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Abstract

This paper introduces a method for producing high quality hand
motion using a small number of markers. The proposed “hand-
over” animation technique constructs joint angle trajectories with
the help of a reference database. Utilizing principle component
analysis (PCA) applied to the database, the system automatically
determines the sparse marker set to record. Further, to produce hand
animation, PCA is used along with a locally weighted regression
(LWR) model to reconstruct joint angles. The resulting animation
is a full-resolution hand which reflects the original motion without
the need for capturing a full marker set. Comparing the technique
to other methods reveals improvement over the state of the art in
terms of the marker set selection. In addition, the results highlight
the ability to generalize the motion synthesized, both by extending
the use of a single reference database to new motions, and from
distinct reference datasets, over a variety of freehand motions.

Keywords: character animation, motion capture, hand motion,
dimensionality reduction, PCA

1 Introduction

Producing quality whole-body motion involves the movement of
the hand in relation to the rest of the body. However, using a motion
capture system, it can be difficult to record the full body of a moving
person while also capturing the hand and all of its detail because the
whole-body and hand appear at largely different scales. While it is
possible to record a high-resolution capture of the hand through
a comprehensive set of markers (typically 13-20 markers), this is
often only possible in a small capture region, isolating the motion
of the hand. However, in a larger, full-body capture region, the
complete set of markers becomes difficult to discern, and so this
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approach is usually abandoned in lieu of the capture of a smaller
set of markers (2-6 markers) coupled with a “hand-over” process
for reconstructing the full hand animation [Kang et al. 2012]. In
this paper, we propose a robust technique to accomplish the latter
that both automatically selects the “sparse” marker set to record,
and subsequently produces joint trajectories for a full hand from
the sparse marker set.

Our technique employs a combination of principle component anal-
ysis (PCA) [Bishop 1995] to construct a low-dimensional repre-
sentation of the hand data along with linearly weighted regression
(LWR) [Atkeson et al. 1997] to aid in the reconstruction. Starting
from a reference database that is recorded using a full-resolution
marker set, we first determine the best sparse marker set to record
based on the PCA representation of the data. We experiment with
different test sizes for the marker set to record, specifically reduced
marker sets of six and three markers, and we compare our selec-
tion method with different ones proposed for selecting the mark-
ers, including manual selection, following Hoyet et al. [2012], and
a method that uses representative cluster-based search for selec-
tion [Kang et al. 2012]. In contrast, the technique in this paper com-
putes the marker set directly from the PCA, and our findings show
that this marker set is superior to the other methods of selection
for the reconstruction technique we propose. For reconstruction,
our method employs a second PCA in a synthesis step combined
with LWR. Starting from a test query that records only the sparse
marker set, we use LWR to build a locally sensitive model between
the markers and the principle components.

We use American Sign Language (ASL) as our primary testbed.
ASL is an important and interesting freehand application of hand
motion. Further, it includes a rich, diverse set of configuration
poses for the hands. We show that we can construct new (unseen)
ASL signs with high-visual quality using a simple, generic ASL
database. Generalization of the database reveals that we can use our
technique to capture other motions, such as counting. Our effort
holds close similarities to previous work, especially the full-body
motion control of Chai and Hodgins [2005]. In contrast, our main
contributions include the distinct exploration of rich hand data, such
as ASL, as well as our method for determining the best reduced
marker set to take advantage of the power of dimensionality reduc-
tion realized by PCA. Further, our approach is far simpler and lends
itself to ease-of-use and re-implementation. Our approach also has
notable advantages over other related papers for hand-over anima-
tion, such as the work of Hoyet et al. [2012] and Kang et al. [2012]
in that we compute the best reduced marker set directly, rather
than selecting it manually or through brute-force search. Compared
to other techniques, ours is both simple to implement and fast to
compute, striking a valuable compromise which is likely to lead to
greater adoption for commercial use.

2 Related work

The detailed and subtle motions of the hands are hard to cap-
ture. Several approaches for recording have been suggested, each
with advantages and disadvantages. In particular, optical motion
capture systems, while being very accurate, can require substan-
tial post-processing to handle occlusions and mislabelings. Cyber
Gloves [2013] and the like are robust to captures in larger spaces,
but they require regular calibration [Wang and Neff 2013] and do



not provide high enough accuracy for many applications [Kahlesz
et al. 2004]. For other camera-based or range-scan type systems, the
hand needs to be in a confined space and the body can not captured
synchronously [Wang and Popović 2009; Zhao et al. 2012; Wang
et al. 2013]. The lack of robust recording solutions has lead to a
practice of “hand-over” animaton. Specifically hand-over refers to
the (general) manual post-production of hand motion, following a
lower-detail or no capture of a talent’s hand. Algorithms have been
proposed to generate hand motion automatically based only on the
motion of the body [Jörg et al. 2012] or also on contacts with ob-
jects [Ye and Liu 2012]. A different approach suggests to capture
the body and hand motions separately and to combine them after-
wards [Majkowska et al. 2006]. However, none of these ensure that
the resulting hand motion the same as the one performed during the
initial body capture, a goal of our work.

