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Non-homogeneous recurrence

Non-homogeneous recurrence1

Theorem 1

fn = f
′

n + f
′′

n

If {f ′′
n} is a particular solution of the non-homogeneous linear

recurrence relation with constant coefficients:

fn = c1 · fn−1 + c2 · fn−2 + · · ·+ ck · fn−k + g(n)

then every solution is of the form {f ′
n + f

′′
n}, where {f ′

n} is a solution
of the associated homogeneous recurrence relation.

1Proof available at [Rosen, 2015. pg 521].
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Non-homogeneous recurrence

Non-homogeneous recurrence

Solve next non-homogeneous recurrence with initial condition f0 = 0,
f1 = 2 and f2 = 7:

fn = 6 · fn−2 + 4 · fn−3 + 2n (1)
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Non-homogeneous recurrence

Non-homogeneous recurrence

Solve next non-homogeneous recurrence with initial condition f0 = 0, f1 = 2
and f2 = 7:

fn = 6 · fn−2 + 4 · fn−3 + 2n (1)

I f
′
n = 6 · fn−2 + 4 · fn−3

1. Caractheristic equations and its roots:

x3 − 6x− 4 = 0

(x+ 2)(x2 − 2x− 2) = 0

x1 = −2, x2 = 1 +
√

3, x3 = 1−
√

3

2. General form of the solution:

f
′

n = α1 · (−2)n + α2 · (1 +
√

3)n + α3 · (1−
√

3)n
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Non-homogeneous recurrence

Non-homogeneous recurrence

Solve next non-homogeneous recurrence with initial condition f0 = 0, f1 = 2
and f2 = 7:

fn = 6 · fn−2 + 4 · fn−3 + 2n (1)

I g(n) = 2n, so:
f

′′
n = p0 · 2n (2)

I Plug (2) in (1) becomes:

p0 · 2n = 6 · (p0 · 2n−2) + 4 · (p0 · 2n−3) + 2n

p0 = −1 (3)

I Finally, (3) in (2):
f

′′
n = −2n
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Non-homogeneous recurrence

Non-homogeneous recurrence

Solve next non-homogeneous recurrence with initial condition f0 = 0, f1 = 2
and f2 = 7:

fn = 6 · fn−2 + 4 · fn−3 + 2n (1)

I According to Theorem 1:
fn = α1 · (−2)n + α2 · (1 +

√
3)n + α3 · (1−

√
3)n − 2n

3 Initial condition equations and their solutions:
f0 = α1 · (−2)0 + α2 · (1 +

√
3)0 + α3 · (1−

√
3)0 − 20 = 0

f1 = α1 · (−2)1 + α2 · (1 +
√

3)1 + α3 · (1−
√

3)1 − 21 = 2

f2 = α1 · (−2)2 + α2 · (1 +
√

3)2 + α3 · (1−
√

3)2 − 22 = 7
...

4 Final answer:
...
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Tiling

Example 12

Suppose you are trying to tile a 1 x n walkway with 4 different types of
tiles: a red 1x1 tile, a green 1x1 tile, a blue 1x1 tile, and a grey 2x1
tile...

a) Set up and explain a recurrence relation for the number of
different tilings for a sidewalk of length n.

b) What is the solution of this recurrence relation?

c) How long must the walkway be in order to have more than 1000
different tiling possibilities?

2from https://tinyurl.com/y6wj64bd
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Tiling

Example 1

Suppose you have a tiling of length n. This can be built from:

1. a tiling of length n− 1 followed by a single tile; OR

2. a tiling of length n− 2 followed by a double tile.
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Tiling

Example 1

Suppose you have a tiling of length n. This can be built from:

1. a tiling of length n− 1 followed by a single tile; OR

2. a tiling of length n− 2 followed by a double tile.

b bb

b bb b bbb bb b bb

21 n-1n-2 n3

n-1 n-1 n-1 n-2
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Tiling

Example 1

b bb

b bb b bbb bb b bb

21 n-1n-2 n3

n-1 n-1 n-1 n-2

I Let Tn be the number of different ways of tiling a 1 x n space.
Then for n ≥ 3:

Tn = 3 · Tn−1 + 1 · Tn−2 (1)
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Tiling

Example 1

I Let Tn be the number of different ways of tiling a 1 x n space.
Then for n ≥ 3:

Tn = 3 · Tn−1 + Tn−2 (1)

I There are 3 possibilities to fill a 1x1 walkway (n = 1) and 10 to fill
a 2x1 (n = 2) walkway, so initial conditions are T1 = 3 and
T2 = 10.

I Then by (1):
T3 = 3 · T2 + T1 = 3 · 10 + 3 = 33
T4 = 3 · T3 + T2 = 3 · 33 + 10 = 109
T5 = 3 · T4 + T3 = 3 · 109 + 33 = 360
T6 = 3 · T5 + T4 = 3 · 360 + 109 = 1189
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Tiling

Example 2

We want to tile the n x 1 strip with 2 x 1 and 1 x 1 tiles, using 2 x 1
tiles of orange color and 1 x 1 tiles of three colors: yellow, light-green
and dark green. Let Tn be the number of such tilings in which no
yellow tiles are next to each other. Determine the formula for Tn be
setting up a recurrence equation...
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Tiling

Example 2

b bb

b bb b bbb bb b bb

21 n-1n-2 n3

n-1 n-1 n-1 n-2

b bb n-2 b bb n-3b bb n-2

n-3
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Tiling

Example 2

b bb

b bb b bbb bb b bb

21 n-1n-2 n3

n-1 n-1 n-1 n-2

b bb n-2 b bb n-3b bb n-2

n-3

Tn = 2 · Tn−1 + 3 · Tn−2 + 1 · Tn−3

Initial conditions

T0 = Empty tile = 1
T1 = Y, LG and DG = 3
T2 = O, LG-Y, DG-Y, . . . = 9
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Red Ridding Hood problem

Red Ridding Hood problem

http://www.cs.ucr.edu/~acald013/public/tmp/rrh.pdf
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