 11 Two Graphs That Do Not Have a Hamilton Circuit.

EXAMPLE 6 Show that neither graph displayed in Figure 11 has a Hamilton circuit.

Solution: There is no Hamilton circuit in G because G has a vertex of degree one, namely, e.
Now consider H . Because the degrees of the vertices a, b, d, and e are all two, every edge
incident with these vertices must be part of any Hamilton circuit. It is now easy to see that no
Hamilton circuit can exist in H , for any Hamilton circuit would have to contain four edges
incident with c, which is impossible. ▲

EXAMPLE 7 Show that Kn has a Hamilton circuit whenever n ≥ 3.

Solution: We can form a Hamilton circuit in Kn beginning at any vertex. Such a circuit can be
built by visiting vertices in any order we choose, as long as the path begins and ends at the same
vertex and visits each other vertex exactly once. This is possible because there are edges in Kn

between any two vertices. ▲

Although no useful necessary and sufficient conditions for the existence of Hamilton circuits
are known, quite a few sufficient conditions have been found. Note that the more edges a graph
has, the more likely it is to have a Hamilton circuit. Furthermore, adding edges (but not vertices)
to a graph with a Hamilton circuit produces a graph with the same Hamilton circuit. So as we
add edges to a graph, especially when we make sure to add edges to each vertex, we make it

WILLIAM ROWAN HAMILTON (1805–1865) William Rowan Hamilton, the most famous Irish scien-
tist ever to have lived, was born in 1805 in Dublin. His father was a successful lawyer, his mother came
from a family noted for their intelligence, and he was a child prodigy. By the age of 3 he was an excel-
lent reader and had mastered advanced arithmetic. Because of his brilliance, he was sent off to live with
his uncle James, a noted linguist. By age 8 Hamilton had learned Latin, Greek, and Hebrew; by 10 he had
also learned Italian and French and he began his study of oriental languages, including Arabic, Sanskrit, and
Persian. During this period he took pride in knowing as many languages as his age. At 17, no longer de-
voted to learning new languages and having mastered calculus and much mathematical astronomy, he began
original work in optics, and he also found an important mistake in Laplace’s work on celestial mechanics.

Before entering Trinity College, Dublin, at 18, Hamilton had not attended school; rather, he received private tutoring. At Trinity, he
was a superior student in both the sciences and the classics. Prior to receiving his degree, because of his brilliance he was appointed
the Astronomer Royal of Ireland, beating out several famous astronomers for the post. He held this position until his death, living
and working at Dunsink Observatory outside of Dublin. Hamilton made important contributions to optics, abstract algebra, and
dynamics. Hamilton invented algebraic objects called quaternions as an example of a noncommutative system. He discovered the
appropriate way to multiply quaternions while walking along a canal in Dublin. In his excitement, he carved the formula in the stone
of a bridge crossing the canal, a spot marked today by a plaque. Later, Hamilton remained obsessed with quaternions, working to
apply them to other areas of mathematics, instead of moving to new areas of research.

In 1857 Hamilton invented “The Icosian Game” based on his work in noncommutative algebra. He sold the idea for 25 pounds
to a dealer in games and puzzles. (Because the game never sold well, this turned out to be a bad investment for the dealer.) The
“Traveler’s Dodecahedron,” also called “A Voyage Round the World,” the puzzle described in this section, is a variant of that game.

Hamilton married his third love in 1833, but his marriage worked out poorly, because his wife, a semi-invalid, was unable to
cope with his household affairs. He suffered from alcoholism and lived reclusively for the last two decades of his life. He died from
gout in 1865, leaving masses of papers containing unpublished research. Mixed in with these papers were a large number of dinner
plates, many containing the remains of desiccated, uneaten chops.
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Hamiltonian path and circuit

Hamiltonian Cycle

I Determine weather the given graph has a Hamilton circuit:

10.5 Euler and Hamilton Paths 705

23.
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g ih

j lk

c

∗24. Devise an algorithm for constructing Euler circuits in di-
rected graphs.

25. Devise an algorithm for constructing Euler paths in di-
rected graphs.

26. For which values of n do these graphs have an Euler cir-
cuit?
a) Kn b) Cn c) Wn d) Qn

27. For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

28. For which values of m and n does the complete bipartite
graph Km,n have an
a) Euler circuit?
b) Euler path?

29. Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs
in Exercises 1–7 without retracing any part of the graph.

