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Abstract Motion graph approaches focus on the re-use of
character animation contained in a motion-capture reposi-
tory by connecting similar frames in the database with tran-
sitions. Because the output animation of a motion graph comes
directly from the motion capture data except for the transi-
tions, the quality of the motion depends largely on the tran-
sition points selected. In this paper, we investigate compari-
son metrics for choosing transition points, aiming at improv-
ing the visual quality of animations generated using motion
graphs. Specifically, we focus on the weight assigned to each
body part, which reflects the relative significance of the body
part on the quality of the generated motion. We introduce a
novel weighting scheme, based on an estimation of the char-
acter’s dynamics, which assigns weights for each body ac-
cording to displaced mass and simplified friction terms. To
assess the quality of the transitions selected by our proposed
dynamic metric, we compare its results to previous methods,
looking at both visual quality and quantitative analysis.

Keywords animation, motion capture, character motion

1 Introduction

Realistic animation of humanlike characters is an active re-
search area with important applications in the movie and
game industries. One approach for generating realistic, con-
trollable motion is through the use of a motion graph, which
gained a great deal of visibility at Siggraph 2002 [1,8,10,
12,16]. Motion graphs are defined as directed graphs built
by cutting and connecting segments of motion capture data.
They retain visual quality by using motion capture data when-
ever possible and allowing transitions to take place when
motions snippets (or frames) are similar enough. Because
these transition points are selected based on the costs re-
turned by a comparison metric, the choice of the metric has
direct impact on the quality of the constructed motion graph.
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In this paper, we aim at improving the visual quality of mo-
tion graphs by focusing on the comparison metric used to
find the transition points.

While there are several components that make up a compar-
ison metric, we focus on the weighting parameters assigned
to individual body parts that are used in pairwise frame com-
parisons. In particular, we set out to define an assignment
scheme that automatically selects weight values for indi-
vidual body parts based on pertinent, quantifiable dynamic
properties that affect the quality of the transitions. To meet
our goal, we approximate the character’s dynamics by ac-
counting for mass displacement across a transition as well as
simple constraints derived from ground contact and friction.
Our assertion is that a good transition is one which matches
circumstances and minimizes violations based on the dy-
namic conditions seen by the character over the duration
of the proposed transition period. Intuitively, our dynamics
based distance metric penalizes large (mass) displacements
and unnatural sliding contacts with the ground (e.g. “foot
skate”.)

While we focus on motion comparison weights in this paper,
we strive for mechanisms for evaluating both the metric and
the quality of the motion produced using the motion graph
approach. Thus, a secondary leg of this effort emphasizes
analysis and evaluation of the produced motion transitions.
In a straightforward manner, our algorithm’s selected transi-
tions are evaluated in comparison to two previous methods
based on visual quality and quantitative analysis. In addition,
we introduce findings that provide insights in regards to as-
sessment of distance metrics in general as well as a quantifi-
cation of the number of transitions one might expect to find
based on a given database. The latter leads to a method for
selecting metric thresholds.

The major contributions of this paper are:

– An automatic, dynamics-based assignment scheme for
comparison.

– Introduction of body mass displacement as a method for
transition evaluation.
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– Quantitative reduction in amount of “foot skate” result-
ing from motion transitions.

– Assessment and practical suggestions related to the se-
lection and use of comparison metrics for motion graphs

2 Related Work

Several researchers have proposed ways to reuse motion cap-
ture data by treating it as an input to build new animations.
One such technique is to create animations by taking dis-
joint segments of motion capture data and connecting them
through a simple transition [14,1,8,10,12,16,13,2]. Recently,
Ikemoto et al. also introduced a method for generating tran-
sitions automatically between any frame and any other frame
in a motion database using multi-way blends [7].
In our work, we focus on the distance metric used to evalu-
ate motion transitions and highlight a few distinct methods
here for reference. In Kovar et al. [8], a motion graph’s tran-
sition points are selected by searching for similar frames in
the motion database using a comparison metric which is the
Euclidean distance between representative trace points dis-
tributed over the character’s body model. A ‘window’ of ac-
tion is incorporated into the metric by taking the weighted
sum of the distances for several frames before and after the
times of the test frames. We use this method as our baseline
(Heuristic 1) in this paper. Arikan and Forsyth construct a
hierarchical motion graph and perform a randomized search
on it to generate a motion that fulfills user constraints [1]. In
their effort, the comparison of frames is performed by align-
ing the roots and using the joint position, joint velocity, torso
velocity, and torso acceleration. The joint weights are varied
depending on the significance, as in our metric, but the val-
ues are chosen empirically in their metric. We construct a
second heuristic measure based on their technique for com-
parison as well. Lee et al build a two-layer graph structure
using a Hidden Markov Model [10]. The comparison metric
used by Lee et al is based on the difference in joint angles
and joint velocities, where the sum is taken over manually
selected “important” joints. They also introduce the notion
of contact states, suggesting that the transitions should take
place only when there is a similar contact change occurring
at the frame. We also account for contact changes in our
weight definition.
Several studies have been conducted to evaluate synthesized
motions including edits or transitions for motion capture data.
Evaluations of motion graphs can be divided into two cat-
egories: analyzing the quality of individual transitions and
analyzing the resulting animation as a whole, for example,
based on the coverage within an environment. Several in-
vestigations rely on human input to assess naturalness of
synthesized motions - where some assess human percep-
tion of segment quality via user studies [17,22], while others
build statistical models to automatically assess quality based
on hand-labelled examples [21,19,3,6]. Another study eval-
uates the physical correctness of interpolated motion seg-

