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Bipartite graph

Bipartite graph

Definition 1.1
A simple graph G is called bipartite if its vertex set V can be
partitioned into two disjoint sets V1 and V2 such that every edge in the
graph connects a vertex in V1 and a vertex in V2.
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Bipartite graph

Bipartite graph

I Bipartite graphs are equivalent to two-colorable graphs.

I All acyclic graphs are bipartite.

I A cyclic graph is bipartite iff all its cycles are of even length.
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Examples

656 10 / Graphs
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FIGURE 6 The n-cube Qn, n = 1, 2, 3.

Bipartite Graphs

Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets
such that each edge connects a vertex in one of these subsets to a vertex in the other subset.
For example, consider the graph representing marriages between men and women in a village,
where each person is represented by a vertex and a marriage is represented by an edge. In this
graph, each edge connects a vertex in the subset of vertices representing males and a vertex in
the subset of vertices representing females. This leads us to Definition 5.

DEFINITION 6 A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint
sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2
(so that no edge in G connects either two vertices in V1 or two vertices in V2). When this
condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.

In Example 9 we will show that C6 is bipartite, and in Example 10 we will show that K3 is
not bipartite.

EXAMPLE 9 C6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets
V1 = {v1, v3, v5} and V2 = {v2, v4, v6}, and every edge of C6 connects a vertex in V1 and a
vertex in V2. ▲

EXAMPLE 10 K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint
sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices
could not be connected by an edge, but in K3 each vertex is connected to every other vertex by
an edge. ▲

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

V1 V2
v1
v3

v5

v2
v4

v6

FIGURE 7 Showing That C6 Is
Bipartite.
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e d

H

f c

FIGURE 8 The Undirected Graphs G and H .
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FIGURE 8 The Undirected Graphs G and H .G: Yes (See {a, b, d} and {c, e, f, g}).
H: No (See {a, b, f})
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EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graph Km,n is a graph that has its vertex
set partitioned into two subsets of m and n vertices, respectively with an edge between two
vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
The complete bipartite graphs K2,3, K3,3, K3,5, and K2,6 are displayed in Figure 9. ▲

K2,3 K3,3

K3,5 K2,6

FIGURE 9 Some Complete Bipartite Graphs.

Bipartite Graphs and Matchings

Bipartite graphs can be used to model many types of applications that involve matching the
elements of one set to elements of another, as Example 14 illustrates.

EXAMPLE 14 Job Assignments Suppose that there are m employees in a group and n different jobs that
need to be done, where m ≥ n. Each employee is trained to do one or more of these n jobs. We
would like to assign an employee to each job. To help with this task, we can use a graph to model
employee capabilities. We represent each employee by a vertex and each job by a vertex. For
each employee, we include an edge from that employee to all jobs that the employee has been
trained to do. Note that the vertex set of this graph can be partitioned into two disjoint sets, the
set of employees and the set of jobs, and each edge connects an employee to a job. Consequently,
this graph is bipartite, where the bipartition is (E, J ) where E is the set of employees and J is
the set of jobs. We now consider two different scenarios.

First, suppose that a group has four employees: Alvarez, Berkowitz, Chen, and Davis;
and suppose that four jobs need to be done to complete Project 1: requirements, architecture,
implementation, and testing. Suppose that Alvarez has been trained to do requirements and
testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has
been trained to do requirements, architecture, and implementation; and Davis has only been
trained to do requirements. We model these employee capabilities using the bipartite graph in
Figure 10(a).

Second, suppose that a group has second group also has four employees: Washington, Xuan,
Ybarra, and Ziegler; and suppose that the same four jobs need to be done to complete Project 2 as
are needed to complete Project 1. Suppose that Washington has been trained to do architecture;
Xuan has been trained to do requirements, implementation, and testing;Ybarra has been trained
to do architecture; and Ziegler has been trained to do requirements, architecture and testing. We
model these employee capabilities using the bipartite graph in Figure 10(b).