In Exercises 30–36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.
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37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?
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37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?
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37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?
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Hamiltonian Cycle

I For each of these graphs, determine:

(i) whether Dirac’s theorem can be used to show that the graph has a
Hamilton circuit

(ii) whether Ore’s theorem can be used to show that the graph has a
Hamilton circuit

(iii) whether the graph has a Hamilton circuit

706 10 / Graphs

∗46. Show that the Petersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.

a

be

d c

j

i h

g

f

47. For each of these graphs, determine (i ) whether Dirac’s
theorem can be used to show that the graph has a Hamilton
circuit, (ii) whether Ore’s theorem can be used to show
that the graph has a Hamilton circuit, and (iii ) whether
the graph has a Hamilton circuit.

a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n − 1)/2?

∗49. Show that there is a Gray code of order n whenever n is
a positive integer, or equivalently, show that the n-cube
Qn, n > 1, always has a Hamilton circuit. [Hint: Use
mathematical induction. Show how to produce a Gray
code of order n from one of order n − 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-
cuits by first choosing an arbitrary vertex of a connected multi-
graph, and then forming a circuit by choosing edges succes-
sively. Once an edge is chosen, it is removed. Edges are cho-
sen successively so that each edge begins where the last edge
ends, and so that this edge is not a cut edge unless there is no
alternative.

50. Use Fleury’s algorithm to find an Euler circuit in the graph
G in Figure 5.

∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler
circuit.

∗53. Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Show that a bipartite graph with an odd number of vertices
does not have a Hamilton circuit.

JULIUS PETER CHRISTIAN PETERSEN (1839–1910) Julius Petersen was born in the Danish town of
Sorø. His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became an
apprentice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return to school.
After graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding to
concentrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance
ran out, he had to teach to make a living. From 1859 until 1871 Petersen taught at a prestigious private high
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained his
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military academy. In 1887 he was
appointed to a professorship at the University of Copenhagen. Petersen was well known in Denmark as the author of a large series
of textbooks for high schools and universities. One of his books, Methods and Theories for the Solution of Problems of Geometrical
Construction, was translated into eight languages, with the English language version last reprinted in 1960 and the French version
reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathematical
economics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known work.
He was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One interesting
fact about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover results
already proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians did not
read his writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian Andersen
of science—a child of the people who made good in the academic world.
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∗46. Show that the Petersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.
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47. For each of these graphs, determine (i ) whether Dirac’s
theorem can be used to show that the graph has a Hamilton
circuit, (ii) whether Ore’s theorem can be used to show
that the graph has a Hamilton circuit, and (iii ) whether
the graph has a Hamilton circuit.

a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n − 1)/2?

∗49. Show that there is a Gray code of order n whenever n is
a positive integer, or equivalently, show that the n-cube
Qn, n > 1, always has a Hamilton circuit. [Hint: Use
mathematical induction. Show how to produce a Gray
code of order n from one of order n − 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-
cuits by first choosing an arbitrary vertex of a connected multi-
graph, and then forming a circuit by choosing edges succes-
sively. Once an edge is chosen, it is removed. Edges are cho-
sen successively so that each edge begins where the last edge
ends, and so that this edge is not a cut edge unless there is no
alternative.

50. Use Fleury’s algorithm to find an Euler circuit in the graph
G in Figure 5.

∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler
circuit.

∗53. Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Show that a bipartite graph with an odd number of vertices
does not have a Hamilton circuit.

JULIUS PETER CHRISTIAN PETERSEN (1839–1910) Julius Petersen was born in the Danish town of
Sorø. His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became an
apprentice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return to school.
After graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding to
concentrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance
ran out, he had to teach to make a living. From 1859 until 1871 Petersen taught at a prestigious private high
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained his
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military academy. In 1887 he was
appointed to a professorship at the University of Copenhagen. Petersen was well known in Denmark as the author of a large series
of textbooks for high schools and universities. One of his books, Methods and Theories for the Solution of Problems of Geometrical
Construction, was translated into eight languages, with the English language version last reprinted in 1960 and the French version
reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathematical
economics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known work.
He was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One interesting
fact about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover results
already proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians did not
read his writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian Andersen
of science—a child of the people who made good in the academic world.

a) No Dirac, No Ore but it has a Hamilton circuit!

b) Same that a).

c) Both Dirac and Ore guarantee the existence of a Hamilton circuit.

d) Same that c).