ments and makes specific suggests in regards to generating
more natural looking motion [20]. Evaluation targeted at the
results from the motion graphs in its entirety has been pre-
sented by Reitsma and Pollard [18]. They introduced a met-
ric which measures the capability of the motions generated
by a motion graph to navigate a character within a given en-
vironment.

Of these efforts, the work described by Wang and Boden-
heimer [21] is related to ours in that they evaluate transition
cost (following the metric introduced by Lee et al [10]) and
focus on the weight assignment scheme. They present an al-
gorithm for assigning joint weights using a training set of
transitions that are classified manually as visually pleasing
or not. The weights are computed via optimization to mini-
mize the contribution from the undesirable transitions. Their
work is similar to ours in that we both focus on weight-
ing schemes that lead to natural transitions, but instead of
using example transitions to optimize the weights, we de-
termine the weights based on the dynamics of a given mo-
tion segment. This distinction enables the weight assignment
scheme to be automated and does not require a manually
generated training set. In this respect, our work is more sim-
ilar to that described by Safonova and Hodgins [20] because
we compute a dynamics based error that penalizes physi-
cally unrealistic transitions.

3 Comparison Evaluation

There are various techniques that can be used to compare
motion segments. In this paper, we base the structure of our
comparison metric on the one presented by Kovar et al. [8]
and investigate the effect of using different joint weights.
Thus, we begin the description of our method with an overview
of their comparison metric. We also re-implement their met-
ric and use this as a basis for comparison.

According to their comparison method, to compute the dis-
tance errors for a pair of frames, the distance for a window
of frames is extracted and compared. This window is a se-
quence of frames containing the frame itself and the nearby
frames, whose size is defined as L + R + 1, where L and R
denote the sizes of the left and right windows, respectively.
The cost between two windows is defined as the weighted
sum of the costs for individual pairs of frames in the win-
dow:

C(Ai,B j) =
R
∑

k=−L
[Wk ∗ c(Ai+k,Tθ ,(x,y)B j+k)]

Here, C(Ai,B j) denotes the cost for transitioning from a win-
dow centered around frame Ai to another around frame B j.
Wk is a changing frame weight for the kth frame in the win-
dow. In our implementation, we set this value based on a
quadratic function where the highest weight is given to the
central frame (k = 0) and decreasing weight is given toward
the ends of the window. c(Ai+k,Tθ ,(x,y)B j+k) denotes the cost
for a single frame pair, Ai+k, and B j+k, given by the frame-
frame comparison function c, and Tθ ,(x,y) is the alignment
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transformation applied to the frame B j+k. The alignment
transformation is a rotation along the vertical axis followed
by the translation along the ground plane, and it is computed
as an analytical minimum of the final cost.
Frame-frame comparison assesses the similarity of two pos-
tures, returning the quantitative difference between the two.
The cost between two postures is defined as the weighted
sum of the cost for each body part:

c( fi, f j) =
N
∑
n=1

wpos( fi,n, f j,n)

M

M
∑

m=1
cpos( fi,n,m, f j,n,m)

Here, the cost is defined for postures at frames fi and f j, each
having N body parts. For each body, the positional differ-
ence of M representative points (termed ‘point clouds’) are
computed using cpos, which denotes the squared Euclidean
distance between the corresponding points. The computed
costs are scaled by weight w for each body, which is uni-
form in their approach. The representative points for each
body part are weighted equally, so the average of the sum
of M costs is used as the cost for the body part represented
by the points. For the sake of consistency, unless otherwise
specified, we follow their technique exactly except for our
replacement of the weights in w.

