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Abstract
Motion graphs have gained popularity in recent years as a means
for re-using motion capture data by connecting previously unrelated
segments of a recorded library. Current techniques for controlling
movement of a character via motion graphs have largely focused on
path planning which is difficult due to the density of connections
found on the graph. We introduce “state-annotated motion graphs,”
a novel technique which allows high-level control of character be-
havior by using a dual representation consisting of both a motion
graph and a behavior state machine. This special motion graph is
generated from labeled data and then bound to a finite state machine
with similar labels. At run-time, character behavior is simply con-
trolled by switching states. We show that it is possible to generate
rich, controllable motion without the need for deep planning. We
demonstrate that, when applied to an interactive fighting testbed,
simple state-switching controllers may be coded intuitively to cre-
ate various effects.
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1 Introduction
Motion graphs provide a means for re-using motion capture data by
building transitions between motion segments and forming a tightly
connected network of movements. This network, or graph, allows
endless, seamless motion to be generated from a finite collection
of data. However, the control methods by which the motion graph
is traversed remain limited because the structure of graph is often
too dense to perform deep planning. A large branching factor for a
motion graph, which is desirable for building variety into the final
motion, is at odds with the need to find paths quickly through the
graph to accomplish a given goal. Previous techniques generally
provide the means for control by performing local searches to dis-
cover longer paths through the graph. We take a different approach
by re-framing the control problem as a series of high-level deci-
sions, specifically focusing on situations where planning is not as
important as intelligent, responsive behavior. This behavior is re-
quired of characters that are engaged in highly interactive activities,
such as fighting.
We introduce the “state-annotated motion graph,” a novel, dual rep-
resentation where the motion graph is automatically embedded into
a finite state machine (FSM) that encapsulates high-level behaviors.
The usage of such a representation allows for action to be consid-
ered at two levels: as the individual node active in the motion graph;
and as the behavior that exists within the state machine. Under
this dual representation, we can give direction at the behavior level
while the system generates smooth and varied motion at the level
of the motion capture data. Unlike previous efforts that combine
FSM and motion capture [Lau and Kuffner 2005], our technique
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Figure 1: Scene generated with state-annotated motion graph

has far fewer restrictions on the motion graph traversal. For exam-
ple, our system may generate a motion capture path that connects
several nodes to accomplish a single FSM transition. For control,
we present a method for combining user-coded heuristics to yield
various effects. Because no planning is necessary at run-time, our
system is capable of interactive rates.

We show our results using the testbed of martial arts fighting (as
seen in Figure 1) which is valuable in settings such as electronic
games and crowd generation for special effects. Our results include
basic locomotion in the form of shadowing, where an opponent
maintains a desired distance and facing direction relative to another
fighter, as well as fighting actions for attacking and defending in a
fighting match.

2 Background
Schoedl and colleagues introduced video textures as a mean of
reusing prerecorded motion sequences by rearranging and connect-
ing video clips based on visual similarity [Schoedl et al. 2000].
Shortly afterward, several research groups simultaneously pro-
posed similar graph-based approaches aimed at motion capture
reuse [Arikan and Forsyth 2002; Kovar et al. 2002a; Lee et al. ]
These techniques use a similarity metric to find transitions within
a motion library based on visual quality and physically based con-
straints. Some semi-automatic approaches for building more struc-
tured motion graphs have since been proposed [Gleicher et al. 2003;
Lau and Kuffner 2005] in which motions are grouped into behavior
states, largely by hand. Arikan and colleagues also propose anno-
tating a motion database and using labels to describe a desired ac-
tion, which is then built using dynamic programming [Arikan et al.
2003].

Our work in state-annotated motion graphs is related to the above
efforts, but differs in that we integrate annotation within the motion
graph data structure. One contribution is thus in providing context
in the form of behavior labels for character motion so that it may
be used to guide the construction and decrease the complexity of
the motion graph (e.g. by pruning unwanted transitions and unused
nodes.) To accomplish this goal, our system uses control informa-
tion provided by the user in the form of a finite state machine, and
annotated state labels from the source motion to choose appropri-
ate transitions for the motion graph. We contrast this with others’
efforts in building a motion graph from unlabeled motions.

