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Abstract

The Doubly Connected Edge List (DCEL) is an edge-list structure widely used in
spatial applications, primarily for planar topological and geometric computations.
However, it is also applicable to various types of data, including 3D models and
geographic data. An essential operation is the overlay operation, which combines
the DCELs of two input polygon layers and can easily support spatial queries
on polygons like the intersection, union, and difference between these layers.
However, existing techniques for spatial overlay operations suffer from two main
limitations. First, they fail to handle many large datasets practically used in real
applications. Second, they cannot handle arbitrary spatial lines that practically
form polygons, e.g., city blocks, but they are given as a set of scattered lines. This
work proposes a distributed and scalable way to compute the overlay operation
and its related supported queries. Our operations also support arbitrary spatial
lines through a scalable polygonization process. We address the issues of efficiently
distributing the lines and overlay operators and offer various optimizations that
improve performance. Our experiments demonstrate that the proposed scalable
solution can efficiently compute the overlay of large real datasets.
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Fig. 1 Components of the DCEL structure.

1 Introduction

The use of spatial data structures is ubiquitous in many spatial applications, ranging
from spatial databases to computational geometry, robotics, and geographic informa-
tion systems [1]. Spatial data structures have been used to improve the efficiency of
various spatial queries, spatial joins, nearest neighbors, Voronoi diagrams, and robot
motion planning. Examples include grids [2], R-trees [3, 4], and quadtrees [5]. Edge-
list structures are also typically utilized in applications as topological computations
in computational geometry [6].

The most commonly used data structure in the edge-list family is the Doubly Con-
nected Edge List (DCEL). A DCEL [7, 8] is a data structure that collects topological
information for the edges, vertices, and faces contained by a surface in the plane.
The DCEL and its components represent a planar subdivision of that surface. In a
DCEL, the faces (polygons) represent non-overlapping areas of the subdivision; the
edges are boundaries that divide adjacent faces; and the vertices are the point end-
ings between adjacent edges (see Figure 1). In addition to providing geometric and
topological information, a DCEL can be enhanced to provide further information. For
instance, a DCEL storing a thematic map for vegetation can also store the type and
height of the trees around the area [6].

The DCEL data structure has been used in various applications. For instance, the
use of connected edge lists is cardinal to support polygon triangulations and their
applications in surveillance (the Art Gallery Problem [9, 10]) and robot motion plan-
ning (Minkowski sums [6, 11]). DCELs are also used to perform polygon unions (for
example, on printed circuit boards to support the simplification of connected com-
ponents in an efficient manner [12]) as well as the computation of silhouettes from
polyhedra [12, 13] (applied frequently in computer vision and 3D graphics modeling
[14]).
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Edge-list data structures have also been utilized to create thematic overlay maps.
In this problem, the input contains the DCELs of two polygonal layers, each capturing
geospatial information and attribute data for different phenomena, and the output is
the DCEL of an overlay structure that combines the two layers into one. In many
application areas, such as ecology, economics, and climate change, it is important to
be able to join the input layers and match their attributes in order to unveil patterns
or anomalies in data that can be highly impacted by location. Several operations
can then be easily computed given an overlay; for instance, the user may want to
find the intersection between the input layers (e.g., corresponding to soil types and
evapotranspiration of plants), identify their difference (or symmetric difference), or
create their union.

Spatial databases use spatial indexes (R-tree [3, 4]) to store and query polygons.
Such methods use the filter and refine approach where a complex polygon is abstracted
by its Minimum Bounding Rectangle (MBR); this MBR is then inserted in the R-
tree index. Finding the intersection between two polygon layers, each indexed by a
separate R-tree, is then reduced to finding the pairs of MBRs from the two indexes that
intersect (filter part). This is followed by the refine part, which, given two MBRs that
intersect, needs to compute the actual intersections between all the polygons these two
MBRs contain. While MBR intersection is simple, computing the intersection between
a pair of complex real-life polygons is a rather expensive operation (a typical 2020 US
census tract is a polygon with hundreds of edges). Moreover, using DCELs for overlay
operations offers the additional advantage that the result is also a DCEL, which can
be directly used for subsequent operations. For example, one may want to create an
overlay between the intersection of two layers with another layer, and so on.

Even though the DCEL has important advantages for implementing overlay oper-
ations, current approaches are sequential in nature. This is problematic, considering
layers with thousands of polygons. For example, the layer representing the 2020 US
census tracts contains around 72K polygons; the execution for computing the overlay
over such a large file crashed on a stock laptop. To the best of our knowledge, there
is no scalable solution for computing overlays over DCEL layers.

In addition to the scalability issue, it is common in some applications that spatial
polygons are provided in the form of scattered line segments, e.g., a set of road seg-
ments that form city blocks. Such data can be very large and appear in applications
in urban planning, geo-targeted advertising, economic and demographic studies, etc.
Yet, existing polygon overlay techniques cannot handle them directly at scale. In that
setting, extracting the DCEL subdivision’s faces (polygons) is not straightforward.
To generate all of a subdivision’s faces, the DCEL constructor must invoke a scalable
polygonization procedure, which extracts all closed polygons formed by a collection of
planar line segments in a subdivision.

This paper describes the design and implementation of a scalable and distributed
approach to compute the overlay between two DCEL layers. We first present a par-
titioning strategy that guarantees that each partition collects the required data from
each layer DCEL to work independently, thus minimizing duplication and transmission
costs over 2D polygons. In addition, we present a merging procedure that collects all
partition results and consolidates them in the final combined DCEL. Furthermore, we
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extend the overlay method to support input polygons in scattered line segments form
by integrating a scalable and distributed polygon extraction approach. Our solutions
have been implemented in a parallel framework (i.e., Apache Spark).

Implementing a distributed overlay DCEL creates novel problems. First, there are
potential challenges that are not present in the sequential DCEL execution. For exam-
ple, the implementation should consider holes, which could lay on different partitions,
and they need to be connected with their components residing in other partitions so
as not to compromise the combined DCEL’s correctness. It should also consider the
dangle and cut edges resulting from the polygonization process and their intersection
with other polygon layers. Secondly, once a distributed overlay DCEL has been built,
it must support a set of binary overlay operators (namely union, intersection, dif-
ference and symmetric difference) in a transparent manner. That is, such operators
should take advantage of the scalability of the overlay DCEL and be able to run also
in a parallel fashion. Additionally, users should be able to apply the various operators
multiple times without rebuilding the overlay DCEL data structure.

This paper extends our previous work in [15]. The main new contributions are
summarized as follows. First, we introduce a new spatial partitioner, based on the
kd-tree partitioning strategy, for constructing overlay DCELs (section 4.1.2). Since it
better utilizes the data distributions in optimizing DCEL partitions, it leads to notice-
ably improved performance. The new partitioning strategy contrasts with the original
strategy that employed space-partitioning techniques based on quadtrees. Second, we
enable overlay DCELs to take scattered and noisy line segments as input instead of
being limited to clean polygon data. This builds on our work on scalable polygoniza-
tion [16] to enable overlays of real datasets that consist of massive sets of line segments
that cannot currently be handled by any existing technique. We also provide addi-
tional experiments, to quantify the benefits of the kd-tree based strategy, as well as
the performance on the datasets with large volumes of line segments

The rest of this paper is organized as follows. Section 2 presents related work, while
Section 3 discusses the basics of DCEL and the sequential algorithm. In Section 4, we
present the partitioning schemes that enable parallel implementation of the overlay
computation among DCEL layers; we also discuss the challenges presented in the
DCEL computations by distributing the data and how to solve them efficiently. Two
important optimizations are introduced in Section 5. Section 6 details the polygon
extraction process for line input adaptation. It also extends the overlay method by
supporting the overlay of dangle and cut edges. An extensive experimental evaluation
appears in Section 7, while Section 8 concludes the paper.

2 Related Work

The fundamentals of the DCEL data structure were introduced in the seminal paper
by Muller and Preparata [7]. The advantages of DCELs are highlighted in [6, 8].
Examples of using DCELs for diverse applications appear in [17–19].

Our related work lies in two main areas, namely, overlay operations and polygo-
nization, each discussed below.
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Overlay operations. Once the overlay DCEL is created by combining two layers,
overlay operators like union, difference, etc., can be computed in linear time to the
number of faces in their overlay [19]. Currently, few sequential implementations are
available: LEDA [20], Holmes3D [21] and CGAL [12]. Among them, CGAL is an open-
source project widely used for computational geometry research. To the best of our
knowledge, there is no scalable implementation for the computation of DCEL overlay.

While there is a lot of work on using spatial access methods to support spatial
joins, intersections, unions etc. in a parallel way (using clusters, multicores or GPUs),
[22–28] these approaches are different in two ways: (i) after the index filtering, they
need a time-consuming refine phase where the operator (union, intersection etc.) has
to be applied on each pair of (typically) complex spatial objects; (ii) if the operator
changes, we need to run the filter/refine phases from scratch (in contrast, the same
overlay DCEL can be used to run all operators.)

Polygonization. All available implementations for the polygonization procedure
are built upon the JTS/GEOS implementation [29, 30]. While the JTS library is used
in many modern distributed spatial analytics systems [31], including Hadoop-GIS [32],
SpatialHadoop [33], GeoSpark [34], and SpatialSpark [35], the implementation of the
polygonization algorithm [29] has not been extended to work in these distributed
frameworks.