4 Dynamics-based Weighting

To account for the dynamics, we estimate the value of the
mass for each body part. This approximation can be done
based on volume and density estimates or set directly based
on known values for human body parts. For further details
on this topic, see [5]. From these masses, we could compute
the amount force or change in momentum required to move
a body part based on a given input trajectory (say, the pro-
posed motion transition). However, unless we are willing to
make assumptions in regards to the external forces are act-
ing, these calculations become intractible. Instead, we pro-
pose that the dynamics can be captured by computing two
mass-based properties that account for the unconstrained mass
displacement and constrained, friction-based sliding present
in the compared motions.
Thus, the comparison metric we introduce is comprised of
two distinct components: mass displacement weights and
‘friction’ weights. Then, the weight for a given body part
b is defined as the sum of these two types of weights:

w(b) = wmass(b)+w f riction(b)
where wmass(b) is a measure of the amount of mass that is
displaced by moving a body a given amount and w f riction(b)
measures the amount of resistence felt by moving a body
against friction, imposed by ground contact.

4.1 Mass Displacement Weight

Mass displacement has been used to assess motion edits pre-
viously [15]. In our scheme, the mass displacement weight

Fig. 1 Inward/outward directions with respect to the root. Root body
is shown in dark.

is determined by the amount of mass that gets displaced by
moving the body part assuming that the character is uncon-
strained (i.e. not in contact with the ground). Note, kine-
matic constraints are upheld, but we do not differentiate at
this point based on the environment.
Because the human body is connected by joints, body parts
do not move independently. For example, if a person tries to
move the upper arm, the lower arm and the hand will move
together, and if a person tries to move the lower arm, the
hand will move together in a similar manner. We note the
upper arm displaces more mass than moving the lower arm,
which suggests that differences in the shoulder joint require
more work than the differences in the elbow in general. To
incorporate such differences, we define our mass displace-
ment weight as:

wmass(b) = Mass(b)+ ∑b′∈{OutParts(b)} Mass(b′)
where mass displacement weight for body b is defined as the
sum of the masses of the part itself plus all of the outward
parts b′, where the outward direction is defined as the direc-
tion away from the root. In other words, the outward parts
include all body parts that lie between b and the branch tips
in the outward direction (see Figure 1). In this fashion, we
account for the relative cost of moving the body parts, for
example the hand vs. the pelvis based on the total mass dis-
placed.
Note, the values of wmass remain constant throughout the
simulation. The value of wmass(b) only depends on the masses
of the body parts in the model, which does not change from
frame to frame. Thus, wmass(b) can be pre-computed for each
body part in the model to avoid redundant calculations.

4.2 Friction Weight

The mass displacement weight accounts for movement in an
unconstrained environment. Obviously, it is also important
to account for external forces, especially for ground contact
which supports the character’s body and provides traction
for movement. One solution is to use the body parts that
are in contact with the ground, which suffice as an approx-
imation to avoid complex calculations [23]. However, body
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parts in direct contact with the ground are not the only ones
that support the body or feel the result of friction resistence.
Thus, in addition to the body parts in direct contact with
the ground, the inward parts of the supporting limb’s branch
should be penalized as well.

InPartsInSameBranch(b) = {b′ :b′ ∈ InParts(b) and
Branch(b′) = Branch(b)}

Here, the inward bodies, InParts, are all of the body parts
from b toward the root, which is the direct opposite of the
outward parts mentioned in the previous subsection. The
Branch(b) returns the branch that body part b belongs to,
which is either the head or one of the four limbs. The second
half of the check ensures that the body part b only affects
other parts of the body that belongs to the same branch. The
supporting body for the frame is then defined as all of the
body parts in ground contact and all inward parts of them
that belong to the same branch:

SupportingBody( f ) ={b : IsContactingGround(b)} ∪
{b′ : b′ ∈ InPartsInSameBranch(b)}

The friction weight is defined to be the amount of mass dis-
placed, in this case, based on the amount of mass the body
part supports. To compute the amount of mass a body sup-
ports, we draw off of our observation that a body in contact
can be treated as the root and then, as we did before, we can
walk out the tree from that root collecting the masses of each
body displaced - up to the entire mass of the body as in the
case of a single foot support. Then, as we move up the chain
to the other bodies identified as support bodies (but not in
contact), like the shank, we apply the same algorithm. One
way to calculate this approximation is to take the total mass
of the body and subtract out the masses of the outward bod-
ies associated with that support body as

