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Proof by induction

Example 1

Use mathematical induction to show that
1424224 ... 42 =97t _1

for all nonnegative integers n.

1. Basis step: For n =0, 20 =1 =2! — 1 is true!
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Proof by induction

Example 1

Use mathematical induction to show that
1424224 ... 42 =97t _1

for all nonnegative integers n.
1. Basis step: For n =0, 20 =1 =2! — 1 is true!

2. Assumption step: Let n =k, so
142422 4. 42k =9kl

holds...
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Proof by induction

Example 1

Use mathematical induction to show that
1424224 ... 42 =97t _1
for all nonnegative integers n.

1. Basis step: For n =0, 20 =1 =2! — 1 is true!

2. Assumption step: Let n =k, so
142422 4. 42k =9kl

holds...
3. Inductive step: Let’s solve for n = k + 1,

142422 4. 2kt = olkHl+1 _q
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Proof by induction

Example 1

3 Inductive step: Let’s solve for n =k + 1,

1+2+22+..+2k+1;2(k+1)+1_1
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Proof by induction

Example 1

3 Inductive step: Let’s solve for n =k + 1,

2

1+2+22+..+2k+1:2(k+1)+1_1

14+24224 . 42k p okt Zokt2
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Proof by induction

Example 1

3 Inductive step: Let’s solve for n =k + 1,

2

1+2+22+..+2k+1:2(k+1)+1_1

14+24224 . 42k p okt Zokt2

ok+1l _ 1 4 ok+1 2 ok+2 _
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Proof by induction

Example 1

3 Inductive step: Let’s solve for n =k + 1,
1+2+22+.._~_2k+1 ;2(1€+1)+1_1
1424224 42k poktl Zokt2

ok+1l _ 1 4 ok+1 2 ok+2 _

2.2k+1_1;2k+2_1
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Proof by induction

Example 1

3 Inductive step: Let’s solve for n =k + 1,
1+2+22+.._~_2k+1 ;2(1€+1)+1_1
142422 4. 2k p okt Zokt2

ok+1l _ 1 4 ok+1 Zook+2 _q
9.9k+1 _ 1 Lok+2

oF+2 1 —9ok+2 _ 1
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Proof by induction

Example 2
Prove the following statement by induction:

n-(n+1)-2n+1)

1422432+ +n? = .

1x2x3

; !
G 18 true!

1. Basis step: Forn=1,1=
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Proof by induction

Example 2

Prove the following statement by induction:

n-(n+1)-2n+1)
6

1422432+ +n? =

% is true!

2. Assumption step: Let n =k, so

1. Basis step: Forn=1,1=

ke (k+1)-(2k+1)

1+22 43+ + k= G

holds...
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Proof by induction

Example 2
Prove the following statement by induction:

n-(n+1)-2n+1)

1422432+ +n? = .

1. Basis step: Forn=1,1= % is true!

2. Assumption step: Let n =k, so
k-(k+1)-(2k+1)
6

1+22 43+ + k=

holds...
3. Inductive step: Let’s solve for n = k + 1,

o B+ ((k+1)+1)- 2 (E+1)+1)
6

142243+ 4 (k+1)
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Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,

22 (k1) ((h+1)+1)- (2 (k+1)+1)
6

1+2°+3% 4+ (k+1)
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Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
k+1)-(E+1)+1)-(2-(k+1)+1)

142243824+ (k+1)2 =

k+1)-(k+2)-(2k+2+1
1+22+32+--~+k2+(k+1)2;( +1) +6) Qk+2+1)
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Proof by induction

(k+1)-(E+1)+1)-(2-(k+1)+1)

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
142243824+ (k+1)2 =
o2 (k+1)-(k+2)-(2k+2+1)
6

2 (1) (k+2) (2k+3)
6

1+224+3% 4+ -+ K+ (k+1)° =
+1)?

k-(k+1)-(2k+1)
; +(k
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Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
22 (B+1)-(k+1)+1)-(2-(k+1)+1)

1+2°+3% 4+ (k+1)
2 (k+1)-(k+2)-(2k+2+1)
B 6

22 (E+1)- (k+2)- (2k+3)

6

(k+1)-(k+2)-(2k+3)
6

1+22+32 4+ k2 + (k+1)°

k-(k+1)6.(2k+1)+(k+1)
k-(k+1) - (2k+1)+6(k+1)?
6

I~
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Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
22 (B+1)-(k+1)+1)-(2-(k+1)+1)

1+2°+3% 4+ (k+1)
2 (k+1)-(k+2)-(2k+2+1)
B 6

22 (E+1)- (k+2)- (2k+3)