Our aim specifically focuses on facilitating the quality capture of
hand motions, together with full-body motions, in a motion cap-
ture system. To reach this goal, we investigate the most effective
way to capture accurate hand motions using the smallest possible
number of markers and suggest a corresponding, specialized hand-
over technique to reconstruct the full hand from the markers. Other
researchers have analyzed finger motions and found strong corre-
lations between different degrees of freedom. Rijpkema and Gi-
rard [1991] report that the relationship between the flexion of the
distal and the proximal interphalangeal joint (DIP and PIP, respec-
tively) is approximately linear, with DIP = 2/3 ∗ PIP . Jörg
and O’Sullivan [2009] show how to reduce the degrees of freedom
of the hands by eliminating irrelevant and redundant information.
These approaches reveal that finger motion is highly redundant. We
take advantage of correlations between different degrees of freedom
of the hand to optimize the capturing and construction of high qual-
ity hand animation.

Principal component analysis, as a standard technique to analyze
and reduce high-dimensional data, has been used to effectively syn-
thesize body motions [Safonova et al. 2004] and also to study hand
movement. Braido and Zhang [2004], show that for the hand the
two first principal components of a PCA accounted for over 98%
of all variance in the joint angles. However, their motion database
did not take into account the thumb and involved only two types of
tasks - cylinder grasping and voluntary flexion of individual fingers.
Santello et al. [1998] studied a variety of grasp poses and found that
over 80% of the measured degrees of freedom could be described
by their first two principal components. Chang et al. [2007] used
supervised feature selection to find a set of five optical markers that
could classify grasps with a 92% prediction accuracy. However,
these studies, applied to grasps, do not require specific motions
from individual fingers. In contrast, we present a method applied
to American sign language (ASL), which exhibits impressive dex-
terity and variety of finger motions [Courty and Gibet 2010]. We
hypothesize that there is less redundancy in typical finger motions
of ASL than in standard grasping motions.

One of our goals is to determine which is the most effective set
of markers for capturing. Previous work has studied the best
marker sets for hand motions, for example, by testing and com-
paring marker sets chosen manually (with reconstruction done us-
ing inverse kinematics) [Hoyet et al. 2012], or through a brute-
force approach, that compares the error of similar poses found in
a database [Kang et al. 2012]. Chai and Hodgins [2005] studied
full-body motion with similar goals to the ones described in this
paper, but use a manually selected marker set.

3 Overview

Our overall technique is divided into two stages: 1) the computa-
tion of the sparse marker set; and 2) the reconstruction of the full-
resolution, skeleton-driven hand animation from the sparse marker
set. For our study, we collect full-resolution motion capture data
of hand motions in a small capture area. The actor wears 13 small
(6mm) markers directly on the hands as well as three markers on the
lower forearm. The lower forearm acts as the root link for our hand
skeleton with the assumption that these same three markers will ap-
pear in full-body captures. To account for gross body hand motion,
marker positions in the database are put into the same coordinate
frame by computing the transformation of each marker relative to
the root link. Our hand model consists of 18 joints. For the results
in this paper, we construct two databases, one for sign language
and the other freehand gesture data. The sign language database
includes only the alphabet, but we are able to construct novel word
signs such as “girl” and “walk”. Beyond, ASL, we also employ the
same gesture database as Kang et al. [2012]. That gesture database
includes a series of expressive hands motions and is used to recon-
struct novel sequences with similar qualities.

In the first phase, we perform PCA over the markers of the refer-
ence data to derive a rank ordering for the markers based on their
influences over the principle components. From this rank-ordered
list, we select the top markers to act as our sparse marker set. For
the second phase, reconstruction, we set up a locally weighted re-
gression (LWR) model to map from the sparse marker positions to
estimated principle components. In this case, PCA is applied to the
joint angles. The LWR model is built for each test query based on
the input markers for the query and their proximity to the analo-
gous markers in the reference data, after correcting for the lower
arm (root) movement. Joint angles for the low dimensional input
are reconstructed by reversing the PCA, going from principle com-
ponents derived from the LWR to a newly computed full set of joint
angles.

Figure 1: Dimensionality reduction for sign language database.
PCA is capable of using as few as ten components with relatively
small average errors.

