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Euler path and tour

Euler path and tour

Definition 1.1
An FEuler tour in a graph G is a simple circuit containing every edge
of G. An FEuler path in G is a simple path containing every edge of G.
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Euler tour

» An Euler tour (or Eulerian tour, Euler circuit) traverses each edge
of the graph exactly once.

» Graphs that have an Euler tour are called Eulerian.




Euler path and tour

Necessary and sufficient conditions for Euler circuits
and paths

Theorem 1

An undirected graph has a closed Euler circuit iff it is connected and
each vertex has an even degree.

Theorem 2

An undirected graph has an FEuler path but not an Euler tour iff it has
exactly two vertices of odd degree.
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Euler tour

» So this graph is not Eulerian:
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Euler tour

» Mohammed’s Scimitars:
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Euler tour

» Mohammed’s Scimitars:




h and tour

Euler tour

> Determine weather the given graph has an Euler circuit:
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Euler tour

» Determine weather the given graph has an Euler circuit:

No. It has nodes with odd degree...
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Euler tour

» Determine weather the given graph has an Euler circuit:
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Euler path and tour

Euler tour

» Determine weather the given graph has an Euler circuit!:

Yes, all nodes have even degree...

1Have a look at Rosen’s book [pg.696] for an algorithm...
S111 (W 18) Di, O February 25, 2019
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Hamiltonian path and circuit

Hamiltonian path and circuit

Definition 2.1

A simple path in a graph G that passes through every vertex exactly
once is called a Hamilton path, and a simple circuit in a graph G that
passes through every vertex exactly once is called a Hamilton circuit.
That is, the simple path zg,z1,...,Zp1, Ty in the graph G = (V, E) is a
Hamilton path if V' = xg,1,..., 21,2, and z; # x; for 0 <7 < j < n,
and the simple circuit xg, x1, ..., ZTn1, Ty, To (With n > 0) is a Hamilton
circuit if xg, x1, ..., Tp1, Ty is a Hamilton path.
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Hamiltonian path and circuit

Hamiltonian Cycle

» Hamiltonian Cycle (or Hamilton circuit/tour) is a graph cycle (i.e.,
closed loop) through a graph that visits each node exactly once

» Graphs that have an Hamilton tour are called Hamiltonian.
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Hamiltonian path and circuit

Conditions for the existence of Hamilton circuits

Theorem 3 (Dirac’s Theorem)

If G is a simple graph with n vertices with n > 3 such that the degree of
every vertex in G is at least 5, then G has a Hamilton cycle.

Theorem 4 (Ore’s Theorem)

If G is a simple graph with n vertices with n > 3 such that
d(u) + d(v) > n for every pair of nonadjacent vertices u and v in G,
then G has a Hamilton cycle.
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Hamiltonian path and circuit

Conditions for the existence of Hamilton circuits

» Both Ore’s theorem and Dirac’s theorem provide sufficient
conditions for a connected simple graph to have a Hamilton circuit.

» However, these theorems do not provide necessary conditions for
the existence of a Hamilton circuit.

> For example, the graph Cs has a Hamilton circuit but does not
satisfy the hypotheses of either Ore’s theorem or Dirac’s theorem.
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Hamiltonian Cycle

» Show that neither graph displayed has a Hamilton circuit:

[
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Hamiltonian Cycle

» Determine weather the given graph has a Hamilton circuit:
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Hamiltonian Cycle

» Determine weather the given graph has a Hamilton circuit:
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Hamiltonian Cycle

» Determine weather the given graph has a Hamilton circuit:
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Hamiltonian Cycle

» For each of these graphs, determine:

(i) whether Dirac’s theorem can be used to show that the graph has a
Hamilton circuit

(ii) whether Ore’s theorem can be used to show that the graph has a
Hamilton circuit

(iii) whether the graph has a Hamilton circuit

a) b)

c) d)
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Hamiltonian path and circuit

Hamiltonian Cycle

a) b)

) d)

a) No Dirac, No Ore but it has a Hamilton circuit!

b) Same that a).

¢) Both Dirac and Ore guarantee the existence of a Hamilton circuit.
d) Same that c).

Although not illustrated in any of the examples in this exercise, there are graphs for which
Ore’s theorem applies, even though Dirac’s does not.
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Hamilto

Exercise

» Does this graph have Hamiltonian cycle?
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Gray codes 2

» Converting the position of a pointer into digital form:

(a) (b)
111 | 000 100 | 000

110 001 101 001

101 010 111
100 |011 110 | 010

011

2ht‘cps ://en.wikipedia.org/wiki/Gray_code
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Hamiltor path and

Gray codes

» The digital representation of the position of the pointer:

Third bit is 1 here
First bit is 1 here

Second bit is 1 here Third bit is 1 here

Third bit is 1 here Third bit is 1 her
S Second bit is 1 here
Third bit is 1 here
First bit is 1 here ::%

Second bit is 1 here

S

Third bit is 1 here
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Gray codes
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Gray codes
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Vertex Coloring

Vertex Coloring

Definition 3.1

A coloring of a simple graph is the assignment of a color to each vertex
of the graph so that no two adjacent vertices are assigned the same
color.

Definition 3.2

The chromatic number of a graph is the least number of colors needed
for a coloring of this graph. The chromatic number of a graph G is
denoted by x(G). (Here x is the Greek letter chi.)

A very hard problem(an NP-Complete problem).
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Vertex Coloring

Hamiltonian Cycle

» Complete graphs of n vertices (Kp):




Vertex Coloring

Vertex Coloring

For certain classes of graphs, we can easily compute the chromatic
number. For example, the chromatic number of K, is n, for any n.
Notice that we have to argue two separate things to establish that this
is its chromatic number:

» K, can be colored with n colors.
» K, cannot be colored with less than n colors.

For K,,, both of these facts are fairly obvious. Assigning a different
color to each vertex will always result in a well-formed coloring (though
it may be a waste of colors). Since each vertex in K, is adjacent to
every other vertex, no two can share a color. So fewer than n colors
can’t possibly work.
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Vertex Coloring

Frequency Assignments

» Television channels 2 through 13 are assigned to stations in
Colombia so that no two stations within 150 Km can operate on
the same channel. How can the assignment of channels be modeled
by graph coloring?
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Frequency Assignments
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Frequency Assignments
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Frequency Assignments

» Television channels 2 through 13 are assigned to stations in
Colombia so that no two stations within 150 Km can operate on
the same channel. How can the assignment of channels be modeled
by graph coloring?

> Construct a graph by assigning a vertex to each station. Two
vertices are connected by an edge if they are located within 150
Km of each other. An assignment of channels corresponds to a
coloring of the graph, where each color represents a different
channel.
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