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Abstract. Combining physically based simulation and motion capture
data for animation is becoming a popular alternative to large motion
databases for rich character motion. In this paper, our focus is on adapt-
ing motion-captured sequences for character response to external pertur-
bations. Our technique is similar to approaches presented in the litera-
ture, but we propose a novel, straightforward way of computing feedfor-
ward control. While alternatives such as inverse dynamics and feedback
error learning (FEL) exist, they are more complicated and require offline
processing in contrast to our method which uses an auxiliary dynamic
simulation to compute feedforward torques. Our method is simple, gen-
eral, efficient, and can be performed at runtime. These claims are demon-
strated through various experimental results of simulated impacts.

1 Introduction

Demand for realistic animation of characters is increasing in game and entertain-
ment industries, as well as in various other areas, such as biomechanics, robotics
and rehabilitation; and important advances have occurred in recent decades [1].
Motion capture is a popular tool for generating realistic animation. However,
adapting the data easily to unpredicted interactions in the environment without
introducing artifacts is still a challenge. In contrast, dynamic simulation pro-
duces interactive responses to perturbations caused by the environment directly
by applying collision forces to the model. Nevertheless, the difficulty of designing
controllers for complex models, such as humanoids, which are capable of pro-
ducing motions as realistic as the ones obtained by motion capture, limits its
applicability.

A growing body of work proposes methods for combining these two tech-
niques [2–7] (among others.) In 2002, Zordan and Hodgins [2] introduced feed-
back controllers for reactive characters capable of tracking captured motions.
In their technique, proportional derivative (PD) feedback controllers calculate
torques for tracking data while also allowing the simulations to react to external
stimulus. One issue with this technique is that stiff feedback controllers are re-
quired for good tracking. According to [3], biological systems use feedforward as
the predominant control input and only use low-gain feedback to correct small
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deviations from the desired trajectory. They show that low-gain feedback control
is capable of tracking the captured motions faithfully by adding a feedforward
term to the control equation. Thus, during impacts, reactions are simulated with
low stiffness without the need to update the gains (as done in [2]).

In this paper, our focus is on adapting motion-captured sequences for charac-
ter response to external perturbations. Our solution is based on the framework
proposed by [3] but we replace the method of computing the feedforward term
with a simple and efficient method, which can be performed at runtime. Yin
et al. [3] calculate their feedforward term by using inverse dynamics in a pre-
processing stage. Our method calculates the feedforward term through use of
high-gain feedback controllers applied to an ‘auxiliary’ simulation executed in
parallel with the main simulation of the character. Unexpected impacts are con-
sidered only in the main simulation, which uses low-gain feedback controllers.
Our method is effective for handling of small external disturbances that do not
lead to changes in balance and does not depend on the balance strategy em-
ployed. In addition, we introduce several novel contributions throughout our
investigation, e.g. an automatic method for scaling control gains and adding a
purposeful delay to make more natural reactions as well as the introduction of
a forward internal model (as described in [8]) to aid in correcting disturbances
from expected impacts.

2 Related work

Several researchers have proposed methods for combining dynamics and motion
capture. Shapiro et al. [4] created a framework based on [9] able to manage both
dynamic and kinematic controllers. Zordan et al. [5] used dynamic simulation
to produce transitions between captured motions in order to simulate reactions
to impacts. Recent papers have built controllers for tracking captured motions
while maintaining balance [6, 10, 7].

As in [2, 3], discussed in the introduction, some other works also proposed
strategies to handle the specific problem addressed in this article. Pollard and
Zordan [11] use an approach similar to that proposed by Yin et al. to control
hand grasps. A feedforward term is pre-computed by inverse dynamics to offset
the influence of the arm movement and gravity. In 2007, Yin et al. [6] proposed to
calculate the feedforward term by using a variation of Feedback Error Learning
(FEL) which is specific to cyclic movements such as walking, but did not address
more general movements such as the non-cyclic ones we use in our example. In
contrast to our approach, general FEL requires multiple passes to accumulate
a stable feedback error value and it is therefore less conducive to online motion
generation tasks. Yin et al. get around this by exploiting the repetition of cyclic
motions. Da Silva et al. [7] calculate a feedforward term by formulating and solv-
ing a Quadratic Programming (QP) problem. Because of the complexity of the
optimization, they update the feedforward term one to two orders of magnitude
more slowly than the simulation dynamics. In contrast, our feedforward term is
computed in lockstep with the simulation at interactive rates.
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Some related works offer alternatives to selecting gains for torque calcula-
tions. In order to track the captured motions, Wrotek et al. [12] propose apply-
ing external feedback torques directly at the bodies, based on world-space error,
instead of joint-space error. They report that with this technique the gains could
be defined in an easier and more flexible way. However, the approach requires the
gains to be updated using the same strategy presented in [2] in order to address
reactions to impacts. Allen et al. [13] presented an automatic method to calcu-
late the gains, by considering time information (synchronization) provided by
the user. However, when an impact occurs, their approach to guarantee timing
yields a character that changes its stiffness indirectly, based on the size of the
disturbance. This effect is not readily observed in biological systems and thus
we opt to maintain stiffness in lieu of guaranteeing the length of the resulting
response during impact. Kry and Pai [14] presented a technique in which con-
tact forces also are captured along with the movement. This information is used
to estimate the tension on the joints. In contrast, our method does not require
access to such information.

