
Stalling Live Migrations on the Cloud

Ahmed Atya∗, Azeem Aqil∗, Karim Khalil∗

Zhiyun Qian∗, Srikanth V. Krishnamurthy∗ and Thomas F. La Porta†

∗University of California, Riverside, †The Pennsylvania State University
{afath001,aaqil001,karimk,zhiyunq,krish}@cs.ucr.edu, tlp@cse.psu.edu

Abstract
Live migration is commonly employed by cloud
providers for performance reasons (e.g., ensuring load
balancing). Recently, migration has been considered as
a countermeasure against cloud-based side-channel at-
tacks. In this paper, we discover an attack using which an
adversary can effectively stall a live migration; this can
not only hurt performance but also hurt the usage of vir-
tual machine (VM) migration as a defense against cloud-
based side channel attacks. Specifically, we discover a
KVM vulnerability which, if exploited by a co-resident
attacker, can suspend or stall the live migration time by
up to 3x in some scenarios. The attacker can also delay
her own VM migration, indefinitely to ensure sustained
co-residency. The attacks that we propose are essentially
based on increasing the volume of dirty pages and cre-
ating bus contention, leading to delaying the migration
process. We show that this approach does not cause sig-
nificant interference to side channel attacks such as the
Flush+reload attack, which the attacker can continue to
carry out in parallel. In fact, the success rates of the
Flush+reload can increase by about 100 % (when the de-
fender invokes migrations), if a stalling attack is simul-
taneously launched.

1 Introduction

Live Virtual Machine (VM) migration is commonly em-
ployed by cloud providers and datacenter administrators
for performance reasons. Physical machine maintenance
and service scalability are the two most common reasons
for migrating a virtual machine [1].

On the other hand, recent papers have touted VM
migration as a viable, general defense mechanism to
counter cloud based side-channel attacks [2, 3]. Specifi-
cally, most side-channel attacks that target the leakage of
secret information from a victim VM rely on co-residing
the attack VM on the same physical machine as the vic-
itm VM. Such information could be a login password,

an encryption key or simply a session token. The sever-
ity of leakage of such secret information is subsequently
manifested in various ways such as gaining access to the
victim VM or session hijacking. The thesis in [2] and [3]
is that by decreasing the co-residency times between the
attacker and victim VMs, migration drastically decreases
the potency of side-channel attacks. In other words, the
information leakage rates are drastically reduced.

In this paper, we test this hypotesis. Specifically, we
ask whether it is possible for an attacker to pre-emptively
stall or suspend live migrations in order to defeat the ob-
jectives in [2, 3]. In fact, an attack that stalls a VM migra-
tion may not only have effects on security, but also have
negative ramifications on performance. In addressing the
above question, we find a hypervisor vulnerability that
gives a co-residing attack process the ability to stall mi-
grations while simultaneously carrying out a cloud-based
side-channel attack targeting information leakage (e.g.,
Flush+Reload [4]).

The key property that is exploited in such an attack is
that live migrations are designed so as to minimize the
penalty of disrupting ongoing customer computations or
services [1, 5]. Thus, a migration is completed in several
stages and in each stage, the objective is to minimize the
degree of synchronization necessary between the original
VM (on an old physical machine) and the new VM (now
housed on a different physical machine). If the attacker
can somehow disrupt this synchronization process (e.g.,
by increasing the number of dirty pages as we discuss
later), the VM migration may take much longer time to
complete. This in turn implies that the attacker VM is
now able to co-reside with the victim VM for longer, and
thus, is able to enjoy more sustained information leakage.

To illustrate the impact of such an attack, consider
the work in [6], where the authors propose a Last Level
Cache (LLC) side-channel attack. This attack suppos-
edly requires only a few tens of minutes to be successful
(≈ 27 mins). Thus, prolonging migrations by the order
of minutes can significnatly improve the chances of this

side-channel attack succeeding. In the worst case sce-
nario, if the network provider/administrator takes more
severe measures, such as forcefully suspending VMs, it
could potentially hurt the performance of benign VMs
when false positives are incurred.

In this paper, we showcase the possibility of an attack
that targets the stalling of the live migration of a VM. We
call this attack the stalling attack. To do so, the require-
ment is that the adversarial VM co-resides on the same
physical machine as the victim VM. The attack exploits
a vulnerability in the live migration process of the hyper-
visor (specifically the KVM hypervisor).

Our contributions are as follows;

• We discover a vulnerability in the live migration im-
plementation of the KVM hypervisor and design a
side-channel attack that exploits this vulnerability
to stall or suspend the migration process.