A data-parallel algorithm for polygonizing a collection of line segments represented
by a data-parallel bucket PMR quadtree, a data-parallel R-tree, and a data-parallel
R+-tree was proposed in [36]. The algorithm starts by partitioning the data using
the given data-parallel structure (i.e., the PMR quadtree, the R-tree, or the R+-tree),
beginning the polygonization at the leaf nodes. The polygonization starts by finding
each line segment’s left and right polygon identifiers in each node. Then children
nodes are merged into their direct parent node, at which redundancy is resolved. This
procedure is recursively called until the root node is reached, where all line segments
have their final left and right polygon identifiers assigned.

Each merging operation partitions the input data into a smaller number of parti-
tions. At each iteration, the number of partitions decreases while the number of line
segments entering and exiting each iteration remains constant. This implies that at
the last iteration, the whole input line segment dataset must be processed on only
one partition at the root node level. In the era of big data, where the use of commod-
ity machines as worker nodes is common, this becomes a bottleneck when processing
datasets of hundreds of millions of records on one machine. While our work and the
approach in [36] rely on iterative data re-partitioning, [36] uses a constant input to
each iteration while significantly decreasing the number of partitions. On the other
hand, our input size decreases as the number of partitions decreases (thus avoiding
processing the whole dataset on a single partition).

3 Preliminaries

The DCEL [7] structure is used to represent an embedding of a planar subdivision in
the plane. It provides efficient manipulation of the geometric and topological features
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Table 1 Vertex records.

vertex coordinates incident edge

a (0,2) b⃗a

b (2,0) d⃗b

c (2,4) d⃗c
...

...
...

Table 2 Face records.

boundary hole
face edge list

f1 a⃗b nil

f2 f⃗e nil
f3 nil nil

Table 3 Half-edge records.

half-edge origin face twin next prev

f⃗e f f2 e⃗f e⃗c d⃗f

c⃗a c f1 a⃗c a⃗b d⃗c

d⃗b d f3 b⃗d b⃗a f⃗d
...

...
...

...
...

...

of spatial objects (polygons, lines, and points) using faces, edges, and vertices, respec-
tively. A DCEL uses three tables (relations) to store records for the faces, edges, and
vertices, respectively.

An important characteristic is that all these records are defined using edges as the
main component (thus termed an edge-based structure). Examples appear in Tables
1-3, with the subdivision depicted in Figure 1.

An edge corresponds to a straight line segment shared by two adjacent faces (poly-
gons). Each of these two faces will use this edge in its description; to distinguish, each
edge has two half-edges, one for each orientation (direction). It is important to note
that half-edges are oriented counter-clockwise inside each face (Figure 1). A half-edge
is thus defined by its two vertices, one called the origin vertex and the other the target
vertex, clearly specifying the half-edge’s orientation (origin to target). Each half-edge
record contains references to its origin vertex, its face, its twin half-edge, as well as
the next and previous half-edges (using the orientation of its face); see Table 3. These
references are used as keys to the tables that contain the referred attributes.

Figure 1 shows half-edge
−→
fe, its twin(

−→
fe) (which is half-edge

−→
ef), the next(

−→
fe) (half-

edge −→ec) and the prev(
−→
fe) (half-edge

−→
df ). Note the counter-clockwise direction used by

the half-edges comprising face f2. The incidentFace of a half-edge corresponds to the

face that this edge belongs to (for example, incidentFace(
−→
fe) is face f2). In addition,

we note a couple of special half-edges. Dangles are the half-edges with one or both

ends not incident on another half-edge endpoint. Half-edge
−→
fj and its twin are both

considered dangle edges. Cut-Edges are the half-edges connected at both ends but do

not form part of a polygon. The half-edge
−→
dg and its twin are considered cut-edges.

Each vertex corresponds to a record in the vertex table (see Table 1) that contains
its coordinates as well as one of its incident half-edges. An incident half-edge is one
whose target is this vertex. Any of the incident edges can be used; the rest of a vertex’s
incident half-edges can be found easily following the next and twin half-edges.

6



a1 a2

a3a4

b1 b2

b3b4

A1

B1

=⇒
c1

c2

A1

B1

=⇒

a1 a2

a3a4

b1 b2

b3b4

c1

c2

A1

B1

A1B1

Fig. 2 Sequential computations of an overlay of two DCEL layers.

Finally, each record in the faces table contains one of the face’s half edges to
describe the polygon’s outer boundary (following this face’s orientation); see Table
2. All other half-edges for this face’s boundary can be easily retrieved following the
next half-edges in orientation order. In addition to regular faces, there is one face that
covers the area outside all faces; it is called the unbounded face (face f3 in Figure 1).
Since f3 has no boundary, its boundary edge is set to nil in Table 2.

Note that polygons can contain one or more holes (a hole is an area inside the
polygon that does not belong to it). Each such hole is described by one of its half-edges;
this information is stored as a list attribute (hole list) in the faces table where each
element of the list is the half-edge’s id which describes the hole. Note that in Table 2,
this list is empty as there are no holes in any of the faces in the example of Figure 1.

An important advantage of the DCEL structure is that a user can combine two
DCELs from different layers over the same area (e.g., the census tracts from two
different years) and compute their overlay, which is a DCEL structure that combines
the two layers into one. Other operators, like the intersection, difference, etc., can then
be computed from the overlay very efficiently. Given two DCEL layers S1 and S2, a
face f appears in their overlay OV L(S1, S2) if and only if there are faces f1 in S1 and
f2 in S2 such that f is a maximal connected subset of f1∩f2 [6]. This property implies
that the overlay OV L(S1, S2) can be constructed using the half-edges from S1 and S2.

The sequential algorithm [12] to construct the overlay between two DCELs first
extracts the half-edge segments from the half-edge tables and then finds intersection
points between half-edges from the two layers (using a sweep line approach) [6]. The
intersection points found will become new vertices of the resulting overlay. If an exist-
ing half-edge contains an intersection point, it is split into two new half-edges. Using
the list of outgoing and incoming half-edges for the newly added vertices (intersection
points), the algorithm can compute the attributes for the records of the new half-
edges. For example, the list of outgoing and incoming half-edges at each new vertex
will be used to update the next, previous, and twin pointers. Finally, the records of
the faces and the vertices tables are updated with the new information.

Figure 2 illustrates an example of computing the overlay between two DCEL layers
with one face each (A1 and B1 respectively) overlapping the same area. First, intersec-
tion points are identified, and new vertices are created in the overlay (red vertices c1
and c2). Then, new half-edges are created around these new vertices. As a result, face
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Fig. 3 Examples of overlay operators supported by DCEL; results are shown in gray.

A1 is modified (to an L-shaped boundary), as does face B1, while a new face A1B1

is created. Since this new face is the intersection of the boundaries of A1 and B1, its
label contains the concatenation of both face labels. By convention [6], even though
A1 changes its shape, it does not change its label since its new shape is created by its
intersection with the unbounded face of B1; similarly, the new shape of B1 maintains
its original label. These labels are crucial for creating the overlay (and the operators
it supports) as they are used to identify which polygons overlap an existing face.

Once the overlay structure of two DCELs is computed, queries like their intersec-
tion, union, difference, etc. (Figure 3) can be performed in linear time to the number
of faces in the overlay. The space requirement for the overlay structure remains linear
to the number of vertices, edges, and faces. Since an overlay is itself a DCEL, it can
support the traditional DCEL operations (e.g., find the boundary of a face, access a
face from an adjacent one, visit all the edges around a vertex, etc.)

4 Scalable Overlay Construction

This section presents the construction of overlay DCELs, assuming only polygons as
input without scattered line segments. The overlay computation depends on the size
of the input DCELs and the size of the resulting overlay. The DCEL of a planar sub-
division S1 has size O(n1) where n1 = Σ(vertices1+ edges1+ faces1). The sequential
algorithm constructing the overlay of S1 and S2 takes O(n log n+k log n) time, where
n = n1 + n2 and k is the size of their overlay. Note that k depends on how many
intersections occur between the input DCELs, which can be very large [6].
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While the sequential algorithm is efficient with small DCEL layers, it suffers when
the input layers are large and have many intersections. For example, creating the
overlay between the DCELs of two census tracts (from years 2000 and 2010) from
California (each with 7K-8K polygons and 2.7M-2.9M edges) took about 800sec on
an Intel Xeon CPU at 1.70GHz with 2GB of memory (see Section 7). With DCELs
corresponding to the whole US, the algorithm crashed.

Nevertheless, the overlay computation can take advantage of partitioning (and
thus parallelism) by observing that the edges in a given area of one input layer can
only intersect with edges from the same area in the other input layer. One can thus
spatially partition the two input DCELs and then compute the overlay within each
cell; such computations are independent and can be performed in parallel. While this is
a high-level view of our scalable approach, there are various challenges, including how
to deal with edges that cross cells, how to manage the extra complexity introduced
by orphan holes (i.e., when holes and their polygons are in different cells), how and
where to combine partition overlays into a global overlay, as well as how to balance
the computation if one layer is much larger than the other.

4.1 Partition Strategies

While a simple grid could be used to divide the spatial area, our early experiments
demonstrated that this approach leads to unbalanced cells, with some containing
significantly more edges than others, negatively impacting overall performance.