3 Approach overview

The proposed method in this paper estimates the feedforward control present in
biological systems through an auxiliary dynamic simulation performed simulta-
neously with the main simulation. The auxiliary simulation uses high-gain feed-
back controllers in order to produce torques that make the virtual human track
the captured motions faithfully. This process corresponds to the pre-processing
done by biological systems when performing well-trained motions. In a sense, the
auxiliary simulation acts as an internal model (see [8]) which perfectly matches
the dynamics of the character. The feedforward terms used in the main simula-
tion are exactly those torques produced in the auxiliary simulation. Thus, the
torques applied to the simulated character during the main simulation consist
of the sum of the feedforward terms with the torques produced by the low-gain
feedback controllers used in the main simulation.

The general scheme shown in Figure 1 illustrates the steps of the proposed
method: 1) Obtaining the model’s desired state, qd(t), from the captured motion;
2) Calculation, using high-gain feedback controllers, of the torques, τaux, used
in the auxiliary simulation to correct for the error between the current state,
qaux(t), and the desired state, qd(t); 3) Calculation, using low-gain feedback
controllers, of the torques, τ , used in the main simulation to correct for the error
between the current state, q(t), and the desired state, qd(t); 4) Application of
the torques, τaux, to the model in the auxiliary simulation and sending τaux

(feedforward torques, ff) to the main simulation; 5) Application of the sum
τ + ff to the model in the main simulation; 6) Integration in time of the two
simulations, considering the external perturbations, and updating the current
states of the model.

Note that the high-gain feedback controllers only have access to the current
state of the auxiliary simulation. Therefore, the resulting torques calculated by
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Fig. 1. Overview of the proposed method.

these controllers are feedback torques for the auxiliary simulation, but feedfor-

ward torques for the main simulation, since these controllers have no access to
the state of the main simulation.

4 Feedforward and feedback torque calculations

Non-linear PD controllers are used both in the auxiliary and in the main simu-
lation to correct for the error between the current state and the desired state of
the model, through the following expression:

τ = I
[

ksf(θe) (θd − θ) + kd

(

θ̇d − θ̇
)]

(1)

where θ and θd are the current and desired joint angles; θ̇ and θ̇d are the current
and desired joint velocities; ks and kd are the proportional (spring) and derivative
(damper) gains; I is the inertial matrix of the outboard bodies (that is, the body
chain affected by the joint) for each joint; θe = (θd−θ); and f(θe) is a non-linear
factor defined as a function of θe. To limit the strength of the character, τ is
capped during the dynamic simulation.

The values of θd used in both simulations are obtained directly from the
captured motions. The values of θ̇d can be estimated by finite differences also
from the captured data. However, in the auxiliary simulation, due to high-gain
feedback, these values can be reduced to zero without reducing the quality with
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which the auxiliary model tracks the captured motions. On the other hand, in
the main simulation, we found that, due to low-gain feedback, the information
about desired velocity is important. In our implementation, desired velocity in-
formation for the main simulation is obtained conveniently and directly from the
auxiliary simulation, since the auxiliary model tracks the captured data faith-
fully. Therefore, the values of θ̇d from the auxiliary simulation are less sensitive
to noise than finite difference estimates obtained with the captured data.

Selecting and scaling gain values. Using the inertia scaling, introduced
by Zordan and Hodgins [2], allows only a pair of gains (ks and kd) to be specified
for the whole body, eliminating the laborious process of specifying gain values
for each joint. Allen et al. [13] describe the details of the calculation of this
factor, which must be updated at each simulation step. With this scale, one
pair of gains (ks and kd) has to be defined by the animator for each simulation
(auxiliary and main). As in [13], we note the influence of the ratio kd : ks

on the simulated motions: 1) if kd : ks is low, the model tends to oscillate
in the neighborhood of the desired configuration; and 2) if kd : ks is high, the
model tends to be overdamped and move slowly, as if in water. Considering these
observations, it is ideal that the ratio kd : ks be high in the neighborhood of the
desired configuration, to prevent oscillations; and low, when the model is far
from the desired configuration, to allow it to return to tight tracking in a timely
fashion. To accomplish these two goals simultaneously, we add the scalar f(θe)
to the error calculation. Fattal and Lischinski [15] use non-linear PD controllers
in which the ratio is updated by modifying kd. We update the ratio kd : ks

by scaling the term ks instead of kd which intuitively has the desired effect of
increasing the stiffness as the error increases, like when an impact occurs.