To complete Project 1, we must assign an employee to each job so that every job has an
employee assigned to it, and so that no employee is assigned more than one job. We can do this
by assigning Alvarez to testing, Berkowitz to implementation, Chen to architecture, and Davis
to requirements, as shown in Figure 10(a) (where blue lines show this assignment of jobs).

To complete Project 2, we must also assign an employee to each job so that every job has
an employee assigned to it and no employee is assigned more than one job. However, this is

Figure: Complete Bipartite Graphs.
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Perfect matching

Perfect matching

I A perfect matching of a graph is a matching (i.e., an independent
edge set) in which every vertex of the graph is incident to exactly
one edge of the matching.

I A perfect matching is therefore a matching containing n
2 edges

(the largest possible)1, meaning perfect matchings are only
possible on graphs with an even number of vertices.

1
http://mathworld.wolfram.com/PerfectMatching.html
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Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

Washington Xuan Ybarra Ziegler

requirements architecture implementation testing

(a) (b)

FIGURE 10 Modeling the Jobs for Which Employees Have Been Trained.

impossible because there are only two employees, Xuan and Ziegler, who have been trained for
at least one of the three jobs of requirements, implementation, and testing. Consequently, there
is no way to assign three different employees to these three job so that each job is assigned an
employee with the appropriate training. ▲

Finding an assignment of jobs to employees can be thought of as finding a matching in the
graph model, where a matching M in a simple graph G = (V ,E) is a subset of the set E of
edges of the graph such that no two edges are incident with the same vertex. In other words, a
matching is a subset of edges such that if {s, t} and {u, v} are distinct edges of the matching,
then s, t , u, and v are distinct. A vertex that is the endpoint of an edge of a matching M is said to
be matched in M; otherwise it is said to be unmatched. A maximum matching is a matching
with the largest number of edges. We say that a matching M in a bipartite graph G = (V , E)

with bipartition (V1, V2) is a complete matching from V1 to V2 if every vertex in V1 is the
endpoint of an edge in the matching, or equivalently, if |M| = |V1|. For example, to assign jobs
to employees so that the largest number of jobs are assigned employees, we seek a maximum
matching in the graph that models employee capabilities. To assign employees to all jobs we
seek a complete matching from the set of jobs to the set of employees. In Example 14, we found
a complete matching from the set of jobs to the set of employees for Project 1, and this matching
is a maximun matching, and we showed that no complete matching exists from the set of jobs
to the employees for Project 2.

We now give an example of how matchings can be used to model marriages.

EXAMPLE 15 Marriages on an Island Suppose that there are m men and n women on an island. Each person
has a list of members of the opposite gender acceptable as a spouse. We construct a bipartite
graph G = (V1, V2) where V1 is the set of men and V2 is the set of women so that there is an
edge between a man and a woman if they find each other acceptable as a spouse. A matching in
this graph consists of a set of edges, where each pair of endpoints of an edge is a husband-wife
pair. A maximum matching is a largest possible set of married couples, and a complete matching
of V1 is a set of married couples where every man is married, but possibly not all women. ▲

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE MATCHINGS We
now turn our attention to the question of determining whether a complete matching from V1
to V2 exists when (V1, V2) is a bipartition of a bipartite graph G = (V , E). We will introduce a
theorem that provides a set of necessary and sufficient conditions for the existence of a complete
matching. This theorem was proved by Philip Hall in 1935.

Hall’s marriage theorem
is an example of a
theorem where obvious
necessary conditions are
sufficient too.

THEOREM 5 HALL’S MARRIAGE THEOREM The bipartite graph G = (V , E) with bipartition
(V1, V2) has a complete matching from V1 to V2 if and only if |N(A)| ≥ |A| for all subsets
A of V1.

Figure: Modeling Job Assignments for Which Employees Have Been Trained.
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Perfect matching

Hall’s Theorem2

Theorem 1
Let G = (X,Y ) be a bipartite graph. Then X has a perfect macthing
into Y iif for all T ⊆ X, the inequality |T | ≤ |N(T )| holds. Where
N(T ) is the set of all neighbors of the vertices in T . In other words,
y ∈ Y is an element of N(T ) iif there is a vertex x ∈ T so that (x, y) is
an edge.