TotalMass = ∑b∈{BodyParts} Mass(b)
BranchMass(b) =

Mass(b) + ∑b′∈{OutPartsInSameBranch(b)} Mass(b′)
w f riction(b) = TotalMass−BranchMass(b)

The OutPartsInSameBranch(b) returns the set of body parts
that are in the outward direction from the body part b and
also belongs to the same branch, which is the opposite of the
InPartsInSameBranch introduced earlier. The branch mass
is defined to be the sum of the masses of the outward parts
in same branch plus the mass of the body part b itself, and
w f riction(b) is found by subtracting branch mass from the to-
tal mass of the body.

Note, the friction weight is computed in the same units as the
mass displacement weight and therefore no careful tuning
must be done to combine these two weights. Also, because
the friction weight depends on a single posture, the weight
need only be computed once for each body part for each
frame in the repository.

Fig. 2 Possible transitions. From top to bottom, left to right: a) un-
constrained to unconstrained, b) unconstrained to constrained, c) con-
strained to unconstrained, d) constrained to constrained.

4.3 Weight for Frame Pair

The remaining question on weight assignment is to deter-
mine how to assign weights for pairs of postures. So far, the
weights are assigned for just a single posture, but the cost
needs to be computed between pairs of postures. One solu-
tion is to use the weights for the source posture, so if tran-
sitioning from fi to f jis being considered, the weights for
fi are used and vice versa for the opposite direction (from
f j to fi). However, this does not differentiate between the
cases where the transition destination is constrained (Fig-
ure 2(b), 2(d)) and unconstrained (Figure 2(a), 2(c)). It is
important to make this distinction, since the transition from
constrained to constrained (Figure 2(d)) is more restrictive
than the transition from constrained to unconstrained (Fig-
ure 2(c)), making the former case more prone to undesirable
visual artifacts such as foot skate.
To reflect the effect of both postures, the weight for a posture
pair is computed as:

wpair( fi, f j) = wmass +w f riction, fi +w f riction, f j
Here, the weight is computed for frames fi and f j, which
is defined as the sum of the mass displacement weight and
the two supporting weights for the two frames. In the def-
inition, the mass displacement weight is added only once,
noting that its value is equivalent for both postures. By us-
ing the sum, wpair gets contribution from both postures, re-
sulting in assigning highest weight to the transition that goes
from constrained frame to constrained frame.

5 Implementation

As a means of comparison, we implemented two heuristic-
based weight metrics in addition to our dynamics-based one.
The three metrics differ only in the weight assignment scheme
of the body-part weights. Heuristic 1 uses uniform weight
and follows the metric suggested in [8]. It makes no distinc-
tion between the body parts. Heuristic 2 uses ad-hoc, non-
uniform weights, where higher weights are assigned to the
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torso than the limbs. This metric is more similar to those de-
scribed by Lee et al. [2002] and Arikan and Forsyth [2002],
although we still incorporate the point cloud and window-
ing concepts throughout. For this metric, we also assign an
extra weight to the single body part that is supporting most
of the mass, where the extra amount is a hand-selected con-
stant. The difference between our metric and Heuristic 2 is
that our weights are determined based on mass values and
our metric computes values for supporting bodies per frame
based on any combination of contacts in an automated fash-
ion, whereas the weights for Heuristic 2 are static and de-
fined manually.
The comparison metrics are used to construct motion graphs
for two motion databases, one consisting of a single long
sequence of 4145 frames (about 34 seconds) of martial arts
fighting and the other consisting a 3720 frames (about 31
seconds) of concatenated, shorter reaction behaviors such as
stumbling, stepping, and falling. We also tested a data se-
quence for walking but found that each metric performed
indistinguishably well because of the regular periodicity of
the motion, so we chose to leave this dataset out of our anal-
ysis. All of the results are derived using a character model
having 45 DOF, 3 each for 13 joints and 6 for the position
and orientation of the root. The reaction based animations
were not included in the final video because, while the tran-
sitions found by our metric were visually more appealing,
the motions concatenated across the board lead to fairly non-
sensical animations due to the nature of the behaviors (not
the transitions.) As such, we chose to include the database
for the analysis of the transitions, but we do not show any
animations from this dataset so as not to taint the reader’s
perception of the results.
To view animations, blending is performed by applying lin-
ear interpolation to the joint positions and spherical linear
interpolation to the joint orientations using an ease-in ease-
out weighting function. Simple interpolation is used here
to ensure that the visual quality of the blended sequence
depends mainly on the closeness of the selected transition
points and not on the blending technique used. Applying
foot-skate cleanup will result in better-looking motion than
what is being presented. The supplement video shows a col-
lection of the example transitions from each set difference,
ordered by their ranks. By looking at the transitions, it can be
seen that more foot-skating is happening on those selected
by the Heuristic 1. These transitions are obviously selected
because the source and the target frames are close in terms
of the positional differences of their body. But they are not
chosen by our dynamics scheme because the transition hap-
pens between two constrained, double support postures and
the metric assigns a high penalty from friction weights to
both of the legs.