Searching a motion graph of any substantial depth is problematic



due to the high branch factor of the graph and the short duration of
many nodes found in the graph. This problem has been addressed
by previous efforts using adhoc routines to extend the planning
horizon. For example, Schoedl and Essa [2002] precompute mo-
tion paths for video sprites using subsequence replacement. Arikan
and Forsyth [2002] arrange motions into a hierarchy of clusters of-
fline and perform planning over them at run time. Choi and col-
leagues [2003] use road map construction, a technique that stitches
together shorter motion segments to fulfill the constraints for each
leg of a path. Lau and Kuffner [2005] suggest limiting the branch-
ing with a highly structured motion graph built manually from
hand-segmented clips. Kuffner’s results for long-range path plan-
ning using A* or beam search are orders of magnitude faster than
search compared with a general motion graph. In contrast, our ap-
proach uses an automatically generated motion graph and focuses
on controlling high-level behavior transitions using precomputed
paths between states. At run-time, we perform no path planning
and instead control the character with shallow, depth-limited local
search.

We demonstrate our results using interactive virtual fighters and
fighting data. Close to this domain are two efforts focused specifi-
cally on fighting. In [Lee and Lee 2004], reinforcement learning is
used to pre-compute motion paths for fighting behaviors. This work
is complementary to our approach presented in this paper. Rather
than looking for optimal paths for individual behaviors, we focus on
high-level control for our character and aim to create a flexible con-
trol system (driven by a finite state machine) that may be modified
at runtime. Graepel and colleagues [2005] propose a mechanism
for learning a policy for fighting within a fixed video game setting
where a character is pit against a heuristic-coded fighter. They focus
on the problem of optimizing the transition selection from a small
set of choices within the game’s existing hand-crafted motion graph
(aka move tree). Our work is similar to theirs, though we general-
ize control to a richer and more diverse set of motions, which are
connected automatically in the state-annotated motion graph.

3 State-Annotated Motion Graphs

Behavior state machines, such as the example in Figure 2a, are a
simple and flexible framework for character control and are the ba-
sis of many commercial animation systems. Most often these state
machines are built by hand with the following layers: (1) the struc-
ture is chosen based on the goal of the application; (2) the behavior
states are populated with appropriate animation segments; and (3)
transitions are crafted to move between animation sequences. The
power of the approach comes from the fact that the state descrip-
tion (Layer 1) is usually defined in a straightforward manner with
semantic meaning such as “move forward” or “turn left” leading to
intuitive state definitions. And Layer 2 can often be populated eas-
ily with animations taken from motion capture. But Layer 3 is more
difficult to generate, often done in a naive manner with clean-up
left to the discretion of a human animator. Even when high quality
motion capture is employed for behaviors, transitions can reduce
the overall quality if they include unwanted artifacts due to poor
construction. Thus, the number of animations included in the state
machine is often limited in order to keep the number of transitions
required to a minimum. This can lead to repetitive, uninteresting
motion. In contrast, motion graphs automate the process of tran-
sitioning from one motion clip to another and may combine large
and rich databases of motion with seamless transitions. However,
animation produced from a motion graph, say by a random walk,
can be nonsensical because high-level context is missing. And as
pointed out in the background section, general control and planning
for motion graphs remains an open problem.