• We extensively evaluate the proposed attack in dif-
ferent scenarios. We demonstrate the effectiveness
of the stalling attack in aiding other side channel at-
tacks that target information leakage.

Our results show that the stalling attack can prolong VM
migrations by over a factor of 3X. This in turn drasti-
cally improves the likelihood of success with a simulta-
neously launched Flush+reload attack; in fact, given a
sufficient number of attack attempts, this success rate in-
creases by well over 100 % in some cases compared to
the case where there is no simultaneous stalling attack
(how and why are discussed later).

Scope: We note that we only study the question “how
an attacker can suspend or prolong a migration process?”
but not “how an attacker can detect a live migration pro-
cess?”. Prior efforts, such as [7], discuss how an attacker
can detect an ongoing migration. We assume that an at-
tacker will continuously carry out the stalling attack after
co-residing with a victim VM in order to guarantee that
neither the victim VM nor the attacker VM are migrated
during performing the side-channel attack

2 Background and Related Work

Virtual machine migration is a powerful tool that in-
troduces greater flexibility in cloud environments where
VMs need not be tied down to physical machines. Since
VMs are stored as files in a system, they can be easily
transferred from one machine to another in a similar way,
for instance via network file transfer, as long as they are
halted. This naturally incurs large down times wherein a
VM must first be completely shut down, then transferred
and restarted at the target machine. Live VM migration
[8, 1] , on the other hand, refers to the concept of trans-

ferring a VM while it is still running so that the downtime
is as small as possible.

While, different cloud providers may have different,
and often proprietary, protocols for live migration, the
underlying principles are the same. The objective is to
transfer the VM from a source machine to a target ma-
chine. The migration process starts off by transferring
memory pages belonging to the VM from the source ma-
chine to the target machine while the VM is still run-
ning. During this process, any pages that change (com-
monly referred to as pages becoming dirty) have to be re-
transmitted over the network. Then, the migration pro-
cess halts the VM on the source machine, transfers the
rest of the pages and finally restarts the VM at the target
physical machine. The point at which the VM is halted
and transmission of dirty pages stopped depends on the
hypervisor used. For example, Xen [9] has an upper limit
on the number of dirty pages that are transmitted, while
KVM [10] keeps transmitting dirty pages as long as some
exist.

2.1 Related Work

There has been recent work towards demonstrating the
usefulness of live VM migration [11, 3, 12]. Live migra-
tion is used for load balancing, resource management,
and security. Recent work has demonstrated that live mi-
gration is a very effective defense against side channel
attacks [2, 3]. However, very little work has been done
to evaluate the security of the live migration process it-
self.

In [7], the authors identify methods to discover that a
migration is ongoing. They also propose techniques to
hide traffic patterns in migrations.

The first work that demonstrated the need for secure
migration was [13]. The authors identified three classes
of threats to the migration process, namely, threats to the
control plane, threats to the date plane and threats to the
migration module. The control plane includes the com-
munication mechanism employed by the virtual machine
monitor, which is the entity that orchestrates the migra-
tion. On the other hand, the data plane is where the ac-
tual migration occurs. While the authors identified three
different sources of threats, they only experimentally val-
idated two attacks using the data plane and the migration
module.

The first attack targets the data plane and is a memory
manipulation attack which makes use of a malicious in-
termediary node. On the testbed in [13], the migrating
VM data is relayed using a malicious node. The mali-
cious node replaces certain pages as they are forwarded
to their destination. The authors successfully managed
to replace pages belonging to the ssh process so that the
victim VM accepted all incoming ssh connections after

migration is complete.
The second attack is more general in that it’s implica-

tions are not limited to VM migration. The authors iden-
tified several heap overflow vulnerabilities in the Xen hy-
pervisor that were present in the code responsible for
handling migration. These vulnerabilities allowed the
authors to run arbitrary code and thus allowed use of ma-
licious code to completely compromise the hypervisor.

Other works do not demonstrate working examples
of attacks to VM migration. They briefly mention how
some attacks could be employed against live migration.
For e.g., the authors in [14] briefly mention that time-of-
check to time-of-use (TOCTTOU) [15] [16] attack and
replay attacks can be used if the migration process is not
sufficiently protected. There has also been a host of work
that introduce frameworks or techniques for live VM mi-
gration and discuss the need for secure migration [16]
[17] [18]. However, this need has not been substanti-
ated by the presence of real implementable attacks that
can delay or stall the migration process. In contrast, our
work demonstrates how an attacker can stall live VM mi-
grations. In particular, to the best of our knowledge, our
work is the first to showcase how a stalling attack can be
used in conjunction with a side channel attack to greatly
increase the attack surface of the side channel attack.