To scale ks, we employ the term f(θe). In addition, we use this term to
introduce a purposeful delay in the reaction. After receiving an impact, biological
systems have a small delay in reacting due to the neural flow of information and
delay of the synapses [3]. The delay is included in the definition of f(θe),

f(θe) =



















1, if |θe| ≤ λ
|θe|

λ
, if |θe| ≤ Mλ

M, otherwise

(2)

where λ corresponds to the delay in the reaction and M is the maximum allow-
able value of the factor. θe is measured in radians, λ must be positive and M
must be greater than 1. Analyzing the function, we have: f(θe) ≥ 1; f(θe) is
linear, for λ ≤ |θe| ≤ Mλ; |θe|/λ = 1, when |θe| = λ; and |θe|/λ = M , when
|θe| = Mλ. In all tests, λ = 0.1 and M = 5.

5 Forward internal model for expected reactions

Based on concepts introduced by Kawato in [8], we propose an additional use of
the auxiliary simulation. Kawato discussed the existence of two forms of internal
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model, an inverse internal model which computes motor commands (in our case
torques) and a forward internal model which predicts the effect of those motor
commands based on an approximation of the dynamic state. We can draw inter-
esting parallels between our auxiliary simulation and Kawato’s internal models,
but one insight that comes from this breakdown is that if the character knows
about the dynamics of an impact, an internal forward model could be used for
predicting and correcting for errors resulting from the disturbance.

Following this perspective, we introduce the notion of an expected impact
which is “anticipated” by applying the collision to the auxiliary model. For an
expected reaction, as when a person braces for a known impending impact,
our auxiliary simulation accounts for the disturbance by simulating the impact
and incorporating its correction into the feedforward terms, τaux. The effect in
the main simulation is an automatic, anticipatory response of specifically the
joints neighboring the impact (which see an increase in error in the auxiliary
simulation.) Of course there are other forms of anticipation and trained reactions
(for example, see [16]) but this simple adjustment allows us to automatically
generate an important aspect of anticipation to expected interactions.

Without such a strategy, the problem of tuning the character (as done in [2])
poses a number of difficult issues: which joints should have their gains increased?;
how much should the increase of each gain be?; and at which instant should the
gain values return to the original low values? Consider, in practice, there could be
situations where both unexpected and expected impacts occur simultaneously,
and, it would be laborious to derive answers to these questions in order to handle
all cases properly for those types of situations. In the method proposed here,
the impacts expected by the model result in reactions that are automatically,
intentionally more rigid in the region of the disturbance, without the need of
modifying the gains.

6 Implementation

Our system uses the Open Dynamics Engine (ODE) [17] to perform the dynamic
simulation and collision detection. Our humanoid model consists of 14 rigid
bodies connected with ball joints, totaling 39 internal degrees of freedom plus
6 global degrees of freedom at the model’s root (the pelvis). The animation
obtained from the system achieves interactive rates using OpenGL and hardware
rendering. On a 1.8 GHz PC with 512 MB of RAM and an NVIDIA video card
FX 5200, the average frame rate is 10 fps, when rendering one frame at each
thirtieth of a second of the simulation.

The character’s perceived compliance and motion capture tracking quality
both depend on the choice of gain values (ks and kd) assigned to the two simula-
tions. Although manually defined, the choice of the small number of gain values
(four total) is not difficult and need only be done once. The values are fixed in
all test results in this paper. We found useful gain ratios relating the feedback
and feedforward torque controllers as ksmain = 0.05 ∗ ksaux and kdmain = kdaux.
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Note, the gain values in the auxiliary simulation can be defined first since the
gains in the main simulation do not affect that choice.

To maintain the model balance in the performed tests, external forces and
torques are applied to the model’s root (pelvis) and feet (when they contact the
floor) to track the captured motions. These forces and torques are generated by
high-gain feedback controllers, which are used in both simulations. Although this
strategy is not physically correct, the proposed method does not depend on the
balance control approach that is used and therefore allows for other strategies
as well. Yin et al. [6] suggest a promising balance strategy for locomotion. How-
ever, maintaining balance during highly dynamic (athletic) motions like those
presented in this paper, remains an open problem.