2Proof available at [Rosen, 2015. pg 660].
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Perfect matching

Example

A B C D

1 2 3 4 5 6

Let T = {B,C}, N(T ) = {3}, |T | = 2 and |N(T )| = 1.
Violates Hall’s theorem.
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Perfect matching

Example

A B C D E

1 2 3 4 5

Let T = {B,C,D}, N(T ) = {1, 3}, |T | = 3 and |N(T )| = 2.
Violates Hall’s theorem.
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Perfect matching

Example

You are given two bipartite graph G and H below. For each graph
determine whether it has a perfect matching. Justify your answer,
either by listing the edges that are in the matching or use Hall’s
Theorem to show that the graph does not have a perfect matching.
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Perfect matching

Example

G: Yes, see {0, a},{1, b},{2, d},{3, c},{4, f} and {5, e}.
H: No, Let T = {a, c, e}, then N(T ) = {0, 2}, therefore |T | � |N(T )|

which violates Hall’s theorem.
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Planar graphs

Planar graphs

Is it possible to join these houses and utilities so that none of the
connections cross?

718 10 / Graphs

27. Find a route with the least total airfare that visits each of
the cities in this graph, where the weight on an edge is the
least price available for a flight between the two cities.

New
York

Detroit

DenverLos Angeles

San
Francisco

$329

$359
$349

$189

$229
$279

$379
$209

$69

$179

28. Find a route with the least total airfare that visits each of
the cities in this graph, where the weight on an edge is the
least price available for a flight between the two cities.

New
York

Boston
Seattle

New OrleansPhoenix

$389

$379
$319

$2
39

$429

$309

$409

$109

$229
$119

29. Construct a weighted undirected graph such that the total
weight of a circuit that visits every vertex at least once
is minimized for a circuit that visits some vertices more
than once. [Hint: There are examples with three vertices.]

30. Show that the problem of finding a circuit of minimum
total weight that visits every vertex of a weighted graph
at least once can be reduced to the problem of finding a
circuit of minimum total weight that visits each vertex
of a weighted graph exactly once. Do so by constructing
a new weighted graph with the same vertices and edges
as the original graph but whose weight of the edge con-
necting the vertices u and v is equal to the minimum total
weight of a path from u to v in the original graph.

∗31. The longest path problem in a weighted directed graph
with no simple circuits asks for a path in this graph such
that the sum of its edge weights is a maximum. De-
vise an algorithm for solving the longest path problem.
[Hint: First find a topological ordering of the vertices of
the graph.]

10.7 Planar Graphs

Introduction

Consider the problem of joining three houses to each of three separate utilities, as shown in
Figure 1. Is it possible to join these houses and utilities so that none of the connections cross?
This problem can be modeled using the complete bipartite graph K3,3. The original question
can be rephrased as: Can K3,3 be drawn in the plane so that no two of its edges cross?

In this section we will study the question of whether a graph can be drawn in the plane
without edges crossing. In particular, we will answer the houses-and-utilities problem.

There are always many ways to represent a graph. When is it possible to find at least one
way to represent this graph in a plane without any edges crossing?

FIGURE 1 Three Houses and Three Utilities.
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Planar graphs

Planar graphs

Definition 3.1
A graph is called planar if it can be drawn in the plane without any
edges crossing. Such a drawing is called a planar representation of the
graph.

CS111 (Winter’19) Discussion 9 March 11, 2019 21 / 44



Planar graphs

Examples

Figure: The K4 graph and its drawn with no crossings.
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Examples

Figure: A Q3 graph.
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Examples

Figure: The planar representation of a Q3 graph.
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Planar graphs

Euler’s Formula

I A planar representation of a graph splits the plane into regions3

(including an unbounded region.)

I Euler showed that all planar representations of a graph split the
plane into the same number of regions.

I There is a relationship between the number of regions, vertices
and edges.