3 Threat Model

We assume an active attacker that controls multiple VMs
running on the cloud. In addition, we assume that the at-
tacker has computational resources (e.g., servers or other
VMs) external to the cloud. We impose no restrictions on
the computational resources available to the attacker. We
also assume that the victim VM has some publicly acces-
sible service via which the attacker can interact with the
VM (e.g., the victim hosts a web service).

We assume that the attacker has already co-resided
with the victim VM (previous work, such as [19,
3], showed the possibility of the co-residency process
wherein an attacker can can verify the co-residency of
its own VM with a victim’s VM). We make no assump-
tions on the number of other VMs co-residing with the
attacker VM on the same physical machine. Upon co-
residing with the victim, we assume that the attacker is
launching a side channel attack. For ease of exposition
we focus on flush and reload attack [20].

In carrying out the stalling attack, we assume that the
attacker has two main objectives. First, it seeks to sus-
pend or delay the victim’s VM from being migrated. Sec-
ond, considering that the cloud service provider can po-
tentially migrate the attacker’s (co-resident) VM as an
alternative, the second goal of the attacker is to prevent
her own VM, which is co-residing with the victim VM

Attacker	VM Victim	VM

Physical Machine

Memory Bus Cache

Invalidate
Memory
Pages

Create Bus
Contention Launch Side

Channel
Attack

Attacker’s	Outside	
process

Initiate requests
via public
interface

Figure 1: Overview of the attack.

on the same physical machine, from being migrated to
another physical machine.

Cloud Provider Migration Policies: Different cloud
providers may have different reasons and policies for
triggering a live VM migration. These policies will de-
termine the effectiveness of any attack that aims to influ-
ence a migration. Broadly speaking, we consider three
provider policies for live VM migrations; (i) mainte-
nance policy, (ii) security policy, and (iii) hybrid policy.
We believe that these three migration policies correspond
to the most popular reasons why cloud providers might
want to migrate VMs. At a high level, with the mainte-
nance policy, VMs are migrated for maintenance reasons
such as faults or software updates. If the security policy
is in force, VMs are migrated periodically to alleviate po-
tential malicious activities such as side channel attacks.
The hybrid policy is simply a combination of both the se-
curity and maintenance policies. We provide details on
how we implement these policies (based on prior papers)
in Section 5.

4 Live Migration Stalling Attack

As discussed earlier, a key factor that determines how
quickly a VM can be migrated, is the rate at which mem-
ory pages become dirty. Recall that dirty pages need
to be retransmitted over the network. The stalling at-
tack exploits the key observation that if the page dirtying
(also called invalidation) rate is greater than the avail-
able network bandwidth, the process can potentially be
suspended indefinitely.

To that end, the stalling attack attempts to do two
things viz., (i) intentionally attempt to dirty memory
pages, and (ii) cause bus contention to slow the rate of
transfer of dirty pages. Consequently, the stalling attack
is comprised of two steps.

Time (msec)
0 200 400 600 800 1000

D
ir

ty
P

a
g

e
/T

o
to

a
l

P
a

g
e

s
 R

a
ti

o

0

0.2

0.4

0.6

0.8

1
Sequential
Random

Figure 2: The ratio between dirty and total number of
pages over time.

First, the attacker engineers memory access requests
that have a high chance of invalidating memory pages.
The attacker uses different techniques to invalidate its
own pages and that of the victim VM (recall that the
attacker wants to delay the migration of both its own
VM and that of its victim). Second, by inducing bus
contention, the attacker attempts to delay the processes
of reading and writing memory pages, which consumes
transmission bandwidth (contributes to overhead). While
he ultimate goal of the attacker is to invalidate all the
memory pages of the victim all the time, note that the
effectiveness of the attack and how long the attacker can
successfully stall a migration depend on how the migra-
tion policy in effect is implemented. Given the above
high level strategy, the stalling attack is comprised of
three main steps. 1) Invalidate memory pages of the at-
tacker VM 2) Invalidate memory pages of the victim VM
and 3) Induce bus contention. Figure 1 provides a bird’s
eye view of how the attack functions. Not only are the
3 steps listed above shown, the figure also depicts the
attacker simultaneously launching a side channel attack.
As previously mentioned and as will be showcased later,
the stalling attack can be used increase the effectiveness
of cloud-based side channel attacks.