4 Hand Motion Dimensionality and PCA

At the core of our technique is the assumption that hand motion
is relatively low-dimensional. Even though a full resolution skele-
ton of the hand can have several dozen degrees of freedom (DOF),
many of the DOFs of the hand show correlations while others have
barely any motion. Thus, the inherent dimensionality of the hand
motions is much lower [Santello et al. 1998; Braido and Zhang



Figure 2: Sign language sample motion with and without PCA
employed. Note the error for six markers without PCA is larger
than that of three markers with it.

2004; Jörg and O’Sullivan 2009]. In our approach, PCA is used to
exploit this low dimensionality, as we assume that PCA will allow
us to capture the important features of the whole-body hand motion
in a small number of principle components.

To support our assumptions, we performed various tests to study
the power of PCA for capturing the desired reduced dimension-
ality of hand motion. In Figure 1, we show that PCA is indeed
capable of accurately describing hand motions in a lower dimen-
sional space. This figure shows errors applied to our ASL database,
which represents a diverse expression of poses for the hand. We
see that PCA shows significant reduction in reconstruction error af-
ter around 10 components. While this is larger than reported find-
ings for finger motion, the complex hand gestures of ASL are still
well-represented with a relatively small number of components.

Next, to compare the power of PCA for our particular application
we experimented with two reconstruction methods with and without
PCA. The details of the reconstruction appear in Section 6, how-
ever, we include the plot in Figure 2 here to support that PCA is
very effective in producing higher quality hand motion. In the fig-
ure, we clearly see the benefit of employing PCA as a go-between
from markers to joint angles. When we attempt to reconstruct with-
out it (i.e. fitting markers to joint angles directly) the error remains
large even as the number of markers employed to inform the hand-
over process is doubled.

5 Sparse Marker Selection

To construct an effective sparse marker set, our method starts from
the full set of 13 markers recorded in the reference database, and
evaluates each marker’s contribution to the whole-hand motion. In
constrast to the exhaustive search proposed by Kang et al. [2012],
our technique computes the markers directly using PCA.

To this end, we conduct PCA with the Cartesian positions of the
markers relative to the root link. With 13 markers, this leads to a
PCA with 39 dimensions. The results of the PCA is a covariance
matrix and the eigenvectors of this matrix which we use to rank-
order the markers. Specifically, each eigenvector has 39 coefficients
that describe the influence of each marker’s Cartesian coordinate
on the principle component. By adding up the total contribution
of each marker (x, y, z coordinates) to all of the principle compo-

nents, we produce a convenient way to rank-order the total influ-
ence of each marker on the principle components. Further, from
the eigenvalues we know the relative importance of each principle
component with respect to each other. By weighting the contribu-
tion of each marker based on this importance, we can also account
for this bias. In our technique, we use the eigenvalue importance,
PCA value, as a weighting to bias each eigenvector coefficient’s
influence, PCA coeff , which are taken from the elements of the
covariance matrix. We summarize this procedure in Algorithm 1.

Algorithm 1 Ordering markers based on influence.

procedure MARKER RANK ORDER(PCA coeff, PCA value)
Vector marker influence
for i = each marker do

x, y, z = 0
for j = each component do

x += |PCA coeff(3 ∗ i+0, j) ∗PCA value(j)|
y += |PCA coeff(3 ∗ i+ 1, j) ∗ PCA value(j)|
z += |PCA coeff(3 ∗ i+ 2, j) ∗ PCA value(j)|

end for
marker influence(i) = sum(x, y, z)

end for
sort(marker influence)

end procedure

In our results, we highlight sparse marker sets of three and six
markers, as those form the range of what can be captured and post-
processed easily based on our experience. Given the number of
markers desired for the sparse set, we select the set simply as the top
markers based on the rank-ordering described. We experimented
with two methods of producing this rank-ordering, one with the
eigenvalues acting as a weighting bias and the second treating all of
the top-N principle components as equally important and simply
ignoring the remaining components. Conservatively experimenting
with N to be between one fourth and three fourths of the full dimen-
sionality, these two approaches produced similar results. However,
if we selected N to be the value of the full dimensionality, we see
a drop in the quality of the final solutions. In practice, we employ
the eigenvalue weighted ranking for all results showcased.

A nice feature of selecting the marker set in this fashion is that the
rank-ordering simply adds subsequent markers from smaller sets to
produce the larger sets. Thus, the described priority ranking re-
veals which are the definitively most influential markers regardless
of the size of the sparse marker set. And so, in practice, adding
more markers for higher quality recordings does not require a com-
plete change of markers, only the addition of the desired number of
markers to the ones employed in the lower quality recording.