Therefore, an advanced partitioning strategy is better since it adapts to skewed
spatial distributions and helps assign a similar number of edges to each cell. In particu-
lar, we used two partitioning strategies, one based on the quadtree (i.e. space-oriented)
and one on the kd-tree (i.e. data-oriented) indexes.

Note that such tree-based data partitioning involves shuffling all edges; this how-
ever, happens only once. Our experimental evaluation (see Section 7.5) shows that
the data-oriented approach leads to better performance. Nevertheless, in describing
the various challenges (orphan cells and holes, overlay evaluation, and optimizations)
we use the quadtree-based partition since its well-defined space-oriented partitioning
makes the presentation easier.

4.1.1 Quadtree Partition Strategy

The main idea of the quadtree partition strategy is to split the area covered by the
input layers into non-overlapping cells, which can then be processed independently.
A quadtree data structure follows a space-oriented approach, given that it does not
consider each cell’s content at the moment of a possible split. The overall approach
can be summarized in the following steps: (i) Partition the input layers into the index
cells and build local DCEL representations of them at each cell, and (ii) Compute the
overlay of the DCELs at each cell. Overlay operators and other functions can be run
over the local overlays, and local results are collected to generate the final answer.

Note that each input layer is given as a sequence of polygon edges, where each
edge record contains the coordinates of the edge’s vertices (origin and target vertex)
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as well as the polygon id and a hole id in the case that an edge belongs to a hole inside
of a polygon. We assume there are no overlapping or stacked polygons in the dataset.

To quickly build the partitioning quadtree structure, we build a quadtree from
a sample taken from the edges of each layer (1% of the total number of edges in
that layer). We then use the leaves of that quadtree as the cells (partitions) of the
partitioning scheme. These cells will be used to assign the edges of each input layer.
Populated cells are then distributed to the available nodes for processing the overlay
operations.

To support the creation of the quadtree we use the sampling functionalities pro-
vided in the Apache Sedona, an extension available on the Apache Spark platform. It
allows the user to provide a parameter for the number of quadtree leaves; using this
parameter as an approximation, it builds a quadtree; it should be noted that the actual
number of leaves created is typically larger than the parameter provided by the user.
The number of user-requested leaves and the size of the sample are used to compute
the maximum number of entries per node (capacity) during the construction of the
tree. If the node capacity is exceeded, the node is divided into four child nodes with
an equal spatial area, and its data is distributed among the four child nodes. If any
child node has exceeded its capacity, it is further divided into four nodes recursively
and so on, until each node holds at most its computed capacity.

After creating the quadtree from the sample, we use its leaf nodes as the parti-
tioning cells for each layer. Each input layer file is then read from the disk, and all its
edges are inserted into the appropriate cells of the partitioning structure. Note that
the partitioning structure created from the sample is now fixed; no more cells are cre-
ated when the layer edges are assigned to cells. In the rest, we use the term cell and
partition interchangeably.

For this approach to work, it is important that each cell can compute its two
DCELs independently. An edge can be fully contained in a cell, or it can intersect the
cell’s boundary. In the second case, we copy this edge to all cells where it intersects,
but within each cell, we use the part of the edge that lies fully inside the cell. Figure
4 shows an example where four cells and two edges of the upper polygon from layer
A cross the cell borders. Such edges are clipped at the cell borders, introducing new
edges (e.g., edges α′ and α′′ in the Figure 4). Similarly, a polygon that crosses over
a cell is clipped to the cell by introducing artificial edges on the cell’s border (see
face A2 in cell 3 of Figure 4). Such artificial edges are shown in red in the figure. This
allows for the creation of a smaller polygon that is contained within each cell.

For example, polygon A2 is clipped into four smaller polygons as it overlaps all four
cells. The clipping of edges and polygons ensures that each cell has all the needed infor-
mation to complete its DCEL computations. As such computations can be performed
independently, they are sent to different worker nodes to be processed in parallel. The
assignment is delegated to the distributed framework (i.e., Apache Spark).

Once a cell is assigned to a worker node, the sequential algorithm is used to create
a DCEL for each layer (using the cell edges from that layer and any artificial edges,
vertices, and faces created by the clipping procedures above) and then compute the
corresponding (local) overlay for this cell. Using the example from Figure 4, Figure
5 depicts an overview of the process for creating a local overlay DCEL inside cell 2.
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Fig. 4 Partitioning example using input layers A and B over four cells.
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B3
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B3 =⇒

2

A2B3

A2B2

B2

B3

Fig. 5 Local overlay DCEL for cell 2.

Similarly, Figure 6 shows all local overlay DCELs computed at each cell (artificial
edges are shown in red).

Nevertheless, the partitioning creates two problems (not present in the sequential
environment) that need to be addressed. The first is the case where a cell is empty;
it does not intersect with (or contain) any regular edge from either layer. A regular
edge is not part of a hole. This empty cell does not contain any label, and thus, we
do not know which face it may belong to. We term this as the orphan cell problem.
An example is shown in Figure 7, which depicts a face (from one of the input layers)
whose boundary goes over many quadtree cells; orphan cells are shown in grey.

Note that an orphan cell may contain a hole (see Figure 7). In this case, the original
label of the face where the hole belongs (and reported in the hole’s edges) may have
changed during the overlay computation (because it overlapped with a face from the
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Fig. 6 Result of the local overlay DCEL computations.

other layer). However, this new label has not been propagated to the hole edges. We
term this as the orphan hole problem. For simplicity, we focus on the case where a
hole is within one orphan cell, but in the general case, a hole can split among many
such cells.

The issue with both ‘orphan’ problems is the missing labels. In section 4.2, we
propose an algorithm that correctly labels an orphan cell. If this cell contains a hole,
the new label is also used to update the hole edges.

4.1.2 Kd-tree Partition Strategy

The kd-tree based partitioning is a data-oriented approach because it sorts and picks
the middle point inside a cell to locate the split of the future children.

Building and populating the kd-tree partitioning follows a procedure similar to that
of the quadtree, by first building a kd-tree from a sample of the input data. 1% of the
input data is used to build a kd-tree and extract the tree’s structure. The leaves of this
structure are the partition’s cells. We feed the input data into the generated kd-tree
structure to assign each edge to the leaf cell that has the edge within its boundaries.
After the partitioning is done, the construction of the local DCELs for each layer and
the overlay operation is performed in each local cell in the same fashion as described
in section 4.1.1.

4.2 Labeling Orphan Cells and Holes

Assuming a quadtree-based partitioning, to find the label of an orphan cell, we pro-
pose an algorithm that recursively searches the space around the orphan cell until it
identifies a nearby cell that contains an edge(s) of the face that includes the orphan
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Fig. 7 (a) Empty cell and hole examples; (b)-(c)-(d) show three iterations of the proposed solution.

cell and thus acquire the appropriate label information. The quadtree index accommo-
dates this search. Two observations are in order: (1) each cell is a leaf of the quadtree
index (by construction), and (2) each cell has a unique id created by the way this cell
was created; this id effectively provides the lineage (unique path) from the quadtree
root to this leaf.

Recall that the root has four possible children (typically numbered as 0,1,2,3 cor-
responding to the four children NW, NE, SW, and SE). The lineage is the sequence of
these numbers in the path to the leaf. For example, the lineage for the shaded orphan
cell in Figure 7(a) is 03. Further, note that the quadtree is an unbalanced structure,
having more deep leaves where there are more edges. Thus, higher leaves correspond
to larger areas, and deeper leaves correspond to smaller areas (since a cell split is cre-
ated when a cell has more edges than a threshold). After identifying an orphan cell,
the question is where to search for a cell containing an edge. The following Lemma
applies:
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Lemma 1. Given an orphan cell, one of its siblings at the same quadtree level must
contain a regular edge (directly or in its subtree).

This lemma arises from the simple observation that if all three siblings of an orphan
cell are empty, then there is no reason for the quadtree to make this split and create
these four siblings. Based on the lemma, we know that at least one of the three siblings
of the orphan cell can lead us to a cell with an edge. However, these siblings may not
be cells (leaves). Instead of searching each one of them in the quadtree until we reach
their leaves, we want a way to quickly reach their leaves. To do so, we pick the centroid
point of the orphan cell’s parent (which is also one of the corners of the orphan cell).

For example, the parent centroid for the orphan cell 03 is the green point in Figure
7(b). We then query the quadtree to identify which cells (leaves, one from each sibling)
contain this point. We check whether these cells contain an edge; if we find such a
cell, we stop (and use the label in that cell). If all three cells are orphans, we need to
continue the search. An example appears in Figure 7(b), where all three cells (green
in the figure) are also orphans. We first check if any of these orphan cells is a sibling
(has the same parent) of the original cell. In this case that sibling is also a leaf (i.e.
it does not have a subtree) and does need to be explored. The remaining orphans are
therefore at a lower level than the original orphan cell, which means they come from
a sibling that has been split because of some edge. The algorithm picks any of the
remaining orphan cells to continue. In Figure 7(b) all three leaves (green orphan cells)
are at a lower level than the original orphan cell.

One can use different heuristics to pick which of the remaining leaves to use. Below,
we consider the case where we use the deepest cell (i.e., the one with the longest
lineage) among the leaves. This is because we expect this to lead us to the denser areas
of the quadtree index, where there is more chance to find cells with edges. Figure 7
shows a three-iteration run of the algorithm.