6 Results and Analysis

Figure 6 shows the normalized 2D cost matrices for the fight-
ing database, comparing our metric and Heuristic 1. A 2D

(a) Costs from dynamics-based metric

(b) Costs from Heuristic 1

(c) Difference (Dynamics - Heuristic 1)

Fig. 3 2D cost matrices for martial arts fighting data. Intensities rep-
resent normalized costs, where low intensity (dark spots) represent a
close match and high intensity (bright spots) represent a poor match.
The difference matrix (c) shows difference in normalized costs. Pos-
itive values are shown in blue, negative values are shown in red, and
zero difference is shown in black. Points on (c) denote the transition
points chosen by: our dynamics-based metric (green), Heuristic 1 met-
ric (magenta), and both metrics (white).
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cost matrix is a symmetric matrix whose entries denote the
costs, so an entry at [i, j] having a value c means that the
cost to transition from ith frame of source clip to jth frame
of target clip is c. The computed costs are normalized by the
median, and these values are used as the intensities in the
graph. The grid pattern in both reveals the structure of the
sequence as the fighter throws fast attacks and then returns
to a neutral protective stance. The dark spots having low in-
tensity correspond to low cost (a good match), and the bright
spots having high intensity correspond to high cost. One dis-
tinction is that the dynamics metric leads to a crisper, higher
contrast distance matrix and hints at the metric’s ability to
distinguish between what it constitutes as good and bad tran-
sitions. The last matrix (c) shows the difference between the
normalized costs for the two metrics, where the areas in red
denote the transitions favored by our dynamics-based met-
ric, and the areas in blue denote the transitions favored by
Heuristic 1 (again intensity is used to show the size of the
difference).

The 2D difference matrix reveals large discrepencies as well
as interesting patterns in the relative costs assigned, yet it
alone is not sufficient as a means for assessing quality. Be-
cause the cost metric is used to determine the transition points,
it is important to observe the difference in the transition
points selected by the two metrics. To find the difference,
T best transition points are selected for each of the met-
rics, returning the sets TransPtdynamics and TransPtHeuristic1.
Then, set differences are taken in both directions, exclud-
ing all nearby transitions that represent the transitions which
connect the same motions (within a quarter of a second.)
These excluded transitions are selected by both metrics and
appear in the difference matrix as white dots. The remaining
two sets, shown in magenta and green in the difference ma-
trix, reveal the transitions selected by one but not the other.
These transitions allow us to most strongly distinguish be-
tween the visual aspects of the transitions selected. Thus,
we include examples of these transitions in the accompany-
ing video for the reader viewing. For fighting, the 67 “best”
transitions were selected and of these 11 were unique to each
metric. For the reactions, 30 transitions were allowed and 14
were unique to each.

Selecting the threshold for the cut-off between acceptable
and unacceptable transitions can be tricky and varies with
the same distance metric from database to database in our
experience. Thus, we came up with a helpful mechanism for
selecting this threshold. For our results, the number of best
transition points, T, is determined based on the rank-ordered
costs returned by the comparison metrics. Figure 4 shows the
normalized costs for fighting sorted in the increasing order
of the rank (duplicate transitions within a short time window
are thrown out, hence the total number of transitions varies
and is less than the total number of frames). The value T
is defined to be the point at which the slope of the graph(s)
change(s) after an initial ramp up. We reached this practice
empirically based on the observation that independent of the
weighting scheme (and other factors) the database revealed
a singularity point (around rank 67) after which the slope

Fig. 4 Shows the normalized costs for fighting using the metrics. The
red vertical line shows the average point where the slopes of the graph
changes.