In the Xen hypervisor, there is a cap (maximum
amount) on how many VM memory pages can be trans-
ferred from the old physical machine to the new one. Af-
ter those many pages are transferred, a timeout is initi-
ated and the VM is forcefully shut down and migrated
(i.e., a regular migration instead of a live migration is
invoked). In this case, the down time can be high (of
the order of the regular migration time, i.e., without live
migration). However, for the KVM hypervisor, there is
no timeout or a limit on the maximum number of page
transfers (by default). Hence theoretically, a stalling at-
tack can prolong a VM live migration process infinitely.

4.1 Invalidating the attacker VM’s mem-
ory pages

We first briefly explain how memory pages are managed
on the Linux operating system [21]. Then, we explain
how to leverage page management knowledge to quickly
invalidate the attacker VM’s memory pages and reduce
the read and write throughputs significantly.

Linux maintains a three level page table regardless of
the underlying architecture. The Page Global Directory
(PGD) represents the physical page frame. Each active
PGD points to an array of Page Middle Directory (PMD)
entries. In turn, each entry in the PMD points to a Page
Table Entry (PTE) that actually points to the user data.
A PTE contains protection and status bits summarized in
Table 1.

To programmatically invalidate all pages of the mem-
ory, we set the PAGE DIRTY bit for the PTE items. A
simple way to achieve this is to modify the first byte from
each memory page. There are multiple ways one can
access and modify pages in the memory. The simplest
method is to sequentially access and modify the pages.
Another method is to access the pages in random order.
The linux OS uses various tricks to optimize memory and
it is not clear which method can be more effective (more
details on this later). We test these two memory access
and modification methods.

For each of the memory access methods, we scan
the entire memory and modify one byte from each
page. To determine which access and modification pat-
tern gives a better page dirtying rate, we measure the
number of dirty pages once every 100 msec (via cat

/proc/meminfo | grep Dirty). Then, we compute
the ratio of the number of dirty pages to the total num-
ber of pages in the memory (via cat /proc/meminfo

| grep PageTables). In Fig. 2, we compare random
and sequential memory access and modification meth-
ods. We plot the ratio between the number of dirty pages
to the total number of pages over a period of 1.2 seconds.
The figure shows that random access and modification
results in a larger page dirtying rate on average.

To understand why, notice that the greater the num-
ber of dirty pages in memory, the greater the odds of
dirty pages being retransmitted over the network to the
target physical machine. If memory pages are accessed
sequentially, the operating system correctly predicts that
pages once accessed, will not be accessed again for a
while and writes them out to disk, which also makes the
memory page ’clean’. This represents a disadvantage for
the attacker because the migration process periodically
checks memory for new dirty pages and sequential ac-
cess reduces the number of dirty pages in memory. On
the other hand, randomly accessing memory keeps the
OS from correctly predicting page access patterns and

Bit Function
PAGE DIRTY Whether a page is modified or not

PAGE ACCESSED Whether a page is retrieved or not
PAGE PRESENT Whether a page is resident in memory or swapped out

PAGE PROTNONE Indicate that a page is resident but not accessible
PAGE USER Whether a page is accessible from user space

PAGE RW Whether a page can be modified

Table 1: Protection and Status bits for a Page Table Entry

delays writing pages to disk (or turning dirty pages to
clean pages).

4.2 Invalidating the victim VM’s memory
pages

The memory pages invalidation steps described in the
previous subsection only works if the attacker owns the
address space associated with the VM. In other words,
the above approach cannot be directly applied to dirty
the victim VM’s pages. Here, as indicated in Section 3,
we assume that the victim VM is running some kind of
service that exports a public interface. We then send ran-
dom requests (specific to the service) to the service, pe-
riodically. For example, for a web service hosting doc-
uments, periodically random documents are requested.
Again, the randomness ensures a high rate of dirty pages.

We wish to point out that an attacker who intends to
launch a side channel attack (as in [20]) one can expect
that it already knows what type of service is hosted by the
victim VM. If not, the attacker can perform a port scan
to figure out which service is running on the victim VM.
It then requests various objects randomly (as discussed
above); these requests are expected to adversely affect
the victim VM’s memory state.

Later, we validate the approach in a variety of scenar-
ios in Section 5 where the victim VM is running web-
based and non web-based services. We choose different
services to cover some of the most popular types of ser-
vices in production today.

