
CS/MATH 111, Discrete Structures - Fall 2018.
Discussion 02 - Proof by Induction, Logarithms,

Asymptotic Notation and Execution Time.

Andres, Sara, Elena

University of California, Riverside

January 14, 2019

CS111 (Winter’19) Discussion 02 January 14, 2019 1 / 26

Proof by induction

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

CS111 (Winter’19) Discussion 02 January 14, 2019 2 / 26

Proof by induction

Example 1
Use mathematical induction to show that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.

1. Basis step: For n = 0, 20 = 1 = 21 − 1 is true!

2. Assumption step: Let n = k, so

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1

holds...

3. Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 = 2(k+1)+1 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 3 / 26

Proof by induction

Example 1
Use mathematical induction to show that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.

1. Basis step: For n = 0, 20 = 1 = 21 − 1 is true!

2. Assumption step: Let n = k, so

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1

holds...

3. Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 = 2(k+1)+1 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 3 / 26

Proof by induction

Example 1
Use mathematical induction to show that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.

1. Basis step: For n = 0, 20 = 1 = 21 − 1 is true!

2. Assumption step: Let n = k, so

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1

holds...

3. Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 = 2(k+1)+1 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 3 / 26

Proof by induction

Example 1

3 Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 ?
= 2(k+1)+1 − 1

1 + 2 + 22 + · · ·+ 2k + 2k+1 ?
= 2k+2 − 1

2k+1 − 1 + 2k+1 ?
= 2k+2 − 1

2 · 2k+1 − 1
?
= 2k+2 − 1

2k+2 − 1 = 2k+2 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 4 / 26

Proof by induction

Example 1

3 Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 ?
= 2(k+1)+1 − 1

1 + 2 + 22 + · · ·+ 2k + 2k+1 ?
= 2k+2 − 1

2k+1 − 1 + 2k+1 ?
= 2k+2 − 1

2 · 2k+1 − 1
?
= 2k+2 − 1

2k+2 − 1 = 2k+2 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 4 / 26

Proof by induction

Example 1

3 Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 ?
= 2(k+1)+1 − 1

1 + 2 + 22 + · · ·+ 2k + 2k+1 ?
= 2k+2 − 1

2k+1 − 1 + 2k+1 ?
= 2k+2 − 1

2 · 2k+1 − 1
?
= 2k+2 − 1

2k+2 − 1 = 2k+2 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 4 / 26

Proof by induction

Example 1

3 Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 ?
= 2(k+1)+1 − 1

1 + 2 + 22 + · · ·+ 2k + 2k+1 ?
= 2k+2 − 1

2k+1 − 1 + 2k+1 ?
= 2k+2 − 1

2 · 2k+1 − 1
?
= 2k+2 − 1

2k+2 − 1 = 2k+2 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 4 / 26

Proof by induction

Example 1

3 Inductive step: Let’s solve for n = k + 1,

1 + 2 + 22 + · · ·+ 2k+1 ?
= 2(k+1)+1 − 1

1 + 2 + 22 + · · ·+ 2k + 2k+1 ?
= 2k+2 − 1

2k+1 − 1 + 2k+1 ?
= 2k+2 − 1

2 · 2k+1 − 1
?
= 2k+2 − 1

2k+2 − 1 = 2k+2 − 1

CS111 (Winter’19) Discussion 02 January 14, 2019 4 / 26

Proof by induction

Example 2
Prove the following statement by induction:

1 + 22 + 32 + · · ·+ n2 =
n · (n + 1) · (2n + 1)

6

1. Basis step: For n = 1, 1 = 1×2×3
6 is true!

2. Assumption step: Let n = k, so

1 + 22 + 32 + · · ·+ k2 =
k · (k + 1) · (2k + 1)

6

holds...

3. Inductive step: Let’s solve for n = k + 1,

1+22 +32 + · · ·+(k+1)2 =
(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

CS111 (Winter’19) Discussion 02 January 14, 2019 5 / 26

Proof by induction

Example 2
Prove the following statement by induction:

1 + 22 + 32 + · · ·+ n2 =
n · (n + 1) · (2n + 1)

6

1. Basis step: For n = 1, 1 = 1×2×3
6 is true!

2. Assumption step: Let n = k, so

1 + 22 + 32 + · · ·+ k2 =
k · (k + 1) · (2k + 1)

6

holds...