During the search process, we keep any orphan cells we discover; after a cell with
an edge (non-orphan cell) is found, the algorithm stops and labels the original orphan
cell and any other orphan cells retrieved in the search with the label found in the non-
orphan cell. Note that if the non-orphan cell contains many labels (because different
faces pass through it), we assign the label of the face that contains the original centroid.

The pseudo-code of the search process can be seen in Algorithms 1 and 2. Another
heuristic we used that is not described here is to follow the highest among the three
orphan cells; i.e. the one with the shorter lineage since this has a larger area and will
thus help us cover more empty space and possibly reach the border of the face faster.

To determine the worst-case performance of the search algorithm, consider that
for an orphan cell, the algorithm performs three point quadtree queries to find the
sibling leaves containing the centroid. It then selects one of these leaves and repeats
the process, querying three points for a new centroid within the siblings of the selected
leaf. This causes the algorithm to explore progressively deeper into the quadtree. In
the worst case, the longest path in the quadtree could result in a time complexity of
O(N). However, in the average case, when the quadtree is balanced, the complexity
is logarithmic.
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Algorithm 1 getNextCellWithEdges algorithm

Require: a quadtree Q and a list of cellsM.
1: function getNextCellWithEdges ( Q,M )
2: C ← orphan cells inM
3: for each orphanCell in C do
4: initialize cellList with orphanCell
5: nextCellWithEdges← nil
6: referenceCorner ← nil
7: done← false
8: while ¬done do
9: c← last cell in cellList

10: cells, corner ← getCellsAtCorner(Q, c)
11: for each cell in cells do
12: nedges← get edge count of cell inM
13: if nedges > 0 then
14: nextCellWithEdges← cell
15: referenceCorner ← corner
16: done← true
17: else
18: if cell.level < orphanCell.level then
19: add cell to cellList
20: end if
21: end if
22: end for
23: end while
24: for each cell in cellList do
25: output(cell,
26: nextCellWithEdges, referenceCorner)
27: remove cell from C
28: end for
29: end for
30: end function

4.3 Answering global overlay queries

Using the local overlay DCELs, we can easily compute the global overlay DCEL;
for that, we need a reduce phase, described below, to remove artificial edges, and
concatenate split edges from all the faces. Using the local overlay DCELs, we can also
compute in a scalable way global operators like intersection, difference, symmetric
difference, etc. For these operators, there is first a map phase that computes the
specific operator on each local DCEL, followed by a reduce phase to remove artificial
edges/added vertices. Figure 8 shows how the intersection overlay operator (A∩B) is
computed, starting with the local DCELs for four cells in Figure 8(a). First, each cell
computes the intersection using its local overlay DCEL as shown in Figure 8(b). This
is a map operation to identify overlay faces that contain both labels from layer A and
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Algorithm 2 getCellsAtCorner algorithm

Require: a quadtree Q and a cell c.
function getCellsAtCorner ( Q, c )

region← quadrant region of c in c.parent
switch region do

case ‘SW’
corner ← left bottom corner of c.envelope

case ‘SE’
corner ← right bottom corner of c.envelope

case ‘NW’
corner ← left upper corner of c.envelope

case ‘NE’
corner ← right upper corner of c.envelope

cells← cells which intersect corner in Q
cells← cells− c
cells← sort cells on basis of their depth
return (cells, corner)

end function

layer B. Each cell can then report every such face that does not include any artificial
edges, like face A1B1 in Figure 8(b); note that these faces are fully included in the cell.

Using a reduce phase, the remaining faces are sent to a master node; in our imple-
mentation, it would be the driver node of the spark application that will (i) remove the
artificial edges, shown in red in the figure and (ii) concatenate edges that were split
because they were crossing cell borders. This is done by pairing faces with the same
label and concatenating their geometries by removing the artificial edges and vertices
added during the partition stage, for example, the two faces with label A2B1 from two
different cells in Figure 8(b) were combined into one face in Figure 8(c). While the
extra vertex was also removed. In section 5.1, we discuss techniques to optimize the
reduce process of combining faces.

For symmetric difference, A△B, the map phase filters faces whose label is a single
layer (A or B). For the difference, A \B, it filters faces with label A. For union A∪B,
all faces in the overlay structure are retrieved.

5 Overlay evaluation optimizations

We now focus on the different optimization aspects regarding the best approach to
compute the boundaries of faces that expand different cells and how to mitigate the
issues of layers with an unbalanced number of edges.

5.1 Optimizations for faces spanning multiple cells

The naive reduce phase described above has the potential for a bottleneck since all
faces, which can be a very large number, are sent to one worker node. From a dis-
tributed perspective, this process follows a typical MapReduce pattern. In the map
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Fig. 8 Example of an overlay operator querying the distributed DCEL.

phase, each worker node identifies and reports faces that are fully contained within its
boundaries, as well as segments of faces that may need to be concatenated with seg-
ments reported by other nodes. These face segments are then sent to a master node,
incurring communication costs as the master must wait for all nodes to report their
segments. In the reduce phase, the master node groups the segments by face ID, sorts
them, and concatenates the parts to form complete, closed faces. One observation is
that faces from different concatenated cells are in contiguous cells. This implies that
faces from a particular cell will be combined with faces from neighboring cells. We will
use this spatial proximity property to reduce the overhead in the central node.

We thus propose an alternative where an intermediate reduce processing step is
introduced. In particular, the user can specify a level in the quadtree structure, mea-
sured as the depth from the root, that can be used to combine cells together. While
it may be challenging to predetermine an optimal level, it can be estimated based on
the input size or the number of partitions. Moreover, Section 7.1 offers recommenda-
tions for suitable values and alternative approaches. Given level i, the quadtree nodes
in that level (at most 4i) will serve as intermediate reducers, collecting the faces from
all the cells below that node. Note: level 0 corresponds to the root, which is the naive
method where all the cells are sent to one node.

By introducing this intermediate step, it is expected that much of the reduce work
can be distributed in a larger number of worker nodes. Nevertheless, there may be
faces that cannot be completed by these intermediate reducers because they span the
borders of the level i nodes. Such faces still have to be evaluated in a master/root node.
From a Map-Reduce standpoint, this alternative functions similarly to the previous
approach but introduces additional reduce operations at an intermediate level. How-
ever, this also introduces new synchronization points, as each intermediate reducer
must wait for its workers to report potential face segments before processing them.
The reducer then either reports completed faces or sends incomplete segments to the
driver for further processing.

Clearly, picking the appropriate level is important. Choosing a level i, i.e., going to
nodes lower in the quadtree structure, implies a larger number of intermediate reducers
and, thus, higher parallelism. However, simultaneously, it increases the number of faces
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that would need to be evaluated by the master/root node. On the other hand, lowering
i reduces parallelism, but fewer faces will need to go to the master/root node.

We also examine another approach to deal with the bottleneck in the naive reduce
phase. This approach re-partitions the faces using the label as the key. Such parti-
tions represent small independent amounts of work since they only combine faces with
the same label that are typically few. Partitions are then shuffled among the available
nodes. The second approach effectively avoids the reduce phase; it has to account for
the cost of the re-partitioning; however, as we will show in the experimental section,
this cost is negligible. From a distributed computing perspective, this alternative intro-
duces a shuffle stage at the beginning, eliminating the need for a reduce operation.
The shuffle ensures that all segments with the same face ID are placed in the same
worker, allowing them to be processed and reported directly.

5.2 Optimizing for unbalanced layers

During the overlay computation, finding the intersections between the half-edges is
the most critical task. In many cases, the number of half-edges from each layer within
a cell can be unbalanced; that is, one of the layers has many more half-edges than the
other.

In our initial implementation, the input sets of half-edges within each cell were
combined into a single dataset, initially ordered by the x-origin of each half-edge.
Then, a sweep-line algorithm is performed, scanning the half-edges from left to right
(in the x-axis). This scanning takes time proportional to the total number of half-
edges. However, if one layer has much fewer half-edges, the running time will still be
affected by the cardinality of the larger dataset.

An alternative approach is to scan the larger dataset only for the x-intervals where
we know that there are half-edges in the smaller dataset. To do so, we order the two
input sets separately. We scan the smaller dataset in x-order and identify x-intervals
occupied by at least one half-edge. For each x-interval, we then scan the larger dataset
using the sweep-line algorithm. This focused approach avoids unnecessary scanning of
the large dataset, for example, areas with no half-edges from the smaller dataset.

6 Scalable Polygon Extraction for Line-based Input

Our discussion so far assumed the input data is a set of clean and closed polygons
in the two input layers to be overlayed. However, several real-world polygons, such
as city blocks formed by individual road segments represented as spatial lines, are
unavailable in the polygonal form. Forming polygons in such cases at a large scale
is non-trivial and takes significant computing cost. This section further extends our
scalable DCEL overlay operations to handle scattered line segments as input through
a scalable polygonization [16] process. Such a feature enables spatial data scientists to
seamlessly exploit a rich set of publicly available datasets, e.g., spatial road networks
worldwide [37, 38].