3regions = faces.
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Planar graphs

Euler’s Formula

R1

R2

R3

R4

R5

R6

Figure: The Regions of the Planar Representation of a Graph.
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Planar graphs

Euler’s Formula

Theorem 2
Let G be a connected planar simple graph with e edges and v vertices.
Let r be the number of regions in a planar representation of G. Then
r = e− v + 2.
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Planar graphs

Euler’s Formula

Corollary 3

If G is a connected planar simple graph with m edges and n vertices,
and n ≥ 3 and no circuits of length 3, then m ≤ 2n− 4.
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Planar graphs

Proof

I G divides the plane into regions, say r of them.

I The degree of each region is at least four4.

I Note that the sum of the degrees of the regions is exactly twice the
number of edges in the graph5.

I Because each region has degree greater than or equal to 4, it
follows that: 2m =

∑
deg(R) ≥ 4r.

I Hence, 2m ≥ 4r or simply r ≤ m
2 . Using Euler’s formula, we

obtain m− n + 2 ≤ m
2 .

I It follows that m
2 ≤ n− 2. This shows that m ≤ 2n− 4.

�

4
no multiple edges, no loops and no simple cycles of length 3

5
because each edge occurs on the boundary of a region exactly twice
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Kuratowski’s theorem

Kuratowski’s theorem

Theorem 4
A graph is nonplanar if and only if it contains a subgraph
homeomorphic to K3,3 or K5.

a

b

c

d

e

f

1

2

34

5
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Kuratowski’s theorem

Some examples6

6
Taken from https://tinyurl.com/yyd5cq8g
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Kuratowski’s theorem

Example K3,3

726 10 / Graphs

15. Prove Corollary 3.

16. Suppose that a connected bipartite planar simple graph
has e edges and v vertices. Show that e ≤ 2v − 4 if v ≥ 3.

∗17. Suppose that a connected planar simple graph with e

edges and v vertices contains no simple circuits of length
4 or less. Show that e ≤ (5/3)v − (10/3) if v ≥ 4.

18. Suppose that a planar graph has k connected components,
e edges, and v vertices. Also suppose that the plane is
divided into r regions by a planar representation of the
graph. Find a formula for r in terms of e, v, and k.

19. Which of these nonplanar graphs have the property that
the removal of any vertex and all edges incident with that
vertex produces a planar graph?
a) K5 b) K6 c) K3,3 d) K3,4

In Exercises 20–22 determine whether the given graph is
homeomorphic to K3,3.

20.
a b

f

d

g

e

h

c

21. a b c

g h

d e f

22. a

g

b

c

e

fh

k

l

j

i

d

In Exercises 23–25 use Kuratowski’s theorem to determine
whether the given graph is planar.

23. a b c d

e f g h

24.
a b c

dh

i

g

f

e

25. b c

da
g

ef

The crossing number of a simple graph is the minimum num-
ber of crossings that can occur when this graph is drawn in the
plane where no three arcs representing edges are permitted to
cross at the same point.
26. Show that K3,3 has 1 as its crossing number.

∗∗27. Find the crossing numbers of each of these nonplanar
graphs.
a) K5 b) K6 c) K7
d) K3,4 e) K4,4 f ) K5,5

∗28. Find the crossing number of the Petersen graph.
∗∗29. Show that if m and n are even positive integers, the cross-

ing number of Km,n is less than or equal to mn(m − 2)

(n − 2)/16. [Hint: Place m vertices along the x-axis so
that they are equally spaced and symmetric about the ori-
gin and place n vertices along the y-axis so that they are
equally spaced and symmetric about the origin. Now con-
nect each of the m vertices on the x-axis to each of the
vertices on the y-axis and count the crossings.]

The thickness of a simple graph G is the smallest number of
planar subgraphs of G that have G as their union.
30. Show that K3,3 has 2 as its thickness.

∗31. Find the thickness of the graphs in Exercise 27.
32. Show that if G is a connected simple graph with v vertices

and e edges, where v ≥ 3, then the thickness of G is at
least �e/(3v − 6)�.