3. Inductive step: Let’s solve for n = k + 1,

1+22 +32 + · · ·+(k+1)2 =
(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

CS111 (Winter’19) Discussion 02 January 14, 2019 5 / 26

Proof by induction

Example 2
Prove the following statement by induction:

1 + 22 + 32 + · · ·+ n2 =
n · (n + 1) · (2n + 1)

6

1. Basis step: For n = 1, 1 = 1×2×3
6 is true!

2. Assumption step: Let n = k, so

1 + 22 + 32 + · · ·+ k2 =
k · (k + 1) · (2k + 1)

6

holds...

3. Inductive step: Let’s solve for n = k + 1,

1+22 +32 + · · ·+(k+1)2 =
(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

CS111 (Winter’19) Discussion 02 January 14, 2019 5 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Proof by induction

Example 2
3 Inductive step: Let’s solve for n = k + 1,

1 + 22 + 32 + · · ·+ (k + 1)2
?
=

(k + 1) · ((k + 1) + 1) · (2 · (k + 1) + 1)

6

1 + 22 + 32 + · · ·+ k2 + (k + 1)2
?
=

(k + 1) · (k + 2) · (2k + 2 + 1)

6

k · (k + 1) · (2k + 1)

6
+ (k + 1)2

?
=

(k + 1) · (k + 2) · (2k + 3)

6

k · (k + 1) · (2k + 1) + 6(k + 1)2

6

?
=

(k + 1) · (k + 2) · (2k + 3)

6

(k + 1) · (k · (2k + 1) + 6(k + 1))
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (2k2 + 7k + 6)
?
= (k + 1) · (k + 2) · (2k + 3)

(k + 1) · (k + 2) · (2k + 3) = (k + 1) · (k + 2) · (2k + 3)

CS111 (Winter’19) Discussion 02 January 14, 2019 6 / 26

Logarithms

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

CS111 (Winter’19) Discussion 02 January 14, 2019 7 / 26

Logarithms

Exponential functions
A-8 Appendix 2 / Exponential and Logarithmic Functions

10

9

8

7

6

5

4

3

2

1

0 1 2

y = 5 x

y

x

y = 2 x

y =
x1

2

FIGURE 1 Graphs of the Exponential Functions to the Bases 1
2 , 2, and 5.

THEOREM 2 Let b be a real number greater than 1. Then

1. logb(xy) = logb x + logb y whenever x and y are positive real numbers, and
2. logb(x

y) = y logb x whenever x is a positive real number and y is a real number.

Proof: Because logb(xy) is the unique real number with blogb(xy) = xy, to prove part 1 it suffices
to show that blogb x+logb y = xy. By part 1 of Theorem 1, we have

blogb x+logb y = blogb xblogb y

= xy.

To prove part 2, it suffices to show that by logb x = xy . By part 2 of Theorem 1, we have

by logb x = (blogb x)y

= xy.

The following theorem relates logarithms to two different bases.

THEOREM 3 Let a and b be real numbers greater than 1, and let x be a positive real number. Then

loga x = logb x/logb a.

Proof: To prove this result, it suffices to show that

bloga x · logb a = x.

CS111 (Winter’19) Discussion 02 January 14, 2019 8 / 26

Logarithms

Logarithmic functions

Appendix 2 / Exponential and Logarithmic Functions A-9

3

2

1

1 2 3 4 5

y = log x

x

y

FIGURE 2 The Graph of f (x) = log x.

By part 2 of Theorem 1, we have

bloga x · logb a = (blogb a)loga x

= aloga x

= x.

This completes the proof.

Because the base used most often for logarithms in this text is b = 2, the notation log x is
used throughout the test to denote log2 x.

The graph of the function f (x) = log x is displayed in Figure 2. From Theorem 3, when a
base b other than 2 is used, a function that is a constant multiple of the function log x, namely,
(1/ log b) log x, is obtained.

Exercises

1. Express each of the following quantities as powers of 2.

a) 2 · 22 b) (22)3 c) 2(22)

2. Find each of the following quantities.
a) log2 1024 b) log2 1/4 c) log4 8

3. Suppose that log4 x = y where x is a positive real number.
Find each of the following quantities.
a) log2 x b) log8 x c) log16 x

4. Let a, b, and c be positive real numbers. Show that alogb c =
clogb a .

5. Draw the graph of f (x) = bx for all real numbers x if b

is
a) 3. b) 1/3. c) 1.