6 Reconstruction

The reconstruction process takes as input a recorded sequence of the
sparse marker set. It produces joint angle trajectories that estimate
the full hand motion. To this end, we build a regression model
to construct joint angle measurements for a full motion sequence.
Specifically, our locally weighted regression (LWR) model maps
marker positions in the recorded sequence to principle components.
Next, the principle components are converted into joint angles using
the PCA covariance matrix to produce the final motion.

An LWR model is built for each individual frame, or query, taken
from the recorded sequence. In this step, each instance in the
database is weighted and this weighting is used to bias the model.
The weighting is computed as the inverse of the Euclidean dis-
tance from the (root-link corrected) marker positions between the
query and the samples in the database. Then, standard regression



Figure 3: Marker sets (Left to right). Full Marker Set (13): The full set of thirteen markers used in the recording of the motions in the
reference database. Our Method (3) and (6):The sparse sets of three and six markers selected by our approach. Markers for the sign
language database are solid and markers for the gesture database are open circles. Note the considerable amount of overlap between the
marker sets for the two databases which indicate that the fingertips are best for reconstructing using our method. Manual Selection(6): A
manually selected set of six markers proposed by Hoyet et al [2012] based on perception studies. While intuition may lead us to believe one
marker placement is superior to another, this marker set revealed itself to be particularly poor for ASL, clearly because the lack of markers
on the middle digits lead to problems when reconstructing sign language poses. Cluster Pose (6): This set of six markers selected by the
cluster pose error method reported by Kang et al [2012]. Reported for “freehand” motions, the visible errors from this dataset reveal how
sensitive the motion can be to the choice of reference data.

is performed with each element given its individual weighting as
described. The LWR result is a regression model that places impor-
tance on the reference samples that are close to the test query, while
also down-weighting the influence of reference samples which are
distant from the query.

At run-time, we introduce an input sequence recorded from the
sparse marker set. The input data is put through the regression mod-
eling step to predict the principle components. To ensure smooth-
ness, the trajectories of the principle components are filtered before
they are converted into joint angles. In our results, we use a cone
filter with a size of seventeen (with our sample rate for the mo-
tion recordings set at 120 hz.) We also experimented with filtering
the joint angles to produce smoothness, but found more visually
appealing results when we filtered the principle components. Our
assumption for this finding is that the principle components com-
bine to produce more “crisp” motion even when they are filtered,
while the joint angle filtering dilutes the unique features of individ-
ual poses over time. Further study of this phenomena is likely to
reveal some interesting findings.

7 Results

With ASL as a primary goal for us, we first describe the use for
our technique in producing ASL animations before describing our
forays into other motion classes. Our ASL database is comprised
of only 52 ‘letter’ sign instances, specifically two continuous runs
of the letters of the alphabet signed by the same actor. We test
the database on various sequences that include “word” signs (e.g.
single signs for words as in “girl” or “walk”). Note, no word signs
appear in the reference database.

For our sparse marker set, we choose to use three and six markers
as our baseline in order to show both the power of our approach
and also to compare our technique to existing solutions. Using the
method described in Section 5, we derive the marker sets of three
and six as seen in Figure 3. In our analysis of results, we compare
this marker set of six to those derived from the manually selected
set proposed by Hoyet et al. [2012] and the one found by the clus-
ter pose error method by Kang et al. [2012]. Using the reconstruc-
tion method described here, our marker set produces a smaller aver-

Figure 4: Comparison of marker-set selection methods.

age joint angle error per frame for several sign language sequences
(shown in the video). Also, Figure 4 shows differences for an ex-
amplary sign language clip. Note, the manual selection process of
Hoyet et al. relies on an IK-based reconstruction and as such, our
reconstruction method is not a fair assessment of the quality of their
approach. Instead, their result merely provides an objective alter-
native marker set from which we can compare the importance of
marker selection within the scope of our reconstruction method.

Our reconstruction method uses regression to predict principle
components for a sequence of motion. In Figure 5, we compare
the estimated components from the regression of our sign language
example with the computed components derived from the original
joint angle motion. To evaluate the regression’s power at estimat-
ing the principle components, we use the PCA covariance matrix
from the ASL database to convert the joint angles of the test se-
quence to principle components. We treat this as the “ground truth”



Figure 5: Comparison of the components of a reconstructed clip
using 6 markers and 3 markers. Ground truth is the original clip
recorded with 13 markers.

for the principle components of this motion. Though there are dif-
ferences, the motion of each component closely follows that of the
ground truth. This can also be seen in a reconstructed animation
in the accompanying video. Further, three distinct poses are also
compared against the various marker selection methods in Figure 6.
Our marker selection approach is consistently closer to the original
pose.