∗33. Use Exercise 32 to show that the thickness of Kn is at
least �(n + 7)/6� whenever n is a positive integer.

34. Show that if G is a connected simple graph with v vertices
and e edges, where v ≥ 3, and no circuits of length three,
then the thickness of G is at least �e/(2v − 4)�.

35. Use Exercise 34 to show that the thickness of Km,n, where
m and n are not both 1, is at least �mn/(2m + 2n − 4)�
whenever m and n are positive integers.

∗36. Draw K5 on the surface of a torus (a doughnut-shaped
solid) so that no edges cross.

∗37. Draw K3,3 on the surface of a torus so that no edges cross.
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the removal of any vertex and all edges incident with that
vertex produces a planar graph?
a) K5 b) K6 c) K3,3 d) K3,4

In Exercises 20–22 determine whether the given graph is
homeomorphic to K3,3.

20.
a b

f

d

g

e

h

c

21. a b c

g h

d e f

22. a

g

b

c

e

fh

k

l

j

i

d

In Exercises 23–25 use Kuratowski’s theorem to determine
whether the given graph is planar.

23. a b c d

e f g h

24.
a b c

dh

i

g

f

e

25. b c

da
g

ef

The crossing number of a simple graph is the minimum num-
ber of crossings that can occur when this graph is drawn in the
plane where no three arcs representing edges are permitted to
cross at the same point.
26. Show that K3,3 has 1 as its crossing number.

∗∗27. Find the crossing numbers of each of these nonplanar
graphs.
a) K5 b) K6 c) K7
d) K3,4 e) K4,4 f ) K5,5

∗28. Find the crossing number of the Petersen graph.
∗∗29. Show that if m and n are even positive integers, the cross-

ing number of Km,n is less than or equal to mn(m − 2)

(n − 2)/16. [Hint: Place m vertices along the x-axis so
that they are equally spaced and symmetric about the ori-
gin and place n vertices along the y-axis so that they are
equally spaced and symmetric about the origin. Now con-
nect each of the m vertices on the x-axis to each of the
vertices on the y-axis and count the crossings.]

The thickness of a simple graph G is the smallest number of
planar subgraphs of G that have G as their union.
30. Show that K3,3 has 2 as its thickness.

∗31. Find the thickness of the graphs in Exercise 27.
32. Show that if G is a connected simple graph with v vertices

and e edges, where v ≥ 3, then the thickness of G is at
least �e/(3v − 6)�.

∗33. Use Exercise 32 to show that the thickness of Kn is at
least �(n + 7)/6� whenever n is a positive integer.

34. Show that if G is a connected simple graph with v vertices
and e edges, where v ≥ 3, and no circuits of length three,
then the thickness of G is at least �e/(2v − 4)�.

35. Use Exercise 34 to show that the thickness of Km,n, where
m and n are not both 1, is at least �mn/(2m + 2n − 4)�
whenever m and n are positive integers.

∗36. Draw K5 on the surface of a torus (a doughnut-shaped
solid) so that no edges cross.

∗37. Draw K3,3 on the surface of a torus so that no edges cross.

This graph is nonplanar, since it contains K3,3 as a subgraph: the parts
are {a, g, d} and {b, c, e}.
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Trees

Trees

Lemma 5
If T is a tree, and has n vertices, then its number of edges is
m = n− 1.

Taken from Rosen’s book (pg 752).
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Trees

Proof

1. Basis step:

I When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n− 1 = 0.

2. Assumption step:

I Let’s assume that every tree with n = k vertices has m = k− 1 edges, where k is
a positive integer.

3. Inductive step:

I Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k
edges.

I Let’s suppose that v is a leaf7 of T . Let w be the parent of v.
I Remove v from T and the edge connecting w to v. It produces a tree T ′ with k

vertices8.
I By the assumption hypothesis, as T ′ has k vertices, it has k − 1 edges.
I It follows that T has k edges because it has one more edge than T ′ (the edge

connecting v and w).
�

7
It must exist because the tree is finite

8
T ′is still connected and has no simple circuits.
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