Start to End Arc Length
Fighting Reacting Fighting Reacting

Dynamics 9.0 8.2 10.6 9.9
Heuristic 1 12.2 16.8 14.0 19.8
Heuristic 2 12.8 17.0 14.2 19.3

Table 1 Average foot-skate distance (in cm) for all the transitions cho-
sen by the comparison metrics. Start-to-end measures only the distance
of the end points for the transitions. Arc-length approximates the path
length taken over the duration of each transition.

of the error values changed. Testing the transitions on both
sides of this singularity revealed it as a reasonable cut-off
between good and bad transitions. A similar exercise lead us
to our cut-off for the reaction database, set at rank 30. Our
interpretation of this result is that a given database only has
so many places where segments repeat themselves within
some proximity and that after the best transitions are picked
off, the values of the for the ranks change in a noticeable
manner.

Note, although it may seem that the transitions selected be-
tween metrics have a good deal of overlap and indeed many
of them do connect logically similar motion segments, the
order of the rankings of individual transitions is quite dif-
ferent across the metrics and the precise characteristics of
the transitions selected are also quantifiably different even
though they connect similar segments. One measure of this
difference is the amount of foot skate present in the tran-
sitions selected. The average foot skate distance of the T
best transitions are computed and the results are shown in
Table 1. From this analysis we can see that our dynamics-
based metric selects transitions with reduced the amount of
foot-skating on average.

We include two additional graphs that attempt to reveal the
effect of other components of the metric. Figure 5(a) shows
the graphs of the costs computed by using the position of
the point clouds and by using the position and the orienta-
tion of the body (center of mass.) The costs computed us-
ing the point clouds has greater deviation, which makes the
transitions selected based on such cost to be more reliable
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(a) Point cloud vs spatial position

(b) Comparison of alignment

Fig. 5 Comparison of different components of a comparison metric.
Graphs show the normalized costs by differing one of the components.

because the transitions are more distinct. Thus, we conclude
that point clouds are preferrable, potentially only because
they combine the position and rotation information into a
single unified value. We also performed an analysis of two
different alignment schemes. Figure 5(b) shows the com-
parison between the two techniques for aligning the frame
windows, one using the optimal alignment as described by
Kovar et al. [8] and another using the center frame of the
frame window for alignment. The resulting graphs have sim-
ilar structure, suggesting that the choice between the two
alignment techniques is insignificant in terms of the costs
that they return.

7 Discussion and Conclusions

As one can observe from the associated animations, a no-
table trend in the transition points chosen only by Heuristic 1
is that they involve a displacement of one or more highly

constrained (support) body parts. Such transition points are
not chosen by our dynamic weighting scheme because weights
assigned to the constrained body part makes the resulting
cost high, discouraging the transition from being selected
compared to others with less costly displacements (for ex-
ample where only arm movement is required in a standing
transition.) In contrast, the uniform weighting of Heuristic 1
makes no distinction between the two, since equal weight is
assigned to both constrained and unconstrained body parts.
Thus, is it no surprise that the foot skate observed is signifi-
cantly smaller using our method.
A less obvious trend that results from our approach is that
the transitions selected by our method tend to take place
during periods of high activity (rather than during a static
pose), see the filmstrips in Figures 6(a) and 6(b). This is
likely because they include a shift in (body) weight which
our weighting scheme exploits. That is, when an action such
as a kick or leap takes place, there is a break in double sup-
port and this yields a ‘sweet spot’ when a transition can be
made with minimal foot skate. We also believe based on ex-
perience that transitioning during active periods is prefer-
able because viewers tend to be more forgiving of flaws
during this period. One subtlety with the presented weight-
assignment scheme is that it does not take the direction into
account. For example, lifting an arm up is more difficult than
letting it fall, suggesting that the direction of the movement
affects the definition of weights in addition to what is already
incorporated. We leave this improvement for future work.
In conclusion, we present a dynamics based weighting scheme
for comparison of transitions selected for a motion graph
and fit our scheme into an existing framework for assess-
ment. We compare results of our algorithm to that of two
alternatives designed to be similar to previous approaches
for two databases and show a reduction of foot skate arti-
facts across all cases. In addition, we present some general
analysis and suggestions related to selecting thresholds for
metrics and the sensivity of metrics to factors such as align-
ment and the method of computing distances between body
parts. While human perception will remain the ultimate test
of visual quality, we believe our method leads to quantita-
tive (and qualitative) improvement based on inherent com-
putable dynamic characteristics associated with motion tran-
sitions (and natural motion, in general) and that our results
yield higher quality motion without the need for human in-
tervention.
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