4.3 Creating bus contention
To amplify the delay in migrating a VM to a new physi-
cal machine, the last part of the attack involves creating
contention on the bus (normally, two virtual machines
that share a CPU also share the CPU bus). The purpose
of creating bus contention is to delay the read and write
memory operations, since it takes longer to transfer dirty
pages around the system when bus contention exists. A
similar idea was proposed in [22] as a method to check
for co-residency. In particular, a cache locking mecha-
nism is implemented to guarantee coherency across the

same area in memory, if that common area in memory is
simultaneously being modified by different processors.

To create bus contention, the attacker VM allocates a
chunk of memory that is larger than the size of the last
level cache. Next, the attacker VM misaligns the mem-
ory access pointer by adding an offset to it. The value of
the offset can be anything less than the size of the mem-
ory word (for 64bit architectures this is 4bytes). The is-
suance of an unaligned, atomic access operation (such
as a read, or the XADD operations for x86 processors)
causes the locking of the memory bus [22]. If unaligned
access happens across cache lines, a more dramatic slow
down is observed due to double cache misses. A signif-
icant increase (around 3x) in the memory access time is
observed by the attacker as well as the victim VMs given
that both VMs share the same memory bus (validated ex-
perimentally).

4.4 Stalling attack in conjunction with
side-channel attack

One of the core strengths of the stalling attack is that
it can be carried out in conjunction with a side-channel
attack to greatly increase the attack surface of the side-
channel attack. We use the popular Flush+Reload side-
channel attack to illustrate in this work [4].

In brief, Flush+Reload attacks the last level of cache
(LL3). The attacker monitors the cache lines in order
to deduce whether a specific instruction is executed in
a given time slot. The attack is composed of two steps.
First, the attacker flushes instructions from the cache (for
example, by using the clflush command). Then, the at-
tacker accesses the flushed cache line and measures the
time it took do so. The measured time information gives
an indication of whether the instruction was executed. If
the victim has accessed the cache line, the load time will
be much shorter than if the victim had not. This is be-
cause the cache line would need to be loaded from mem-
ory in the latter case. The more time that an attacker VM
is able to co-reside with the victim VM on the same phys-
ical machine, the more likely it is that this side-channel
attack will be successful.

Using the stalling attack in conjunction. It has been
argued that VM migration is a powerful defense mech-
anism against such side channel attacks, because it can
interrupt the flow of side channel attacks (disrupt co-
residency). Side channel attacks are generally very time
consuming (Flush+reload typically take at least 30 mins
to complete) and an attacker, armed with our stalling at-
tack, can greatly increase the likelihood of a prolonged
co-residency and thus, in turn magnify the chances of the
side channel attack being successful. The attacker does
this by simultaneously launching both the side channel
attack and the stalling attack.

There are a few factors to consider when launching
these attacks together. First, as has been mentioned be-
fore, the aim of the stalling attack is to invalidate pages in
memory. Given that there will be dirty pages in memory,
a natural question to ask if the stalling attack will have
any implicit effect on Flush+Reload. Since the stalling
attack does not target the cache, we do not expect there to
be any overlap between the attacks in terms of cache con-
tention (the attacker VM can only dirty its own pages in
memory). However, the bus contention that the stalling
attack creates will slow down page loads from memory.
As such, we expect that Flush+Reload will take longer
to complete when a stalling attack is underway. How-
ever, we will later show that this overhead is not too large
and that the advantage of launching the attacks together
(i.e., the Flush+Reload will have more time to execute
and complete successfully) outweighs the cost in terms
of the overhead.

The second question to consider is whether
Flush+Reload affects the stalling attack. Again, since
they target different components (one the memory, the
other the cache) we do not expect the Flush+Reload to
affect the stalling attack (as verified in our experiments).

5 Implementation and Evaluations

In this section, we describe our experimental setup in de-
tail and then evaluate the effectiveness of the stalling at-
tack.

5.1 Implementation details
To the best of our knowledge, VM migration is not
a feature available to clients of today’s cloud service
providers. This necessitates a private cloud over which
we have administrative control.

Our private cloud consists of two Cisco 20-Port gi-
gabit switches, 13 Servers (11 DELL and 2 HP), and 9
DELL machines to initiate server requests. This cloud
can host up to 280 (512 MB, 1 GHZ) VMs, 140 (1
GB, 1 GHZ) VMs or 70 (2 GB, 1 GHZ) VMs, simul-
taneously. These three different VM configurations are

equivalent to t2.nano, t2.micro and t2.small on EC2 [23],
respectively. We run the KVM hypervisor [24] on top of
Ubuntu 14.04 [25]. All VMs run either Centos 7 [26] or
Ubuntu 15 images. We use Apache CloudStack [27] as
the cloud management and provisiioning tool. Live mi-
gration is carried out by using virt-manager tool (KVM
+ QEMU).