Building a DCEL data structure from an input of planar line segments extracts
all closed polygons during the invocation of the polygonization procedure. In our work
in [16], we proposed a scalable distributed framework to build a DCEL and extract
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Fig. 9 DCEL Constructor for Polygonization Overview

polygons in parallel from the input line segments. Figure 9 shows an overview of
the DCEL constructor. To create a DCEL data structure from input line segments,
the DCEL constructor undergoes a two-phase paradigm. The Gen Phase, detailed in
Section 6.1, spatially partitions the input lines, generating the subdivision’s vertices
(V ) and half-edges (H), and a subset of the subdivision’s faces (F0). The remain-
ing line segments that are not assigned to a face yet are passed to the subsequent
phase in the form of half-edges or incomplete cycles. An incomplete cycle is a con-
nected half-edge list that is a candidate face. The Rem Phase, detailed in Section 6.2,
generates the subdivision’s remaining faces, Fj , ∀j > 0. Section 6.3 discusses differ-
ent data re-partitioning schemes with a minimal number of iterations to reduce the
workload of the Rem Phase without compromising correctness. The polygonization
procedure produces two outputs: first, a set of closed polygons formed by the input
planar line segments, and second, any edges that are not a part of any polygon, i.e.,
dangle or cut edges. Overlaying the polygons generated with any polygon layer follows
the approaches discussed in sections 4 and 5. In section 6.4, we extend the overlay
approaches to handle overlaying a polygon layer with the remaining edges (the dangle
and cut edges).

6.1 Gen Phase

The Gen phase accepts an input dataset of line segments N and starts by partitioning
the input across the worker nodes in a distributed cluster using a global quadtree
spatial index. Each data partition Pi covers a specific spatial area represented by its
minimum bounding rectangle (MBR) Bi. Figure 10 shows an example of four leaf
nodes of a quadtree built for input spatial line segments. Solid lines represent the line
segments, and dashed lines represent the partitions’ MBRs.

After spatially partitioning the input lines, each partition generates its vertices,
half-edges, and faces (collectively the partition DCEL) using the subset of the dataset
that intersects with the partition’s MBR. The partition vertices are the vertices that
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Fig. 10 Partitioned input spatial lines.

are wholly contained within the partition MBR. On the other hand, the partition half-
edges are any half-edge that intersects with the partition MBR. Partition faces are
the faces that are wholly contained within the MBR of the partition. On each data
partition Pi, the Gen phase undergoes four main procedures; (1) first, generating the
partition vertices and half-edges, (2) second, marking the dangle half-edges, (3) third,
setting the next half-edge pointers for all half-edges and marking the cut edges, (4)
lastly, generating the partition faces.

Step 1: Generating the Partition Vertices and Half-edges.
In the first step, the Gen Phase starts with populating the vertices and the half-edges
RDDs of the DCEL data structure. Each partition Pi receives a subset of the input
dataset that intersects with the partition’s boundary. For every line segment object
o received at partition Pi (o ∈ Pi), two vertices are generated (v1, v2); one for each
endpoint on this line segment (p1, p2). These two vertices objects (v1, v2) are appended
to the vertices RDD in the DCEL data structure. We also generate two half-edges
(h1, h2) for every line segment. The first half-edge h1 has its destination vertex v1, while
the other half-edge h2 has its destination vertex v2. These two half-edges are assigned
as twins. The half-edge h1 is appended to the incident list of the vertex v1. Similarly,
h2 is appended to v2’s incident list. For a half-edge to span multiple partitions, we
check whether it is wholly contained within the partition MBR Bi; if not, and it is
just intersecting, then this half-edge spans multiple partitions. These half-edges are
duplicated on all partitions they intersect with. The remaining attributes of each half-
edge object are assigned in the subsequent steps. The two generated half-edge objects
(h1, h2) are appended to the half-edges RDD in the DCEL data structure. Figure 11
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Fig. 11 DCEL vertices and half-edges.

shows a graphical illustration of the DCEL data structure representing the input lines
after generating the vertices and the half-edges on all data partitions.

Step 2: Marking the Dangle Half-edges.
Dangle half-edges are not part of any face; thus, marking them is essential to exclude
them during the polygonization procedure. To find dangles in the input lines, we use
previously generated information, i.e., information about the vertices and their inci-
dent half-edges. We compute the degree of each vertex v ∈ V populated in the previous
step. A vertex degree is the number of non-dangle half-edges in its incident half-edges
list. If the degree of an arbitrary vertex v is less than or equal to 1 (degree(v) ≤ 1),
then all of v’s incident half-edges and their twins are also dangle half-edges. Mark-
ing any new half-edge as a dangle requires recomputing the degree of the vertices
connected to it. Thus, marking the dangle half-edges is an iterative process. After
the initial run over all vertices and marking the initial dangle half-edges, we reiterate
over the vertices to check for newly found dangle half-edges. We keep iterating until
convergence when no new dangle half-edges are detected.

Step 3: Setting the Half-edges’ Next Pointers, and Marking the Cut
Edges.
The third step is divided into three smaller steps: (a) setting the next half-edge pointer
for each half-edge, (b) marking the cut edges, and (c) updating the next half-edges
accordingly. To set the next pointer for each half-edge, we use information from the
previous two steps, i.e., the vertices incident half-edges and the current dangle half-
edges. For each vertex v ∈ V , we sort its incident half-edges list in clockwise order,
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Fig. 12 DCEL vertices and half-edges after dangle and cut edge removal.

excluding the dangle half-edges. After sorting the incident half-edges list v.incidentH,
for every pair of half-edges v.incidentH[t], v.incidentH[t + 1] in the sorted list, we
assign v.incidentH[t].next to v.incidentH[t+ 1].twin. For the last incident half-edge
in the sorted list v.incidentH[v.incidentH.len − 1], we assign its next half-edge to
v.incidentH[0].twin.

After the initial assignment of the next half-edge pointers, we proceed with the
second sub-step, marking the cut edges. To mark the cut edges, we start our proce-
dure at an arbitrary half-edge hinitial and assign our hcurrent half-edge pointer to it.
We advance the hcurrent pointer at each iteration to the hcurrent’s next (hcurrent =
hcurrent.next), storing all visited half-edges in a list (current cycle). We keep advanc-
ing the hcurrent pointer till we reach one of three cases. (1) We return to the initial
half-edge hinitial, which means a cycle is detected and no cut edge is detected. (2) The
half-edge hcurrent.next is not available, which also means no cut edge is detected. (3)
We find hcurrent.twin in the current cycle, which means that hcurrent and its twin are
both cut edges. Once we reach one of these cases, we mark all visited half-edges as such
and proceed with a new arbitrary half-edge to be hinitial. This process is terminated
when all the partition half-edges are visited.

In the third sub-step, after marking all cut edges, we update the next pointers
while excluding the cut edges. For each vertex v ∈ V , we sort its incident half-edges list
in clockwise order again, now while excluding both the dangle and the cut edge half-
edges. After sorting the incident half-edges list v.incidentH, we re-execute the same
process of the first sub-step, assigning v.incidentH[t].next to v.incidentH[t+1].twin.
Figure 12 shows the DCEL data structure after removing the dangle and cut edges.
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Fig. 13 DCEL faces.

Step 4: Generating the Partition Faces.
Polygonization on each partition Pi starts with selecting an arbitrary half-edge as
our initial half-edge hinitial. We initially assign our hcurrent half-edge pointer to
hinitial. We advance the hcurrent pointer at each iteration to the hcurrent’s next
(hcurrent = hcurrent.next), storing all visited half-edges in a list cycle. We keep advanc-
ing the hcurrent pointer till we reach one of the following cases: (1) We return to the
initial half-edge hinitial, which means that we have found a face. In this case, we add
the found face f to the faces collection F0 and assign h.incidentF = f, ∀h ∈ cycle.
(2) The hcurrent.next is not available, and hcurrent is a half-edge that spans multiple
partitions. In this case, the cycle needs more information from the neighboring parti-
tions to be completed, and the current partition’s data is insufficient to produce this
face. To complete this cycle, we either pass the incomplete cycle into the Rem phase
(the current list cycle), where it collects all incomplete cycles from all partitions and
attempts to join them to form a face. Another approach would be passing the plain
half-edges in this cycle to the next phase. Both approaches are discussed in detail in
Section 6.2. Once we finish processing this cycle, we mark all visited half-edges as
such, clear the cycle, and proceed with a new arbitrary half-edge to be hinitial. This
process is terminated when all the partition half-edges are visited. In Figure 13, the
dotted faces are the faces generated in this phase (Gen Phase).

6.2 Rem Phase

The Rem Phase accepts the remaining half-edges or incomplete cycles as input. To be
included in the remaining half-edges set, a half-edge cannot be a dangle or a cut edge.
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Also, the half-edge should not have been bounded to a face yet. An incomplete cycle
is a sequence of half-edges that acts as a candidate face. This incomplete cycle could
not be completed since their marginal half-edges span multiple partitions.

The Rem Phase is an iterative phase, where each iteration j generates a subset of
faces Fj . The unused input data at iteration j is passed to the next iteration j+1. Faces
generated from the Gen phase and the Rem phase constitute the whole faces of the
subdivision F . In each iteration, the Rem Phase starts with re-partitioning the input
data across the worker nodes using a new set of partitions. This new set of partitions
satisfies the convergence criteria; the new number of partitions (kj) at iteration j
must be less than the number of partitions (kj−1) at iteration j − 1. This criterion
(kj < kj−1) ensures there is an iteration (m) at which the remaining line segments
are re-partitioned to one partition only, where m is the total number of iterations
of the Rem Phase, converging the problem into a sequential one and guaranteeing
the termination of the procedure. After the data re-partitioning, we proceed with
generating a subset of the remaining faces. Two approaches are employed for the
remaining faces generation, depending on the phase input data. The first approach
assumes the phase input is a set of the Remaining Half-edges (RH Approach). While
the second approach assumes the input is a set of the Incomplete Cycles (IC Approach).

