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Bipartite graph

Bipartite graph

Definition 1.1

A simple graph G is called bipartite if its vertex set V' can be
partitioned into two disjoint sets V; and V5 such that every edge in the
graph connects a vertex in V; and a vertex in V5.
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Bipartite graph

Bipartite graph

» Bipartite graphs are equivalent to two-colorable graphs.
» All acyclic graphs are bipartite.
> A cyclic graph is bipartite iff all its cycles are of even length.
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Bipartite graph

Examples
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G: Yes (See {a,b,d} and {c,e, f,g}).
H: No (See {a,b, f})
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Figure: Complete Bipartite Graphs.
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Perfect matching

Perfect matching

» A perfect matching of a graph is a matching (i.e., an independent
edge set) in which every vertex of the graph is incident to exactly
one edge of the matching.

» A perfect matching is therefore a matching containing 5 edges

(the largest possible)!, meaning perfect matchings are only
possible on graphs with an even number of vertices.

1
http://mathworld.wolfram.com/PerfectMatching.html
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Examples

Alvarez ~ Berkowitz Chen Davis Washington Xuan Ybarra Ziegler
requirements architecture implementation testing requirements architecture implementation testing
(a) (b)

Figure: Modeling Job Assignments for Which Employees Have Been Trained.
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Perfect matching

Hall’s Theorem?

Theorem 1

Let G = (X,Y) be a bipartite graph. Then X has a perfect macthing
into Y dif for oll T C X, the inequality |T| < |N(T)| holds. Where
N(T) is the set of all neighbors of the vertices in T. In other words,

y €Y is an element of N(T') iif there is a vertex x € T' so that (x,y) is
an edge.

2Proof available at [Rosen, 2015. pg 660].
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Example

Let T={B,C}, N(T)=1{3}, |T|=2and|N(T)|=1.
Violates Hall’s theorem.
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Example

Let T={B,C,D}, N(T)=1{1,3}, |T|=3and |N(T)l =2.
Violates Hall’s theorem.

CS111 (Winter’19) iscussion 9 March 11, 2019 16 /44



Perfect matching

Example

You are given two bipartite graph G and H below. For each graph
determine whether it has a perfect matching. Justify your answer,
either by listing the edges that are in the matching or use Hall’s

Theorem to show that the graph does not have a perfect matching.

Graph H
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Example
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G: Yes, see {0,a},{1,b},{2,d},{3,c},{4, f} and {5, e}.

H: No, Let T = {a, ¢, e}, then N(T) = {0, 2}, therefore |T'| £ |[N(T)
which violates Hall’s theorem.
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Planar graphs

Planar graphs

Is it possible to join these houses and utilities so that none of the
connections cross?
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Planar graphs

Planar graphs

Definition 3.1

A graph is called planar if it can be drawn in the plane without any
edges crossing. Such a drawing is called a planar representation of the
graph.
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Examples

Figure: The K4 graph and its drawn with no crossings.
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Examples

Figure: A Q3 graph.
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Examples

Figure: The planar representation of a Q3 graph.
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Planar graphs

Euler’s Formula

» A planar representation of a graph splits the plane into regions?

(including an unbounded region.)

» Euler showed that all planar representations of a graph split the
plane into the same number of regions.

» There is a relationship between the number of regions, vertices
and edges.

3regions = faces.
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Planar graphs

Euler’s Formula

Rg

[ | ]
Figure: The Regions of the Planar Representation of a Graph.
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Planar graphs

Euler’s Formula

Theorem 2

Let G be a connected planar simple graph with e edges and v vertices.

Let r be the number of regions in a planar representation of G. Then
r=e—uv+2.
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Planar graphs

Euler’s Formula

Corollary 3

If G is a connected planar simple graph with m edges and n vertices,
and n > 3 and no circuits of length 3, then m < 2n — 4.
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Planar gra

Proof

» G divides the plane into regions, say r of them.
» The degree of each region is at least four?.

> Note that the sum of the degrees of the regions is exactly twice the
number of edges in the graph®.

4
no multiple edges, no loops and no simple cycles of length 3

5
because each edge occurs on the boundary of a region exactly twice
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Planar graphs

Proof

» G divides the plane into regions, say r of them.

v

The degree of each region is at least four.

> Note that the sum of the degrees of the regions is exactly twice the
number of edges in the graph®.

P> Because each region has degree greater than or equal to 4, it
follows that: 2m =) deg(R) > 4r.

» Hence, 2m > 4r or simply r < 7. Using Euler’s formula, we
obtain m —n +2 < 7.
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Planar graphs

Proof

» G divides the plane into regions, say r of them.

v

The degree of each region is at least four.

> Note that the sum of the degrees of the regions is exactly twice the
number of edges in the graph®.

P> Because each region has degree greater than or equal to 4, it
follows that: 2m =) deg(R) > 4r.

» Hence, 2m > 4r or simply r < 7. Using Euler’s formula, we
obtain m —n +2 < 7.
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Kuratowski’s theorem

Kuratowski’s theorem

Theorem 4

A graph is nonplanar if and only if it contains a subgraph
homeomorphic to K33 or Ks.

N AANS

D
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s theorem

6
Taken from https://tinyurl.com/yyd5cq8g
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Kuratowski’s theorem

Example K33

f e

This graph is nonplanar, since it contains K33 as a subgraph: the parts
are {a,g,d} and {b,c,e}.
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Example (3
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Trees

Lemma 5
If T is a tree, and has n vertices, then its number of edges is
m=mn—1.

Taken from Rosen’s book (pg 752).
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1. Basis step:
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Proof

1. Basis step:
» When n =1, a tree with n = 1 vertex has no edges. Indeed, m =n —1=0.

2. Assumption step:

> Let’s assume that every tree with n = k vertices has m = k — 1 edges, where k is
a positive integer.
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edges.
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edges.
> Let’s suppose that v is a leaf” of T. Let w be the parent of v.
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Proof

1. Basis step:

» When n =1, a tree with n = 1 vertex has no edges. Indeed, m =n —1=0.
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a positive integer.

3. Inductive step:

» Suppose that a tree T has n = k + 1 vertices, we want to prove that T" has k
edges.

> Let’s suppose that v is a leaf” of T. Let w be the parent of v.

» Remove v from T and the edge connecting w to v. It produces a tree T' with k

vertices®.

7
It must exist because the tree is finite

8
T'is still connected and has no simple circuits.
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edges.
> Let’s suppose that v is a leaf” of T. Let w be the parent of v.
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Proof

1. Basis step:

» When n =1, a tree with n = 1 vertex has no edges. Indeed, m =n —1=0.

2. Assumption step:

> Let’s assume that every tree with n = k vertices has m = k — 1 edges, where k is
a positive integer.

3. Inductive step:

» Suppose that a tree T has n = k + 1 vertices, we want to prove that T" has k
edges.

> Let’s suppose that v is a leaf” of T. Let w be the parent of v.

» Remove v from T and the edge connecting w to v. It produces a tree T' with k
verticesS.

»> By the assumption hypothesis, as 7" has k vertices, it has k — 1 edges.

» 1t follows that T has k edges because it has one more edge than T’ (the edge
connecting v and w).

]

7
It must exist because the tree is finite

8
T'is still connected and has no simple circuits.
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» Discrete Mathematics and Its Applications. Rosen, K.H. 2012.
McGraw-Hill.

» Chapter 10. Graphs:
Section 10.2: Graph Terminology and Special Types of Graphs.
Section 10.7: Planar Graphs.

» Chapter 11. Trees:
Section 11.1: Introduction to Trees.
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