We combine these two techniques into a single representation, the
state-annotated motion graph. It offers high-level task specification,
and with it, the constraints needed to produce meaningful motions
while simultaneously upholding visual continuity. This continu-
ity is made possible by automatically generated motion graph-like
transitions. In comparison, [Lau and Kuffner 2005] construct their

Figure 2: (a) Fighter state-machine. (b) State-transition with repre-
sentative edges from motion graph that go from locomotion state to
attack state shown (blue, dotted arrows)

well-structured motion graph by hand equivalent to building a state
machine and choosing the behavior motions as well as the state
transitions. An important distinction in their work is that they treat
the transition as a narrow gateway from state to state. And even
though they include multiple motion capture examples within a sin-
gle behavior state, they still aim to have all of these clips start and
end on similar frames. State-annotated motion graphs include no
such restrictions on the transitions between states as long as the
change in state labels matches the desired pattern. Thus, our transi-
tions are much more broadly defined and can be traversed with any
of a number of edges within a given graph (see Figure 2b). Also, un-
like Lau and Kuffner’s method, our approach allows motion-graph
transitions freely within the context of a single behavior state as
long as the state label does not change. The effect of these differ-
ences is the automatic construction of a controllable character with
a large repetoire of motion capture-driven actions.

4 Graph Construction
State-annotated motion graphs contain dual information regarding
a behavior state diagram and a standard motion graph. We de-
scribe one method for deriving this duality though this method is
not unique. To begin, we must start with the FSM (as in Figure 2a)
and an annotated motion database containing labeled behaviors that
correspond to the desired states in the FSM. In our implementation
we perform the labeling step simply by assigning a single label to
complete files, such as “locomotion actions” for a long recording of
an idling fighter. Note, no individual clip segmentation is necessary.
Next, we follow an existing method [Kovar et al. 2002a] to con-
struct a basic motion graph, saving the annotation label information
during the process. However, we modify the existing algorithm to
throw out all motion graph edges which are not allowed in the FSM
(e.g. transitions from attack to evade in our fighting example.) As
Kovar and his colleagues describe, we also compute the strongly
connected components (SCCs) of the motion graph. In an SCC as
defined by Tarjan [1972], any node can reach any other node within
the same component. We take advantage of this property of the
SCC in subsequent steps of our construction. Finally, the system
chooses the largest SCC and discards any unused motion nodes.

To strengthen the utility and responsiveness of the state-annotated
motion graph, we define two additional pre-processing steps. The
first is to guarantee self transitions at the behavior (FSM) level. The
goal of performing this step is to allow a character to remain within
a single behavior state without the need for exiting the state. In
FSMs, self-transitioning edges are useful for common behaviors
such as the locomotion behavior in our fighting example. To com-
pute a behavior-level, self transition from any given state, s, we find
SCCs for all nodes with state label s. Note, each SCC will guar-
antee self transitioning by definition. We save the largest of these



SCCs and throw out the remaining nodes. To ensure consistency,
we rerun the SCC subroutine on the overall motion graph to remove
any dead ends potentially introduced during the production of the
self transition for state s.

Next, we increase the responsiveness of the character by performing
some offline search. To ensure timely access of certain behaviors,
we introduce the notion of fully connected transitions which guar-
antee paths from every source node to every target node. In the
construction of our fighting characters, we found such fully con-
nected nodes to be useful for increasing availability of “attack”
and “evade” behaviors. In our state machine in Figure 2a, fully
connected transition edges are denoted by dashed lines; standard
transition edges are solid. Pre-processing for fully connected tran-
sitions requires the search for paths from each source node to all
target nodes. SCC again provides a guarantee that some path ex-
ists, but given that our motion graph likely includes multiple paths,
we search for the temporally shortest path between the nodes. To
accomplish this goal, we employ dynamic-programming (though
any method would be sufficient) and store the found paths with the
motion graph node. The result of this preprocessing step is that, at
runtime, the quickest path to any node in the desired state is imme-
diately available, without search.

5 Control
Once the state-annotated motion graph is constructed, the user can
immediately control the character’s behavior manually by selecting
the desired state behavior. This will result in a character continu-
ously remaining in that state if there is a self-transitioning edge or
transitioning to that state until the desired state is switched to a new
behavior.