To test robustness, we attempt to reconstruct motions that are not
sign language. The motions we test include counting and general
gesticulations. Our sparse marker set of six fairly successfully re-
constructs counting the numbers 1 through 5, but the marker set of
three fails to reconstruct the number 5. For gesture motion, many of
the general poses in the sequence appear to be reached, but the ac-
curacy of the joint angles is not as good as for the sign language mo-
tions, as seen in the video. When we test the gesture motion against
a more similar “gesture” database, we see drastic improvement in
the gesture animations synthesized. We note, the selected sparse
marker sets are different than those reported for the ASL database.
The marker sets found with the gesture database are shown in Fir-
gure 3. Using the gesture database results in high quality gesture
reconstructions for both marker sets of three and six.

8 Discussion

Qualitatively, PCA appears to be a good choice for capturing the
hidden structure in our hand data input. In contrast, we tested fitting
marker positions directly to joint angles and, as seen in Figure 2,

Figure 6: Three signs not present in the ASL database, recon-
structed with the different marker sets, compared to original poses.

the average joint angle error per frame was notably higher. Also, in
the animations produced with these reconstructed joint angles, the
hand does not reach the extrema of the poses in the motion. That
is, the hand looks much less clean. In ASL, meaning is derived
from the end poses, and PCA, while it included error, produces
higher quality poses over direct joint angle reconstruction. From
this we hypothesize that there is a quantifiable and clear benefit to
producing and using principle components to reconstruct the joint
angles of the hand, even though the findings reported here are still
preliminary.

The specific three markers the system prefers to reflect the motion
is a surprising finding, especially for ASL since it does not include
index or thumb markers at all. However, we are encouraged to see
that the reduced marker set of three performs as well as it does. Al-
though the set of three has a larger average error than the marker set
of six, it still produces acceptable results in the majority of cases.
We also see when looking at the top principle components of the re-
constructed motion, and comparing then to the top principle compo-
nents of the original motion, that indeed the three marker regression
is powerful enough to glean the main trends from the hand motion.
Following the findings of previous work [Jörg et al. 2012], we an-
ticipate that we can push even further improvement by exploiting
the motion of the full-body, which has been largely overlooked in
the current technique. A hurdle that lies ahead is dealing with the
non-homogeneity of a database with both hand and body markers.
We feel this represents a good direction for future work.

When performing the regression we map marker positions to prin-
ciple components. In our reported technique, the regression com-
putes the full complement of principle components, regardless of
the number of input markers. We experimented with a smaller num-
ber of components but found the full set would produce a better
reconstruction of the joint angle data. Specifically, we found that
mapping to the full 54 components produces the smallest average
error, although we can map as low as 35 components with very lit-
tle degradation from a full component set. We contrast this result



to the described technique of [Chai and Hodgins 2005] where they
drastically reduce the number of coordinates to simplify (and speed
up) the optimization they use to perform reconstruction. While we
do not employ such an optimization and thus have the luxury of
choosing the full component set, our finding seems to imply that
reducing the dimensionality in this step of the process will lead to
degraded motion quality.

Lastly, as reported, when we reconstruct motions that are differ-
ent from the original database, we get mixed results. For example,
the motions for counting were close enough to ASL assumably, be-
cause we find reasonably acceptable results from counting synthe-
sis using the ASL databse. However, it is not completely clear why
the seemingly simpler gesture motion was not equally easily re-
constructed by the same database. While the general poses in the
gesture sequences appear to be reached, the motion itself was not
of very high quality. From this finding, questions arise regarding
the intricacies of overlap in motion styles, between basic and more
complex, between trained and more “natural” and so on. Similarly,
investigation of the effect of different subjects on the final data, as
is the case here, also remains for future work.

9 Conclusion

In this work, we present a method to capture subtle hand motions
with a sparse marker set consisting of three to six markers. Our
method first specifies an appropriate set of markers using PCA to
exploit the redundancies and irrelevancies present in hand motion
data. It then reconstructs the full hand motion based on the sparse
marker set found and a LWR mapping from marker positions to
PCA’s components, via a reference motion database.

We show that our technique can reconstruct complex finger motions
based on only three markers per hand and outperforms recent sim-
ilar methods, such as those presented by Hoyet et. al [2012] and
Kang et. al [2012], based on the marker sets they report. Our find-
ings also clearly indicate that using a regression model for mapping
marker positions to principle components leads to better results for
reconstruction of the full hand motion than using regression for
mapping marker positions directly to joint angles, indicating that
PCA is notably effective at exploiting the redundant dimensionality
of the hand.
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