Although not illustrated in any of the examples in this exercise, there are graphs for which
Ore’s theorem applies, even though Dirac’s does not.
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Exercise

I Does this graph have Hamiltonian cycle?

CS111 (Winter’18) Discussion 8 February 25, 2019 24 / 51



Hamiltonian path and circuit

Gray codes 2

I Converting the position of a pointer into digital form:

702 10 / Graphs

complexity would be a major accomplishment because it has been shown that this problem
is NP-complete (see Section 3.3). Consequently, the existence of such an algorithm would
imply that many other seemingly intractable problems could be solved using algorithms with
polynomial worst-case time complexity.

Applications of Hamilton Circuits

Hamilton paths and circuits can be used to solve practical problems. For example, many appli-
cations ask for a path or circuit that visits each road intersection in a city, each place pipelines
intersect in a utility grid, or each node in a communications network exactly once. Finding a
Hamilton path or circuit in the appropriate graph model can solve such problems. The famous
traveling salesperson problem or TSP (also known in older literature as the traveling sales-
man problem) asks for the shortest route a traveling salesperson should take to visit a set of
cities. This problem reduces to finding a Hamilton circuit in a complete graph such that the total
weight of its edges is as small as possible. We will return to this question in Section 10.6.

We now describe a less obvious application of Hamilton circuits to coding.

EXAMPLE 8 Gray Codes The position of a rotating pointer can be represented in digital form. One way to
do this is to split the circle into 2n arcs of equal length and to assign a bit string of length n to
each arc. Two ways to do this using bit strings of length three are shown in Figure 12.

The digital representation of the position of the pointer can be determined using a set of n

contacts. Each contact is used to read one bit in the digital representation of the position. This
is illustrated in Figure 13 for the two assignments from Figure 12.

When the pointer is near the boundary of two arcs, a mistake may be made in reading its
position. This may result in a major error in the bit string read. For instance, in the coding
scheme in Figure 12(a), if a small error is made in determining the position of the pointer, the
bit string 100 is read instead of 011. All three bits are incorrect! To minimize the effect of an
error in determining the position of the pointer, the assignment of the bit strings to the 2n arcs
should be made so that only one bit is different in the bit strings represented by adjacent arcs.
This is exactly the situation in the coding scheme in Figure 12(b). An error in determining the
position of the pointer gives the bit string 010 instead of 011. Only one bit is wrong.

A Gray code is a labeling of the arcs of the circle such that adjacent arcs are labeled with bit
strings that differ in exactly one bit. The assignment in Figure 12(b) is a Gray code. We can find
a Gray code by listing all bit strings of length n in such a way that each string differs in exactly
one position from the preceding bit string, and the last string differs from the first in exactly one
position. We can model this problem using the n-cube Qn. What is needed to solve this problem
is a Hamilton circuit in Qn. Such Hamilton circuits are easily found. For instance, a Hamilton

001110

010101

111

(a) (b)

000

100 011

001101

011
111

100 000

110 010

FIGURE 12 Converting the Position of a Pointer into Digital Form.

2
https://en.wikipedia.org/wiki/Gray_code
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Hamiltonian path and circuit

Gray codes

I The digital representation of the position of the pointer:
10.5 Euler and Hamilton Paths 703

Second bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Third bit is 1 here
First bit is 1 here

Third bit is 1 here

Second bit is 1 here

Third bit is 1 here

Third bit is 1 here

Second bit is 1 here

FIGURE 13 The Digital Representation of the
Position of the Pointer.

110 111

101
100

000 001

011
010

FIGURE 14 A Hamilton
Circuit for Q3.

circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ▲

Exercises

In Exercises 1–8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.
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10.5 Euler and Hamilton Paths 703

Second bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Third bit is 1 here
First bit is 1 here

Third bit is 1 here

Second bit is 1 here

Third bit is 1 here

Third bit is 1 here

Second bit is 1 here

FIGURE 13 The Digital Representation of the
Position of the Pointer.
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FIGURE 14 A Hamilton
Circuit for Q3.

circuit for Q3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ▲

Exercises

In Exercises 1–8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.