To automate control, say for a non-player character, we propose a
straightforward hierarchical control routine which is composed of a
set of activity controllers, and a “supervisor” which prioritizes the
activities to accomplish a high-level goal. In this simple scheme,
the supervisor polls the individual controllers which determine the
best path in the motion graph that will satisfy their unique sub-
task. They report to the supervisor an assessment of their ability to
achieve their subtask and the supervisor selects the activity based
on a priority scheme and the system adds the motion corresponding
to the selected path to the character’s animation queue.

The activity controllers correspond to the behaviors of the FSM and
can be designed from simple rules. For example, to walk forward,
the controller nearly be given a desired speed and the activity con-
troller would compare the desired speed with the possible speeds
for the nodes and choose the best node. A slightly more sophisti-
cated controller that manages both speed and direction would need
to reconcile between the two subgoals but the process of building
the controller is as straightforward as the first step in the construc-
tion of any FSM (as outlined in Section 3.) In our experiments, the
activity controllers are built from such basic rules. For example in
fighting, for locomotion, we develop a behavior to shadow an oppo-
nent. Shadowing is a common fighting activity where the goals are
to keep the opponent in front of the fighter and at a desired distance.
Our rules for shadowing match these goals. During the shadowing
activity, the best step (node) to take is the greedy one which mini-
mizes the errors associated with the distance and facing direction.
To leverage the two subgoals, a weighted sum of the errors is com-
puted. If we employ this simple controller alone, we generate a pair
of characters which shadow and circle each other, as if anticipating
a fight. To create animation of fighting, we developed only three
activity controllers, one each for shadowing, attacking, and evad-
ing. More details about the specific controllers appear in the next
section.

Activity controllers are combined by a supervisory control system.
We found that a simple supervisor was sufficient for fighting - we
merely prioritize the activities based on the following ordering:
evade; attack; then shadow. The supervisor thus polls each activ-
ity controller in turn and selects the first activity that is reasonable

Attack Evade Locom.
Number of Nodes 76 54 702
Ave. Length (sec) 2.57 1.30 0.19

Ave. Time from Locom. (sec) 0.04 0.05 –

Table 1: Fighting state-annotated motion graph statistics: Total
number of nodes in each state, average length of nodes, and average
time from any locomotion node to each attack or evade node.

based on the given ordering, where the default behavior appears
last. The assessment for what is reasonable is application-specific,
e.g. the evade activity is only employed if the character is too close
to the opponent. The power of the state-annotated motion graph
is that the supervisor controller can be thought of (and coded) as
if it is executing solely on the FSM’s state diagram, even though it
is traversing precomputed paths at the motion-graph level. The in-
dividual activity controllers work between the two representations
but even these controllers do not perform any deep search. This is
because clearly defined rules help to find the optimal path, which
gives the best action for a given set of conditions.

6 Implementation and Results for Fighting

To show our results, we implemented fighting controllers that use
state-annotated motion graphs populated with several minutes of
(solo) martial arts movement data. The high-level state diagram
for fighting, shown in Figure 2a, specifies character behavior. Our
implementation for fighting includes three primary sections: (1)
the state-annotated motion graph, (2) the activity controllers, and
(3) the run-time system. Constructing the graph is expected to
be done once off-line, and takes several hours of computation on
our database. Development of control requires some design and
parameter-tuning (e.g. weighting competing subgoals properly)
which was the most labor intensive stage of the implementation.
The on-line system runs at 15 fps for two characters using an AMD
Athlon64 CPU with 2 Gigabytes of memory.

For fighting, there are many possible factors for successful attack
and evasion, but speed plays a uniformly important role and we
used this as a unifying principle in the design of our activity con-
trollers. As Figure 2a shows, the locomotion state, which is used for
the shadowing activity, has a self-transitioning edge and two fully-
connected edges to attack and evade states. Thus, we compute a
local SCC for the locomotion state and appropriate (shortest) paths
from all locomotion nodes to all attack and evade nodes to uphold
our definition of “fully connected”. Our computation of the shortest
path is defined by the cumulative delay of all nodes in the path and
is intended to give the controller the most responsive control space.
Some statistics in regards to responsiveness appear in Table 1.