Victim VM’s host different types of services, such as,
Taiga [28], ownCloud [29] and MediaWiki Server [30].
Taiga is an open-source project manager software that
involves a mix of CPU, disk, and memory workloads.
ownCloud is an open-source file hosting service (resem-
bles Dropbox) that involves memory and disk intensive
workloads. (ownCloud is Disk intensive). MediaServer
is an open-source wikipage server that involves a mix of
CPU, disk, and memory workloads. By using such a di-
verse set of services, we consider workloads that cover
CPU, memory, and disk, equally. Finally, to simulate le-
gitimate background traffic, we use 9 hosts that interact
with the services running on the victim VM.

For each experimental scenario (discussed later), there
is one attacker VM and one victim VM that co reside on
a single physical machine. The attacker also controls an
outside process that interacts with the victim VM via its
web service interface. For each attack, the attacker per-
forms the stalling attack via the 3 steps detailed in Sec-
tion 4. The attacker VM runs two processes; one that
runs the bus contention procedure described earlier, and
the other that runs the memory invalidation procedure.
Both are implemented in C++. The outside process also
simultaneously interacts with the victim VM to invali-
date its pages.

We get the code of the flush+reload attack from [31].
To increase the odds of Flush+reload succeeding, the at-
tacker simultaneously launches the stalling attack in con-
junction with Flush+reload.

Because physical machines in data centers are shared
between multiple tenants, we also spawn other VM’s on
the same physical machine (between 2 and 4) and assign
random jobs to them.

Migration Policies: Recall from section 3 that we
consider 3 migration policies (or reasons for initiating
a migration), namely maintenance policy, security policy
and hybrid policy.

With the maintenance policy, the provider migrates
VMs for maintenance reasons. (for e.g., performance,
failures, or regular software updates). There have been
many works that study hardware and software failures
[32]. We use the Markovian model used and evaluated in
[33] to simulate hardware and software faults and trigger
a live VM migration. Specifically, whenever the model
predicts a fault/failure, we attempt to migrate all VM’s
that are running on the physical machine that faulted.
The input parameters needed for the model are probabil-

Machine Memory Size (GB)
0 1 2 3 4 5

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

0

0.5

1

1.5

2

2.5
Victim VM
Attack VM

(a)
Machine Memory Size (GB)

0 1 2 3 4 5

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Victim VM

(b)
Machine Memory Size (GB)

0 1 2 3 4 5

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

0

0.5

1

1.5

2

2.5

3

3.5
Victim VM

(c)

Figure 3: (a) The increase in migration time using memory invalidation. (b) The increase in migration time using bus
contention. (c) The increase in migration time using both memory invalidation and bus contention.

ities of failure for hardware and software faults. We use
independent failure rates of 0.005 failures every minute.

With the security policy, according to Nomad [2], mi-
grating VMs periodically could significantly decrease
the probability of a side-channel attack being success-
ful. The authors in [3] determined that between one to
two hours was the ideal period for VM’s to be migrated.
Consequently, for the security policy, we attempt to mi-
grate all VM’s every 90 minutes (starting from whenever
a specific VM is started).

In the hybrid mode, we assume the security policy is
on. However, VMs are still susceptible to errors. Thus,
VM’s are migrated if either a fault (error) occurs, or the
periodic migration due to the security policy is triggered.

5.2 Attack Efficacy
In this section, we demonstrate the efficacy of the pro-
posed attack at stalling live VM migration.

Fig. 3 shows how the time taken to migrate a VM in-
creases when the attack method is (a) only memory inval-
idation, (b) only bus contention or (c) a combination of
memory invalidation and bus contention. By soley inval-
idating memory pages, the attacker stalls the migration
of the attack VM by ≈ 2 x. On the other hand, the ef-
fect on the victim VM is limited. Using bus contention,
the attacker VM is totally suspended, while the victim
VM sees a 1.2x increase in migration time (Fig.3(b)).
By combining both techniques, the victim VM time in-
creases by ≈ 3x as shown in Fig.3(c). An interesting
thing to note about Fig 3 is that the time for Flush+reload
increases with the size of the victim’s memory. To under-
stand why, recall that by probing the cache, Flush+reload
tries to guess what instructions were executed by the vic-
tim VM. Operating systems reduce load times by trying
to keep the most used instructions in memory. This way,
it is likely that an instruction can be directly loaded from
memory into the cache instead of being loaded from the

disk. The larger the memory size, the greater the number
of instructions it can hold. Consequently, larger memory
sizes mean that a larger number of different instructions
can potentially be loaded into the cache from memory.
In such a scenario the attacker has to guess which in-
struction was executed from a much larger set of candi-
dates. The probability of the attacker successfully guess-
ing which instruction was executed is hence lower im-
plying that the attackers needs more time, on average, to
be successful.