7 Results

In order to demonstrate the effectiveness of the proposed method, we perform
several experiments. For our examples, we use fighting motions, such as punches
and kicks motions. As the character tracks these captured motions, we create dis-
turbances by throwing balls that collide with the character’s body parts causing
physically simulated impacts – the impacts yield corresponding external forces
on the model. This type of interaction is very common in games. The accom-
panying videos allow a visual assessment of the movements and the method’s
quality.

In our first test, several objects are collided with the model while it tracks the
captured motions. The model reacts to the external disturbances and returns to
track the captured motion. Figure 2 shows an example where the model reacts
to an impact on the arm and then another on the head. The auxiliary model
does not receive the impacts and can be used as a reference for comparison.
The original captured motion is shown in the accompanying videos. Our next
result compares the capability of the low-gain feedback controllers to track the
captured motions: without using the feedforward term (Figure 3a); and using the
proposed feedforward term (Figure 3b), obtained from the auxiliary simulation,
which uses high-gain feedback controllers. The feedforward term computed using
the proposed method is effective and allows low-gain feedback controllers to track
the captured motions faithfully, with quality similar to the tracking done by the
high-gain feedback controllers used in the auxiliary simulation. Finally, we show
that the proposed method can handle expected external disturbances easily.
Figure 4a illustrates a situation where the model receives an unexpected impact
on the back of the head and, simultaneously, an expected impact on the leg.
The expected impact on the leg is also considered on the auxiliary model, as
illustrated in the figure. In Figure 4b, the same two impacts are both considered
unexpected for purposes of comparison. In the first case, the reaction on the leg
occurs in a rigid way as desired, while in the second case the knee acts compliant.

The proposed method has presented effective and visually pleasing reactions
to impacts in all parts of the model, even when more than one impact occur



8 Nunes, R.F., Vidal, C.A., Cavalcante-Neto, J.B., Zordan, V.B.

simultaneously or several impacts occur in sequence. Moreover, the new method
handled expected external disturbances, in a simple and effective manner.

8 Discussion and conclusions

This paper addresses the problem of simulating realistic reactions to external
disturbances in captured motions, in an easy and automatic fashion. The pro-
posed method employs an auxiliary simulation which uses high-gain feedback
control to determine feedforward torque for the character (main) simulation.
The controller allows the feedforward term to be obtained at runtime in a gen-
eral way. The proposed method handles natural reactions to both unexpected
and expected external disturbances.

Advantages of the proposed technique. Our method presents some ab-
solute advantages and some advantages shared with certain previous methods.
Advantages of our method can be listed as follows:

– Simple computation of the feedforward term. The computation done by the
proposed method is exactly the same as the computation of the feedback
torques but in an auxiliary model, thus very minimal implementation is
required beyond feedback control alone.

– Tracking general trajectories. As opposed to inverse dynamics, feedback con-
trollers produce appropriate torques for general trajectories, including tra-
jectories that do not respect the laws of physics – such as transitions between
motions [18, 9, 2, 6] and keyframe inputs (e.g. pose control) [19, 6, 13]. Using
inverse dynamics on these trajectories can lead to unnatural large or unde-
fined torque values.

– Online feedforward control. The proposed method is carried out at runtime.
This feature allows the system to handle situations in which the trajecto-
ries cannot be predicted, such as trajectories synthesized by higher level
controllers based on sensors or user input [9]. These trajectories cannot be
pre-processed in order to obtain feedforward torques using offline techniques.

– Reactions to expected impacts. The proposed method handles expected re-
actions in a unified manner that is consistent with findings in motor control.
By considering expected impacts in the auxiliary simulation the feedforward
term automatically anticipates with a behavior visually similar to bracing
for an impact.

There are several exciting areas of future work for this project. It would
be interesting to test the proposed method on synthesized motion, for exam-
ple, derived from simple transitions between captured motions or generated by
traversing motion graphs [20]. Also, it would be interesting to define a general
criterion for determining whether or not an impact should be expected (noticed
in advance) by the model. Similarly, another direction would be to allow the
model to have deliberate anticipatory reactions as in [16], to prevent impacts to
vulnerable parts of the body.
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Fig. 2. The model is unexpectedly hit on the arm and after on the head, reacting to
the impacts and returning to tracking the captured motion in a flexible and natural
way.

Fig. 3. (a) Low-gain feedback control without the feedforward term; (b) low-gain feed-
back control with the feedforward term; (c) original captured motion.

Fig. 4. The model receives, simultaneously, an unexpected impact behind the head
and an (a – expected; b – unexpected) impact on the leg.