6. Draw the graph of f (x) = logb x for positive real numbers
x if b is
a) 4. b) 100. c) 1000.

CS111 (Winter’19) Discussion 02 January 14, 2019 9 / 26

Logarithms

Theorems

Theorem 1
Let b be a positive real number and x and y real numbers. Then,

1. bx+y = bx · by, and
2. (bx)y = bx·y.

CS111 (Winter’19) Discussion 02 January 14, 2019 10 / 26

Logarithms

Theorems

Theorem 2
Let b be a real number greater than 1. Then,

1. logb(xy) = logb x + logb y whenever x and y are positive real
numbers, and

2. logb(x
y) = y logb x whenever x is a positive real number and y is a

real number.

CS111 (Winter’19) Discussion 02 January 14, 2019 11 / 26

Logarithms

Theorems

Theorem 3
Let a and b be real numbers greater than 1, and let x be a positive real
number. Then,

1. loga x = logb x
logb a

.

CS111 (Winter’19) Discussion 02 January 14, 2019 12 / 26

Asymptotic notation

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

CS111 (Winter’19) Discussion 02 January 14, 2019 13 / 26

Asymptotic notation

Big-O notation

Definition 3.1
Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that f(x) is O(g(x)) if
there are constants C and k such that,

|f(x)| ≤ C|g(x)|

whenever x > k. [This is read as “f(x) is big-oh of g(x).”]

CS111 (Winter’19) Discussion 02 January 14, 2019 14 / 26

Asymptotic notation

Big-Ω notation

Definition 3.2
Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that f(x) is Ω(g(x)) if
there are positive constants C and k such that,

|f(x)| ≥ C|g(x)|

whenever x > k. [This is read as “f(x) is big-omega of g(x).”]

CS111 (Winter’19) Discussion 02 January 14, 2019 15 / 26

Asymptotic notation

Big-Θ notation

Definition 3.3
Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that f(x) is Θ(g(x)) if
f(x) is O(g(x)) and f(x) is Ω(g(x)).
Also note that f(x) is Θ(g(x)) iif there are real numbers C1 and C2

and a positive real number k such that,

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)|

whenever x > k. [This is read as “f(x) is big-theta of g(x).”]

CS111 (Winter’19) Discussion 02 January 14, 2019 16 / 26

Asymptotic notation

Asymptotic notation 1

1Great additional resources at https://tinyurl.com/o5lwvgp
CS111 (Winter’19) Discussion 02 January 14, 2019 17 / 26

https://tinyurl.com/o5lwvgp

Execution time

Outline

Proof by induction

Logarithms

Asymptotic notation

Execution time

CS111 (Winter’19) Discussion 02 January 14, 2019 18 / 26

Execution time

Growth of functions

3.2 The Growth of Functions 211

EXAMPLE 7 In Section 4.1, we will show that n < 2n whenever n is a positive integer. Show that this
inequality implies that n is O(2n), and use this inequality to show that log n is O(n).

Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of this inequality shows that

log n < n.

It follows that

log n is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because

logb n = log n

log b
<

n

log b

whenever n is a positive integer. We take C = 1/ log b and k = 1 as witnesses. (We have used
Theorem 3 in Appendix 2 to see that logb n = log n/ log b.) ▲

As mentioned before, big-O notation is used to estimate the number of operations needed to
solve a problem using a specified procedure or algorithm. The functions used in these estimates
often include the following:

1, log n, n, n log n, n2, 2n, n!
Using calculus it can be shown that each function in the list is smaller than the succeeding
function, in the sense that the ratio of a function and the succeeding function tends to zero
as n grows without bound. Figure 3 displays the graphs of these functions, using a scale for
the values of the functions that doubles for each successive marking on the graph. That is, the
vertical scale in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.
CS111 (Winter’19) Discussion 02 January 14, 2019 19 / 26

Execution time

Complexity of algorithms
226 3 / Algorithms

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

�(1) Constant complexity

�(log n) Logarithmic complexity

�(n) Linear complexity

�(n log n) Linearithmic complexity

�(nb) Polynomial complexity

�(bn), where b > 1 Exponential complexity

�(n!) Factorial complexity

An algorithm has polynomial complexity if it has complexity �(nb), where b is an integer
with b ≥ 1. For example, the bubble sort algorithm is a polynomial-time algorithm because
it uses �(n2) comparisons in the worst case. An algorithm has exponential complexity if it
has time complexity �(bn), where b > 1. The algorithm that determines whether a compound
proposition in n variables is satisfiable by checking all possible assignments of truth variables
is an algorithm with exponential complexity, because it uses �(2n) operations. Finally, an
algorithm has factorial complexity if it has �(n!) time complexity. The algorithm that finds all
orders that a traveling salesperson could use to visit n cities has factorial complexity; we will
discuss this algorithm in Chapter 9.