1. b c

e

da

2. b ca

d e f

h ig

3. ba

dc

e

4.

b

ce

d

f

a

5. a b

de

c

CS111 (Winter’18) Discussion 8 February 25, 2019 26 / 51



Hamiltonian path and circuit

Gray codes

000 001

010 011

100 101

110 111

CS111 (Winter’18) Discussion 8 February 25, 2019 27 / 51



Hamiltonian path and circuit

Gray codes

000 001

010 011

100 101

110 111

CS111 (Winter’18) Discussion 8 February 25, 2019 28 / 51



Vertex Coloring

Outline

Euler path and tour

Hamiltonian path and circuit

Vertex Coloring
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Vertex Coloring

Definition 3.1
A coloring of a simple graph is the assignment of a color to each vertex
of the graph so that no two adjacent vertices are assigned the same
color.

Definition 3.2
The chromatic number of a graph is the least number of colors needed
for a coloring of this graph. The chromatic number of a graph G is
denoted by χ(G). (Here χ is the Greek letter chi.)

A very hard problem(an NP-Complete problem).
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Vertex Coloring

Hamiltonian Cycle

I Complete graphs of n vertices (Kn):

10.2 Graph Terminology and Special Types of Graphs 655

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for
n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one
pair of distinct vertex not connected by an edge is called noncomplete. ▲

K1 K2 K3 K4 K5 K6

FIGURE 3 The Graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2, . . . , vn and edges {v1, v2},
{v2, v3}, . . . , {vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in
Figure 4. ▲

C3 C4 C5 C6

FIGURE 4 The Cycles C3, C4, C5, and C6.

EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3,
and connect this new vertex to each of the n vertices in Cn, by new edges. The wheels W3, W4,
W5, and W6 are displayed in Figure 5. ▲

W3 W4 W5 W6

FIGURE 5 The Wheels W3, W4, W5, and W6.

EXAMPLE 8 n-Cubes An n-dimensional hypercube, or n-cube, denoted by Qn, is a graph that has vertices
representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position. We display Q1, Q2, and Q3 in Figure 6.

Note that you can construct the (n + 1)-cube Qn+1 from the n-cube Qn by making two
copies of Qn, prefacing the labels on the vertices with a 0 in one copy of Qn and with a 1 in the
other copy of Qn, and adding edges connecting two vertices that have labels differing only in
the first bit. In Figure 6, Q3 is constructed from Q2 by drawing two copies of Q2 as the top and
bottom faces of Q3, adding 0 at the beginning of the label of each vertex in the bottom face and
1 at the beginning of the label of each vertex in the top face. (Here, by face we mean a face of
a cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space
with copies of Q2 as the top and bottom faces of a cube and then drawing the projection of the
resulting depiction in the plane.) ▲
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Vertex Coloring

For certain classes of graphs, we can easily compute the chromatic
number. For example, the chromatic number of Kn is n, for any n.
Notice that we have to argue two separate things to establish that this
is its chromatic number:

I Kn can be colored with n colors.

I Kn cannot be colored with less than n colors.

For Kn, both of these facts are fairly obvious. Assigning a different
color to each vertex will always result in a well-formed coloring (though
it may be a waste of colors). Since each vertex in Kn is adjacent to
every other vertex, no two can share a color. So fewer than n colors
can’t possibly work.
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Vertex Coloring

Frequency Assignments

I Television channels 2 through 13 are assigned to stations in
Colombia so that no two stations within 150 Km can operate on
the same channel. How can the assignment of channels be modeled
by graph coloring?
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Vertex Coloring

Frequency Assignments

I Television channels 2 through 13 are assigned to stations in
Colombia so that no two stations within 150 Km can operate on
the same channel. How can the assignment of channels be modeled
by graph coloring?

I Construct a graph by assigning a vertex to each station. Two
vertices are connected by an edge if they are located within 150
Km of each other. An assignment of channels corresponds to a
coloring of the graph, where each color represents a different
channel.
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