RH Approach: Iterate over the Remaining Half-edges.
At each iteration j and on each new data partition, a subset of the remaining half-edges
is received. Duplicate half-edges received on one new partition are merged into a single
half-edge choosing the half-edge with the available next half-edge. We follow the same
procedure of generating faces in the Gen Phase. Starting from an arbitrary half-edge as
our initial half-edge hinitial, we assign our hcurrent half-edge pointer initially to hinitial.
We advance the hcurrent pointer at each iteration to the hcurrent’s next (hcurrent =
hcurrent.next), storing all visited half-edges in a list cycle. We keep advancing the
hcurrent pointer till we reach one of the following cases: (1) We return to the initial
half-edge hinitial, which means that we have found a face. In this case, we add the
found face f to the faces collection Fj and assign h.incidentF = f, ∀h ∈ cycle.
(2) The hcurrent.next is not available, and hcurrent is a half-edge that is not wholly
contained in the new partition MBR. Once we finish processing this cycle, we mark
all visited half-edges as such, clear the cycle, and proceed with a new arbitrary half-
edge to be hinitial. This iteration is terminated when all the remaining half-edges are
visited. All half-edges that have not been assigned to any face yet are passed to the
next iteration. The Rem Phase terminates if (1) there are no more remaining half-
edges, i.e., all non-dangle non-cut edge half-edges are assigned to a face, or (2) the
remaining half-edges have been processed on one partition.

IC Approach: Iterate over the Incomplete Cycles.
At each iteration j, and on each new data partition, a subset of the incomplete
cycles is received. Starting from an arbitrary incomplete cycle cinitial with first half-
edge first(cinitial) and last half-edge last(cinitial), where the first and last half-edges
are the incomplete cycle’s terminal half-edges, we search for a match cmatch in the
remaining incomplete cycles such that the last(cinitial) = first(cmatch). When a
match is found, we merge the two cycles such that the last(cinitial) is now the
last(cmatch). We keep merging cycles till we reach one of the following cases: (1) The
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last(cmatch) = first(cinitial), which means the cycle is now completed. In this case, we
add the found face f to the faces collection Fj and remove all incomplete cycles used
from the set of the incomplete cycles. (2) We can not find a match for the current last
half-edge, and the last half-edge is not wholly contained within the new partition’s
MBR. In this case, the incomplete cycle needs more information from the neighboring
partitions to be completed, and the current partition’s data is insufficient to produce
this face. Once we finish processing this matching process, we mark all visited incom-
plete cycles as such and proceed with a new arbitrary incomplete cycle to be cinitial.
This iteration j is terminated when all the incomplete cycles are visited. All incom-
plete cycles that are not completed yet are passed into the next iteration. The Rem
Phase terminates if (1) there are no more remaining incomplete cycles, i.e., all cycles
have been completed, or (2) the incomplete cycles have been processed on one par-
tition. In Figure 13, the hatched faces are the faces generated in the first iteration
(j = 1) of the Rem Phase.

6.3 Data Partitioning

The quadtree partitioner is used again to distribute the data amongst the worker
nodes across the cluster. In the Gen Phase, the quadtree leaf nodes are used as the
initial data partitions. The output of the Gen Phase, whether the remaining half-edges
or the incomplete cycles, is iteratively re-partitioned into new sets of partitions. Each
iteration set of partitions must satisfy the convergence criterion to ensure that the
Rem Phase will terminate. We employ the same quadtree partitioner to generate the
new partitions. Assume we have a quadtree built on the input line segments of height
L. At the Gen Phase, we use nodes at the leaf level L as our initial data partitions. For
each iteration j in the Rem Phase, we level up in the quadtree and choose different
level nodes, aside from the leaves, to be our current data partitions. We keep leveling
up in the quadtree till we reach the root (l = 0), which means that all data is located
on only one partition (the root). Going up in the quadtree ensures that the number of
partitions at iteration j+1 is less than that at iteration j since the number of nodes at
any arbitrary level l visited at iteration j is more than that at level lchosen, ∀lchosen < l
visited at iteration j + 1.

We always start with the leaf nodes level L in the Gen Phase. Choosing which
levels to visit next in each iteration j is a system parameter. We offer different schemes
for the visited quadtree levels:

1. Going directly to the root node at l = 0 after the leaf nodes, i.e., visiting only
levels L in the Gen and 0 in the Rem phases. However, the experimental evaluation
shows that collecting the data after the Gen phase on one node is prohibitive, and
one worker node will not be able to process the Gen phase’s output.

2. Going 1 Level Up (1LU) each iteration, i.e. if we visit level l at iteration j, we go
to level l − 1 at iteration j + 1. This means the Rem Phase visits all the quadtree
levels resulting in L iterations.

3. Going 2 Levels Up (2LU) each iteration resulting in half the number of iterations
L
2 compared to 1LU.
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Fig. 14 Spatial partitioning of input layers A and B

4. Skipping to the Middle of the tree at level L
2 , then continue going 1 level up for the

remaining levels (M1LU), which will also result in L
2 iterations.

5. Skipping to the Middle of the tree every time, dividing the current level by two
each iteration (MU); this will result in log2(L) iterations.

The goal is to find a re-partitioning scheme with a minimal number of iterations, thus
reducing the workload of the Rem Phase while ensuring that the worker nodes can
process the chunk of the data it receives at each iteration j. The extreme case of
having only one iteration at the Rem Phase will not work since the data is too big to
fit one partition and be processed by only one worker node. On the other hand, the
more unnecessary iterations we have, the more overhead on the system resulting in
higher query latency.

6.4 Overlaying Polygons with Dangle and Cut Edges

The polygonization procedure produces two outputs: first, a set of closed polygons
formed by the input planar line segments, and second, any edges that are not a part
of any polygon, i.e., dangle or cut edges. Overlaying the polygons generated with
any polygon layer follows the approaches discussed in sections 4 and 5. However, we
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Fig. 15 Re-Partitioning of polygon A0 with edges it intersects with

need to modify the algorithms provided in these previous sections to overlay an input
polygon layer A with the dangle and cut edges, i.e. layer B. In particular, we modify
the reduce phase. Figure 14 illustrates the spatial partitioning of the two input layers,
A and B. Layer A contains two input polygons, A0 and A1, while Layer B consists of
three dangle edges, B0, B1, and B2.

Each edge from layer B is labeled a unique label and is fed as an input to the
overlay module. The local overlay is performed by finding intersections between the
input polygon layer A and layer B on each data partition. If a polygon with id = i
from polygon layer A intersects with edges with ids id = a, id = b, id = c from layer B
at some data partition, we generate a label to match these intersections AiBaBbBc.
At the reduce phase, we re-partition the data by the first label, meaning we collect
all edges that intersect with the first label. If two data partitions produced the labels
AiBaBbBc and AiBxBy, we repartition the data such that Ai is on one partition
with all edges it is intersecting, i.e., Ba, Bb, Bc, Bx, By. In Figure 15, Polygon A0 is
re-partitioned along with the edges it intersects, specifically B0, B1, and B2.

After re-partitioning the data, we have all edges from both layers intersecting
each other on the same partition. The next step is to find the polygons generated by
these intersections. Since there is no guarantee that only one polygon is generated, we
substitute the polygon concatenation proposed in Section 4.3 by performing polygo-
nization on each partition. The polygonization procedure ensures it generates all new
possible polygons. The polygonization procedure follows the algorithm mentioned in
Section 6.1. It starts with generating the new vertices and half-edges, then marking
the current dangles and cut edges, then setting the next pointers and finally generat-
ing the partition polygons. Figure 16 shows the result of polygonizing the edges from
Polygon A0 and B0, B1, and B2, resulting in two polygons, A01 and A02.
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Fig. 16 The result of polygonization of A0 with B0, B1, B2

Polygons from all partitions generate the overlay between the polygon layer A and
layer B.

7 Experimental Evaluation

For our experimental evaluation, we used a 12-node Linux cluster (kernel 3.10) and
Apache Spark 2.4. Each node has 9 cores (each core is an Intel Xeon CPU at 1.70GHz)
and 2G memory.

Evaluation datasets. The details of the real datasets of polygons that we use
are summarized in Table 4. The first dataset (MainUS) contains the complete Census
Tracts for all the states on the US mainland for the years 2000 (layer A) and 2010 (layer
B). It was collected from the official website of the United States Census Bureau1.
The data was clipped to select just the states inside the continent. Something to
note with this dataset is that the two layers present a spatial gap (which was due to
improvements in the precision introduced for 2010). As a result, there are considerably
more intersections between the two layers, thus creating many new faces for the DCEL.

The second dataset, GADM - taken from Global Administration Areas2, collects
the geographical boundaries of the countries and their administrative divisions around
the globe. For our experiments, one layer selects the States (administrative level 2),
and the other has Counties (administrative level 3). Since GADM may contain multi-
polygons, we split them into their individual polygons.