In Fig. 4, we investigate how the migration time for
the victim changes with the number of VM’s sharing
a physical machine. We only attempt to migrate one
VM and we use one VM to launch the attack. We ran-
domly vary the load on each legitimate machine. A
slight increase in the average migration time is observed
when the number of VM increases. However, the stan-
dard deviation increases significantly which indicates
that adding more VMs increases the uncertainty in ef-
fectiveness of the attack.

We also note that when the other tenant VMs are dor-
mant (i.e., less utilized), the attack effect is less pro-
nounced because the time slice (equivalently, the attack
window) to invalidate memory and cause bus contention
is smaller. On the other hand, active tenants (i.e., highly
utilized VMs) involuntary help the attacker by invalidat-
ing the memory. The bus contention effect induced by
the attack is aggravated due to the natural contention be-
tween VM’s.

In fig 5, we investigate how the attack characteristics
change when the number of attack VM’s increase. We fix
the number of VMs sharing the same physical machine
to five. Then, we vary the attack VM from one to four.
We attempt to migrate only one machine. We also fix the
load for other tenants to 100 rps (requests per second).
Fig. 5 shows that increasing the number of attack VMs
dramatically increases migration time (e.g, by up to 4-
5 folds). In addition, it can be seen that by decreasing

Number of Virtual Machines
 2 3 4 5

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

0

1

2

3

4

5

Figure 4: Increase in migration time
vs. number of VMs sharing the
same physical machine.

Number of Attack VMs
 1 2 3 4

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 5: Increase in migration time
vs. number of Attack VMs sharing
the same physical machine. Total
number of VMs = 5.

Service
 T M O

In
c
re

a
s
e
 I
n

 M
ig

ra
ti

o
n

 T
im

e
 (

X
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6: Increase in migration time
for different services. (T) Taiga, (M)
MediaWiki and (O) ownCloud.

the number of tenants and simultaneously increasing the
number of attack VMs, the attack is more focused and
the uncertainty shrinks to less than 10%.

Next, we demonstrate that the live migration stalling
attack works consistently across different services. Here,
we launch the attack against victim VMs running the
three different services mentioned above. We set the rps
to 500. For Taiga, we send a request to fetch the task
associated with multiple projects. For MediaServer, we
request different wiki pages. Finally, for ownCloud, we
request different files with sizes varying from 1K to 1M.
Fig. 6 shows a greater migration time for ownCloud.
This is due to the fact that ownCloud is a memory hungry
service.

The large variation seen in ownCloud is because the
size of the web response varies greatly. Taiga and Me-
diaServer both host static web pages that are largely the
same in size and so these two services exhibit lower vari-
ance.

5.3 Flush+Reload and Suspension Attack
In this section, we investigate the efficacy of the pro-
posed stalling attack when combined with a side-channel
attack, namely, the Flush+Reload attack [4]. We use a
version of Flush+Reload that was implemented in [31].
We compare the effectiveness of Flush+Reload when it
is carried out independently as well as when it is used in
conjunction with the proposed live migration stalling at-
tack to show how the stalling attack increases the attack
surface of Flush+Reload.

With regards to the side channel attack, we assume
that the victim VM generates an 8 bit key [4]. The
co-resident attacker tries to infer what that key is using
Flush+Reload. The Flush+reload is considered to have
succeeded if the attacker correctly deduces the victim’s 8
bit key prior to the victim VM being migrated.

VM Size (GB)
 1/2 1 2 4

F
lu

s
h

-R
e

lo
a

d
 T

im
e

 (
m

in
s

)

0

20

40

60

80

100

120
Flush+Reload
Flush+Reload+Suspension

Figure 7: Average time to launch Flush+Reload with and
without stalling.