To assess the value of selecting a specific path for any activity, we
used the following metrics employed at the stated future predicted
time:

• Attack. Advance time to the first contact of the attack and
measure the distance between the attack body (fist or foot)
and designated targets (head, chest, or abdomen.)

• Evade. Advance to the end of the evade action and compute
the distance between the fighter and the opponent.

• Shadow (default activity). Advance to the end of the loco-
motion node and assess quality based on the accuracy of two
sub-goals: distance and relative facing direction computed at
the end time of the nodes being tested.

In each of these metrics, a lookahead is performed. To make this
prediction, we advance both characters on their current path. Al-
though this does not guarantee a perfect prediction since the other
character’s controller might change its path before that future time,
we found this as a reasonable predictor of future state.



Figure 3: Left and right columns: Two fighting interactions gener-
ated using our technique

The priority between activities is a single, easily-tunable parame-
ter which may be modulated to create unique effects. For exam-
ple, when the character is assigned with a heavy weighting for the
evade activity, the result is a fighter that acts more defensively. Con-
versely, when attack is given priority over evade, the result is a more
aggressive fighter. We show a result pitting both fighting styles
against one another in the accompanying animations. In addition,
we show an animation where the attack behavior label is (trivially)
split into two labels, one for punching and one for kicking attacks.
In this case, we vary the priority of the two attack activities to both
extremes. The result, as one might expect, is a fighter which prefers
to punch versus one which only kicks. The granularity of the state
labels is up to the discretion of the animator. That is, if warranted
by the application, single attack motions (e.g. left hooks) could
be labeled as unique behavior states. More details and results can
be found in the primary author’s thesis along with preliminary re-
sults on using reinforcement learning to find controllers automati-
cally [Chiu. 2007].

Interactive fighting is difficult because several factors are involved
simultaneously. We focus on behavior selection using a motion
graph, but other factors - such as precise collisions or modifying
the behavior motion on the fly - are somewhat orthogonal to the
emphasis of our work. To produce the animations that are included
with the paper (as shown in Figures 1 and 3), we perform post-
processing in the form of blending and foot-skate clean-up to im-
prove the quality of the final motion. Foot skate is introduced dur-
ing motion graph transitions and we remove some foot skate using
a naive algorithm. We also add dynamic response, as described
by [Zordan et al. 2005], to select impacts to increase the perceived
interaction of the fighters. In addition, more refined post processing
would certainly improve the motion further: e.g. for better foot-
skate clean up [Kovar et al. 2002b; Ikemoto et al. 2005], and for
more precise motion control [Lee and Lee 2004]. But these modifi-
cations do not affect the behavior control of the fighters, and remain
outside the scope of this paper.

7 Discussion and Conclusion
As we perform experimentation for fighter character motion, our
approach will be powerful in a number of other domains, especially
in domains where large numbers of interacting characters are to be
controlled. The construction of state-annotated motion graphs is
only limited by the need to assign state labels and to define a coher-
ent FSM from those labels. Further assumptions are that ample data
is available for the behaviors and that a densely connected motion
graph may be generated from the motion data. Given these factors,
character motions where interaction is prevalent should be readily
controlled with our approach.

We present a novel technique for controlling interactive fighting
characters using state-annotate motion graphs. The benefit of our
approach stems from the ability to generate controllable, interactive
characters that move based on motion capture data. The novelty of
our approach lies in the dual nature of our representation because
it affords high-level control via a FSM and motion-capture anima-
tion due to the motion graph. We introduce a simple hierarchy of
heuristics to control for fighting. This method of control is particu-
larly applicable to settings such as fighting where deep planning is
replaced by responsiveness.
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