Since these two datasets are too large, a third, smaller dataset was created for com-
parisons with the sequential algorithm. This dataset is the California Census Tracts

1https://www2.census.gov/geo/tiger/TIGER2010/TRACT/
2https://gadm.org/
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Table 4 Evaluation Datasets

Dataset Layer Number Number
of polygons of edges

MainUS Polygons for 2000 64983 35417146
Polygons for 2010 72521 36764043

GADM Polygons for Level 2 160241 64598411
Polygons for Level 3 223490 68779746

CCT Polygons for 2000 7028 2711639
Polygons for 2010 8047 2917450

(CCT), a subset from MainUS for the state of California; layer A corresponds to the
CA census tracts from the year 2000, while layer B corresponds to 2010. Below, we
also use other states to create datasets with different numbers of faces. To test the
scalable approach, a sequential algorithm for DCEL creation was implemented based
on the pseudo-code outlined in [6].

The scalable approach was implemented over the Apache Spark framework. From
a Map-Reduce point of view the stages described in Section 4 were implemented using
several transformations and actions supported by Spark. For example, the partitioning
and load balancing described in Section 4.1 and 6.3 was implemented using a Quadtree,
where its leaves were used to map and balance the number of edges that have to be
sent to the worker nodes. Mostly, map operations were used to process and locate the
edges in the corresponding leaf to exploit proximity among them while at the same
time dividing the amount of work among worker nodes. Similarly, the edges at each
partition were processed using chains of transformations at local level (see Section 4)
followed by reducer actions to post-process incomplete faces which could span over
multiples partitions and have to be combined or re-distributed to obtain the final
answer. In addition, the reduce actions were further optimized as described in Section
5.

7.1 Overlay face optimizations

We first examine the optimizations in Section 5.1. To consider different distributions of
faces, for these experiments, we used 8 states from the MainUS dataset with different
numbers of tracts (faces). In particular, we used, in decreasing order of number of
tracts, CA, TX, NC, TN, GA, VA, PA, and FL. For each state, we computed the
distributed overlay between two layers (2000 and 2010). For each computation, we
compared the baseline; master at the root node, with intermediate reducers at different
levels: i varied from 4 to 10.

Figure 17 shows the results for the distributed overlay computation stage; after
the local DCELs were computed at each cell. Note that for each state experiment,
we tested different numbers of cells for the quadtree and reported the configuration
with the best performance. To determine this, we sampled 1% of the edges for each
state and evaluated the best number of cells ranging from 200 to 2000. In most cases,
the best number of cells was around 3000. As expected, there is a trade-off between
parallelism and how much work is left to the final reduce job. For different states, the
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Table 5 Percentages of edges in incomplete faces for
three states

Number of Edges in
Dataset edges incomplete faces Percentage

CA 47834 6339 13.25%
TX 41227 4436 10.75%
FL 24152 3547 14.68%
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Fig. 17 Overlay methods evaluation.

optimal i varied between levels 4 and 6. The figure also shows the optimization that
re-partitions the faces by label id. This approach has actually the best performance.
This is because few faces with the same label can be combined independently. This
results in smaller jobs better distributed among the cluster nodes, and no reduce
phase is needed. As a result, we use the label re-partition approach for the rest of the
experiments to implement the overlay computation stage.

Finally we note that the overlay face optimizations involve shuffling of the incom-
plete faces. Table 5 shows the percentage of incomplete faces for three states, assuming
3000 cells. As it can be seen, the incomplete faces is small (in average 12.89%) and
moreover, for the By Label approach, this shuffling is parallelized.

7.2 Unbalanced layers optimization

For these experiments, we compared the traditional sweep approach with the ‘filtered-
sweep’ approach that considers only the areas where the smaller layer has edges
(Section 5.2). To create the smaller cell layer, we picked a reference point in the state
of Pennsylvania, from the MainUS dataset, and added 2000 census tracts until the
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Fig. 18 Evaluation of the unbalanced layers optimization.

number of edges reached 3K. We then varied the size of the larger cell layer in a con-
trolled way: using the same reference point but using data from the 2010 census, and
we started adding tracts to create a layer that had around 2x, 3x, ..., 7x the number
of edges of the smaller dataset.

Since this optimization occurs per cell, we used a single node to perform the overlay
computation within that cell. Figure 18(a) shows the behavior of the two methods
(filtered-sweep vs. traditional sweep) under the above-described data for the overlay
computation stage. Clearly, as the data from one layer grows much larger than the
other layer, the filtered-sweep approach overcomes the traditional one.

We also performed an experiment where the difference in size between the two
layers varies between 10% and 70%. For this experiment, we first identified cells from
the GADM dataset where the smaller layer had around 3K edges. Among these cells,
we then identified those where the larger layer had 10%, 20%, ... up to 70% more
edges. In each category, we picked 10 representative cells and computed the overlay
for the cells in that category.

Figure 18(b) shows the results; in each category, we show the average time to
compute the overlay among the 10 cells in that category. The filtered-sweep approach
shows better performance as the percentage difference between layers increases. Based
on these results, one could apply the optimization on those cells where the layer
difference is significant (more than 50%). We anticipate that this optimization will be
particularly beneficial for datasets where the two input layers contain many cells with
significantly different edge counts.

7.3 Varying the number of cells

The quadtree configuration allows for performance tuning by setting the maximum
capacity of a cell. The quadtree continues splitting until this capacity is reached. There
is an inverse relationship between the capacity and the number of leaf cells: a lower
capacity results in more cells, while a higher capacity leads to fewer leaf cells. In skewed
datasets, the quadtree may become unbalanced, with some branches splitting more
frequently. As a result, the final number of partitions is not necessarily a multiple of
four. In the figures, we round the number of leaf cells to the nearest thousand.
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Fig. 19 SDCEL performance while varying the number of cells in the CCT dataset.

The number of cells affects the performance of our scalable overlay implementation,
termed as SDCEL, since it relates to the average cell capacity given by the number of
edges it could contain. As it was said before, a fewer number of cells implies larger cell
capacity and thus more edges to process within each cell. Complementary, creating
more cells increases the number of jobs to be executed.

Figure 19(a) shows the SDCEL performance using the two layers of the CCT
dataset while varying the number of cells from 100 to 15K (by multiple of 1000).
Each bar corresponds to the time taken to create the DCEL for each layer and then
combine them to create the distributed overlay. Clearly, there is a trade-off: as the
number of cells increases, the SDCEL performance improves until a point where the
larger number of cells adds an overhead. Figure 19(b) focuses on that area; the best
SDCEL performance was around 7K cells.

In addition, Figure 19(a) shows the performance of the sequential solution (CGAL
library) for computing the overlay of the two layers in the CCT dataset using one
of the cluster nodes. Clearly, the scalable approach is much more efficient as it takes
advantage of parallelism. Note that the CGAL library would crash when processing
the larger datasets (MainUS and GADM).

Figure 20 shows the results when using the larger MainUS and GADM datasets,
while again varying the number of cells parameter from 8K to 18K and from 16K to
34K, respectively. In this figure, we also show the time taken by each stage of the
overlay computation. This is, the time to create the DCEL for layer A, for layer B, and
for their combination to create their distributed overlay. We can see a similar trade-off
in each of the stages. The best performance is given when setting the number of cells
parameter to 12K for the MainUS and 22K for the GADM dataset. Note that in the
MainUS dataset, the two layers have a similar number of edges; as can be seen, their
DCEL computations are similar.

Interestingly, the overlay computation is expensive since as mentioned earlier there
are many intersections between the two layers. An interesting observation from the
GADM plots is that layer B takes more time than layer A; this is because there are
more edges in the counties than in the states. Moreover, county polygons are included
in the (larger) state polygons. When the size of cells is small (i.e., a larger number of
cells like in the case of 34K cells), these cells mainly contain counties from layer B. As a
result, there are not many intersections between the layers in each cell, and the overlay
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Fig. 20 Performance with (a) MainUS and (b) GADM datasets.

Table 6 Cell size statistics.

Dataset Min 1st Qu. Median Mean 3rd Qu. Max
GADM 0 0 2768 3141 5052 16978
MainUS 0 1538 2582 2853 3970 10944
CCT 0 122 324 390 546 1230

Table 7 Orphan cells and orphan holes description

Number
Number Number of orphans

Dataset of cells of holes (cell/holes)

GADM 21970 1999 4310
MainUS 12343 850 1069
CCT 7124 40 215

computation is thus faster. On the other hand, with large cell sizes (smaller number
of cells), the area covered by the cell is larger, containing more edges from states and
thus increasing the number of intersections, resulting in higher overlay computation.

Additionally, Table 6 provides statistics on the cells. It shows that in larger
datasets, an average cell size of approximately 3000 edges produces the best results.
This cell size ensures a relatively small amount of data to transmit, which minimizes
the impact on data shuffling and processing. Table 7 presents the number of cells,
original holes, and the orphan cells and holes generated after partitioning.

7.4 Speed-up and Scale-up experiments

The speed-up behavior of SDCEL appears in Figure 21(a) (for the MainUS dataset)
and in Figure 22(a) (for the GADM dataset); in both cases, we show the performance
for each stage. For these experiments, we varied the number of nodes to 3, 6, and 12
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Fig. 21 Speed-up and Scale-up experiments for the MainUS dataset.
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Fig. 22 Speed-up and Scale-up experiments for the GADM dataset.

while keeping the input layers the same. Clearly, as the number of nodes increases, the
performance improves. SDCEL shows good speed-up characteristics: as the number of
nodes doubles from 3 to 6 and then from 6 to 12, the performance improves by almost
half.