TRACTABILITY A problem that is solvable using an algorithm with polynomial worst-case
complexity is called tractable, because the expectation is that the algorithm will produce the
solution to the problem for reasonably sized input in a relatively short time. However, if the
polynomial in the big-� estimate has high degree (such as degree 100) or if the coefficients
are extremely large, the algorithm may take an extremely long time to solve the problem.
Consequently, that a problem can be solved using an algorithm with polynomial worst-case
time complexity is no guarantee that the problem can be solved in a reasonable amount of time
for even relatively small input values. Fortunately, in practice, the degree and coefficients of
polynomials in such estimates are often small.

The situation is much worse for problems that cannot be solved using an algorithm with
worst-case polynomial time complexity. Such problems are called intractable. Usually, but not
always, an extremely large amount of time is required to solve the problem for the worst cases
of even small input values. In practice, however, there are situations where an algorithm with a
certain worst-case time complexity may be able to solve a problem much more quickly for most
cases than for its worst case. When we are willing to allow that some, perhaps small, number
of cases may not be solved in a reasonable amount of time, the average-case time complexity is
a better measure of how long an algorithm takes to solve a problem. Many problems important
in industry are thought to be intractable but can be practically solved for essentially all sets of
input that arise in daily life. Another way that intractable problems are handled when they arise
in practical applications is that instead of looking for exact solutions of a problem, approximate
solutions are sought. It may be the case that fast algorithms exist for finding such approximate so-
lutions, perhaps even with a guarantee that they do not differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algorithm exists for solving
them. Such problems are called unsolvable (as opposed to solvable problems that can be
solved using an algorithm). The first proof that there are unsolvable problems was provided by
the great English mathematician and computer scientist Alan Turing when he showed that the
halting problem is unsolvable. Recall that we proved that the halting problem is unsolvable in
Section 3.1. (A biography of Alan Turing and a description of some of his other work can be
found in Chapter 13.)

CS111 (Winter’19) Discussion 02 January 14, 2019 20 / 26

Execution time

Example 1

I Give a big-O estimate for the number of operations (where an
operation is an addition or a multiplication) used in this segment
of an algorithm.

3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n

t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n

m := max(aiaj , m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k

starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k

than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S �= 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj }

CS111 (Winter’19) Discussion 02 January 14, 2019 21 / 26

Execution time

Example 1

I The statement t := t + ij is executed just 12 times, so the
number of operations is O(1). (Specifically, thereare just 24
additions or multiplications.)

3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n

t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n

m := max(aiaj , m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k

starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k

than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S �= 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj }

CS111 (Winter’19) Discussion 02 January 14, 2019 22 / 26

Execution time

Example 2

I Give a big-O estimate the number of operations, where an
operation is a comparison or a multiplication, used in this segment
of an algorithm (ignoring comparisons used to test the conditions
in the for loops, where a1, a2, . . . , an are positive real numbers).

3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n

t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n

m := max(aiaj , m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k

starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k

than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S �= 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj }

CS111 (Winter’19) Discussion 02 January 14, 2019 23 / 26

Execution time

Example 2

I The nesting of the loops implies that the assignment statement is
executed roughly n2

2 times. Therefore the number of operations is
O(n2).

3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n

for j := 1 to n

t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n

for j := i + 1 to n

m := max(aiaj , m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n

t := t + i

i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexity O(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine
the number of multiplications used to find x2k

starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k

than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S �= 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence of n integers a1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n

for j := i + 1 to n

for k := i + 1 to j

mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj }

CS111 (Winter’19) Discussion 02 January 14, 2019 24 / 26

Execution time

Example 3

I n(n+1)
2

I O(n2)

CS111 (Winter’19) Discussion 02 January 14, 2019 25 / 26

Reference

Reference

I Discrete Mathematics and Its Applications. Rosen, K.H. 2012.
McGraw-Hill.
Appendix 2: Exponential and Logarithmic functions.
Chapter 3: Algorithms.
Section 3.2: The Growth of Functions.
Section 3.3: Complexity of Algorithms.

CS111 (Winter’19) Discussion 02 January 14, 2019 26 / 26

	Proof by induction
	Logarithms
	Asymptotic notation
	Execution time
	Reference