6

(k+1)-(k+2)-(2k+3)
6

1+22+32 4+ k2 + (k+1)°
k-(k+1)6.(2k:+1)+(k+1)
k-(k+1) - (2k+1)+6(k+1)?
6
(k+1)-(k-(2k+1)+6(k+1)) = (k+1)-(k+2)- (2k+3)

I~

January 14, 2019

Discussion 02

CS111 (Winter’19)

6 /26




Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
k+1)-(E+1)+1)-(2-(k+1)+1)

14224324 4 (k+1)% <
1 +22 1824 k24 (4 12 2 (k+1)-(kz+26)~(2k+2+1)
k-(k+1)6.(2k+1)+(k+1)2; (k+1)-(k22)-(2k+3)
k-(k+1) - (2k+1)+6(k+1)? 2 (k+1)-(k+2)-(2k+3)
6 6

(k+1)-(k-(2k+1)+6(k+1)) = (k+1)-(k+2)- (2k+3)

(k+1)- K2+ Tk +6) = (k+1)-(k+2) - (2k +3)
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Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k 4+ 1,
k+1)-(E+1)+1)-(2-(k+1)+1)

14224324 4 (k+1)% <
1 +22 1824 k24 (4 12 2 (k+1)-(kz+26)~(2k+2+1)
k-(k+1)6.(2k+1)+(k+1)2; (k+1)-(k22)-(2k+3)
k-(k+1) - (2k+1)+6(k+1)? 2 (k+1)-(k+2)-(2k+3)
6 6

(k+1)-(k-(2k+1)+6(k+1)) = (k+1)-(k+2)- (2k+3)

(k+1)- K2+ Tk +6) = (k+1)-(k+2) - (2k +3)
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arithms

Exponential functions
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arithms

Logarithmic functions
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Logarithms

Theorems

Theorem 1
Let b be a positive real number and x and y real numbers. Then,

1 b = b% . bY, and
2. (b7 = 6%,
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Logarithms

Theorems

Theorem 2
Let b be a real number greater than 1. Then,

1. logy(zy) = logy « + logy y whenever x and y are positive real
numbers, and

2. logy(a¥) = ylog, © whenever x is a positive real number and y is a
real number.
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Logarithms

Theorems

Theorem 3
Let a and b be real numbers greater than 1, and let x be a positive real

number. Then,

_ logyx
 logya-

1. log, x
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Asymptotic notation

Big-O notation

Definition 3.1
Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers. We say that f(z) is O(g(z)) if
there are constants C' and k such that,

[f(z)] < Clg()|

whenever « > k. [This is read as “f(z) is big-oh of g(z).”]
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Asymptotic notation

Big-Q2 notation

Definition 3.2
Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers. We say that f(z) is Q(g(x)) if
there are positive constants C' and k such that,

[f(@)] = Clg()|

whenever « > k. [This is read as “f(z) is big-omega of g(x).”]
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Asymptotic notation

Big-© notation

Definition 3.3
Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that f(z) is O(g(z)) if

f(x) is O(g(x)) and f(x) is Q(g(x)).
Also note that f(x) is ©(g(x)) iif there are real numbers C; and C»
and a positive real number k such that,

Cilg(a)] < |f (@) < Calg(x)]

whenever z > k. [This is read as “f(z) is big-theta of g(z).”]
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Asymptotic notation !
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!Great additional resources at https://tinyurl.com/o5luvgp
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Growth of functions
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Execution time

Complexity of algorithms

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.
Complexity Terminology
o) Constant complexity
®(logn) Logarithmic complexity
®(n) Linear complexity
®(n logn) Linearithmic complexity
Onb) Polynomial complexity
O ("), where b > 1 Exponential complexity
O(n!) Factorial complexity
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Execution time

Example 1

» Give a big-O estimate for the number of operations (where an
operation is an addition or a multiplication) used in this segment
of an algorithm.

t:=0

fori :=1to3
for j :=1to4
t:=t+ij
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Execution time

Example 1

» The statement t := t + ij is executed just 12 times, so the
number of operations is O(1). (Specifically, thereare just 24
additions or multiplications.)

t:=0

fori :=1t03
for j :=1to4
t:=t+1ij
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Execution time

Example 2

> Give a big-O estimate the number of operations, where an
operation is a comparison or a multiplication, used in this segment
of an algorithm (ignoring comparisons used to test the conditions
in the for loops, where aq,as, ..., a, are positive real numbers).

m:=0
fori .=1ton
for j:=i+1ton
m ;= max(a;a;, m)
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Execution time

Example 2

» The nesting of the loops implies that the assignment statement is
2
executed roughly %5 times. Therefore the number of operations is

O(n?).

m:=0
fori :=1ton
for j =i+ 1ton
m = max(a;a;, m)
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Example 3

n(n+1)
2
> O(n?)
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