To examine the scale-up behavior, we created smaller datasets out of the MainUS
and similarly out of the GADM so that we could control the number of edges. To
create such a dataset, we picked a centroid and started increasing the area covered by
this dataset until the number of edges was closed to a specific number. For example,
from the MainUS, we created datasets of sizes 8M, 16M, and 32M edges for each layer.
We then used two layers of the same size as input to a different number of nodes while
keeping the input-to-node ratio fixed. That is, the layers of size 8M were processed
using 3 nodes, the layers of size 16M using 6 nodes, and the 32M using 12 nodes.
We used the same process for the scale-up experiments with the GADM dataset. The
results appear in Figure 21(b) and Figure 22(b). Overall, SDCEL shows good scale-
up performance; it remains almost constant as the work per node is similar (there are
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Fig. 23 Construction time for the spatial data structure in the (a) MainUS and (b) GADM datasets.
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Fig. 24 Number of cells created by each spatial data structure in the (a) MainUS and (b) GADM
datasets.

slight variations because we could not control perfectly the number of edges and their
intersection).

7.5 Kd-tree versus quadtree performance

In order to compare the quadtree and the kd-tree partition strategies we analyze
their performance during the construction of the spatial data structure which defines
the cells that the partition will use based on the sample, the cost of partitioning;
populating the cells with the full datasets, and the overall time to complete the phases
of the overlay operation using each partitioning approach. We use the datasets of
MainUS and GADM described in Table 4.

Figure 23 depicts the construction time during the sampling of the input layers and
the generation of the partitioning cells after requesting a different number of divisions.
We can see that the kd-tree takes more time, particularly because of the sorting done
at each split, so as to organize the data and localize the middle point. In average,
Quadtree takes 23.13% the time it takes for Kdtree to be created (21.55% in MainUS
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Fig. 25 Data partitioning time using a spatial data structure (a) in the MainUS dataset and (b) in
the GADM dataset.
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Fig. 26 Execution time for the overlay operation using a spatial data structure in the MainUS
(a)and GADM (b) dataset.

and 24.72% in GADM). However, the Kdtree creation is just 5.86% of the overall time
during the total DCEL construction (6.88% in MainUS and 4.87% in GADM).

An important characteristic of the behavior of each partitioning scheme is the
number of cells (partitions) each sample data structure creates. Figure 24 depicts the
number of cells created by each spatial data structure. As the quadtree follows a space-
oriented technique, it creates more nodes (4 at each split) and thus generates more
leaves (cells); more of them are prone to be empty compared to the kd-tree.

Figure 25 shows the cost to partition the full content of both layers. Given a sample
tree data structure, each edge is assigned to a cell (partition) depending on which leaf
the edge is located; edges are assigned (copied) to all leaves they intersect. Then, a
shuffle operation is performed to move the data to the corresponding node that will
handle this cell (partition). This figure shows that the quadtree partitioning takes
more time. This depends largely on the number of leaves created by the sample tree
and the number of edges that overlap partitions (which is expected to be larger for
the quadtree since it uses more and thus smaller cells).
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Fig. 27 (a)Speed Up and (b) Scale Up performance of the Kdtree partitioning using the MainUS
dataset.

Table 8 Polygonization Evaluation Dataset

Dataset Area Number of Line Segments Faces

USA 9.83 Mkm2 152M 5M
South America 17.8 Mkm2 155M 7M
North America 24.7 Mkm2 240M 10M

Africa 30.4 Mkm2 288M 10M
Europe 10.2 Mkm2 563M 25M
Asia 44.6 Mkm2 557M 23M

Once the data is assigned to their partitions, the overlay operation can be executed.
Figure 26 shows the overlay performance under each partition strategy, for different
number of cells. The Kd-tree approach performs better; as the quadtree tends to
generate more and emptier cells, its performance is directly affected.

As it was said before, in particular on partitioning based on Kdtree, the smaller
number of cells/partitions used in this approach give also an improvement on the
impact of shuffling during the partition strategy because the number and size of the
resulting partitions have a lower impact into the communication cost.

Finally, we consider the speed-up and scale-up performance using the kd-tree par-
titioning. Figure 27(a) shows the speed-up performance using the MainUS dataset
(36M edges) while varying the number of nodes (for 3, 6, and 12 nodes). Similar
to the quadtree partitioning strategy, the kd-tree partitioning shows good speed-up
performance. As resources duplicate the execution time improves almost by a half.

Figure 27(b) shows the scale-up performance of the kd-tree partitioning approach.
We followed the same procedure described in Section 7.4 to generate datasets for
8M, 16M, and 32M edges from the MainUS dataset and ran the kd-tree partitioning
strategy with 3, 6, and 12 nodes, respectively. Again the kd-tree partitioning shows
good speed-up performance, which remains flat as the load per node is almost equal.
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Fig. 28 Polygonization Performance on Real Road Networks.

7.6 Polygonization Scalability

Figure 28 evaluates the scalability of the polygonization approach using the differ-
ent evaluation datasets summarized in Table 8. We implemented our polygonization
framework on Apache Sedona [34]. The experiment is based on a Java 8 implementa-
tion and utilizes a Spark 2.3 cluster with two driver nodes and 12 worker nodes. All
nodes run Linux CentOS 8.2 (64-bit). Each driver node is equipped with 128GB of
RAM, while each worker node has 64GB of RAM. To increase parallelism, we divided
the 12 worker nodes into 84 worker executors. Each executor is a separate JVM pro-
cess with dedicated resources, such as memory and CPU cores. The distribution of
these executors across the nodes is managed by the resource negotiator (YARN),
which allocates resources for Spark jobs based on the availability of cores and mem-
ory. YARN typically balances resources across the cluster, so executors are likely to
be evenly distributed, though some variation may occur due to resource availability at
runtime. Assuming an even distribution, each worker node would run approximately
7 executors, as calculated by 84

12 = 7.
As discussed in Section 6.2, the Rem Phase has two different approaches depending

on the input data received from the Gen Phase. The first approach is to process the
remaining half-edges iteratively, denoted as DCEL-RH. In comparison, the second
approach processes the incomplete cycles generated from the first phase iteratively
denoted as DCEL-IC.

From Figure 28, we draw three conclusions; (1) first, the cardinality of the input
dataset has a positive correlation with the build time; as the number of line segments
increases, the build time also increases, as shown in Figure 28(a). However, we see
that we have close cardinality for Asia (557M) and Europe (563M) datasets, but there
is a noticeable difference in the build time; moreover, the build time for the Europe
dataset is less than that of the Asia dataset. This drives us to the second conclusion;
(2) for datasets with close or similar cardinalities, the area of the dataset has a positive
correlation with the build time shown in Figure 28(b). Hence the build time of the
Europe dataset (10.2 Mkm2) is less than that of the Asia dataset (44.6 Mkm2), even
though Europe has a slightly larger dataset. (3) The third conclusion is that for all
evaluated datasets, the DCEL-IC beats DCEL-RH.
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Fig. 29 Polygonization speed up evaluation using the USA dataset

Table 9 Overlaying Polygons with Dangle and Cut Edges Dataset

Dataset Number Layer A of Polygons Number of Layer B Edges Result Polygons

TN 1,272 3,380,780 41,761
GA 1,633 4,647,171 49,125
NC 1,272 7,212,604 22,413
TX 4,399 8,682,950 98,635
VA 1,554 8,977,361 38,941
CA 7,038 9,103,610 96,916

7.7 Polygonization Speed Up Evaluation

Figure 29 shows the effect of increasing the number of executors on the build time
for the USA dataset. At each step in the figure, we add 7 more executors, which is
approximately equivalent to adding one additional node. Overall, our approach has
good speedup performance. As the number of executors is doubled from 7 executors
to 14 executors, the build time is almost halved. This trend goes on as we double the
number of executors. As we increase the number of executors from 7 to 84, the build
time is decreased by a factor of 8.

7.8 Overlaying Polygons with Dangle and Cut Edges

In this section, we examine the performance of overlaying polygons with dangle and
cut edges resulting from the polygonization as detailed in Section 6.4. Table 9 shows
the number of polygons for each state for the first layer of the overlay. It also shows
the number of dangle and cut edges per state for the second layer of the overlay.
Finally, it shows the number of resultant polygons per state. From Figure 30, we
conclude that the running time is affected by the number of dangle and cut edges
and the number of intersections between the two layers (represented by the number of
generated polygons). TN and GA have a relatively smaller number of dangle and cut
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edges, so they have lower execution times compared to VA, TX, and CA. However,
since the intersections in NC are significantly less than those of TN and GA, NC
has the lowest execution time. TX, VA, and CA have a comparable number of edges;
however, VA has the least number of intersections, resulting in lower execution time
compared to TX and CA.

8 Conclusions

We introduced SDCEL, a scalable approach to compute the overlay operation among
two layers that represent polygons from a planar subdivision of a surface. Both input
layers use the DCEL edge-list data structure to store their polygons. We support input
polygons in clean polygon format and polygons represented by scattered line segments
through scalable polygonization. Existing sequential DCEL overlay implementations
fail for large datasets. We first presented two partition strategies that guarantee that
each partition collects the required data from each layer to work independently. We
also proposed several optimizations to improve performance. Our experimental eval-
uation using real datasets shows that SDCEL has very good scale-up and speed-up
performance and can compute the overlay over very large layers (up to 37M edges) in
a few seconds.
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