Capturing the interactions between the attacks.
First we show that the stalling attack (in the absence
of real migrations) does not cause a significant impact
on the Flush+Reload efficiency. We vary the memory
size of a VM between 512 and 4096 MB. We limit
the number of VMs sharing a physical machine to two
(one attacker and one victim VM). We compare how
long it takes the Flush+Reload attack to complete when
launched with and without the stalling attack. Fig. 7
shows that using the stalling attack in conjunction with
Flush+Reload slightly prolongs the completion time and
incurs a penalty. This overhead can be attributed to
the bus contention process which delays memory pages
reloading (This can be thought of slightly slowing down
everything running on the machine). However, note that
this is not high, and as discussed earlier (and shown next)
is insignificant compared to the increase in the efficiency
of the flush and reload attack in the presence of stalling.

Improved chance of success with Flush+reload.
Next, we seek to examine if the success rate of the
Flush+Reload attack improves, and if so the extent to

Figure 8: The total number of successful attacks, with
and without the stalling attack, for each migration policy

which it does, when it is launched with a stalling attack.
In this experiment, we migrate the victim VMs accord-
ing to the different migration policies that were described
earlier. The Flush+Reload attack is considered to have
been successful if it correctly determines the 8 bit victim
key (as discussed earlier). We repeat the experiment a
total of 240 times. We plot the total number of success-
ful attacks for each policy in Figure 8. We see that the
stalling attack improves the odds for the Flush+Reload
to succeed dramatically. With the maintenance migra-
tion policy, the stalling attack improves the likelihood
of the side-channel succeeding by approximately 17%.
With the security migration policy, the stalling attack im-
proves the odds by 62%. Finally, when the defender uses
the hybrid policy, the stalling attack improves the chance
of Flush+reload succeeding by 105%. This indicates that
the stalling attack can be a powerful attack that can be
used in conjunction with a cloud-based side channel at-
tack to thwart VM migration as a defense (as proposed
in [2, 3]).

6 Discussion and Defense

In this section we suggest some migration policies that
can be potentially used to thwart the stalling attack.

Recall that one of the main principles behind the
stalling attack is to dirty memory pages because they will
need to be re-transmitted over the network. If the page
dirtying rate is greater than the network bandwidth then
the migration can be stalled indefinitely.

At first glance, it would seem that the stalling attack
can be trivially thwarted if there is a cap on the maxi-
mum number of pages that are transferred over the net-
work before the migration process forcibly stops and mi-
grates the target VM. In fact, this is the exact approach
that is adopted by Xen. However, while this approach is
successful in the sense that it does mitigate the stalling
attack, it defeats the purpose of a live VM migration be-
cause the fallback is to initiate a regular VM migration.

We suggest two different migration policies. Assume
the scenario where a VM needs to migrated from a source
server to a target server. At the start of the migration,
pages in memory are transferred to the target machine as
usual. We propose a time (or resource) budget, similar
to what is implemented in Xen. When the budget is ex-
hausted, we propose that the VM be started early at the
target server with an incomplete set of pages. The rest
of the pages should be fetched on-demand (Note that on-
demand transfer of pages has been suggested before to
optimize VM migrations [34]). If an attack is under-way,
the VM will be started at another server and the attacker’s
affect minimized.

Another simpler approach that we suggest is for the
maximum amount of compute resources be allocated to
the migrating VM. Such an approach is similar to exist-
ing defenses against DoS attacks where resources are di-
verted towards the victim of attack. As long as the com-
pute resources allocated to the migrating VM are greater
than what the attacker has, the migration can be expected
to be successful.

7 Conclusion

In this paper, we construct a live migration stalling at-
tack that exploits a KVM vulnerability to suspend or de-
lay live VM migrations. The stalling attack is composed
of two main steps: (a) invalidation of memory pages
to increase the dirty page rate, and (b) creation of bus
contention to induce delays. We show through exten-
sive experiments, on our in-house cloud testbed, that the
stalling attack increases victim VMs migration time by
up to 3x. Potentially, the migration time for the attack
VM can be stalled infinitely. More importantly, we show
that side-channel attacks, such as the Flush+Reload at-
tack, can capitalize on live migration stalling. By launch-
ing a composite attack which includes both stalling and
Flush+Reload, the probability of success of the side-
channel attack is improved by up to 30% in some sce-
narios.

Acknowledgment: The effort described in this article
was partially sponsored by the U.S. Army Research Lab-
oratory Cyber Security Collaborative Research Alliance
under Cooperative Agreement W911NF-13-2-0045. The
views and conclusions contained in this document are
those of the authors, and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S. Gov-
ernment. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes,
notwithstanding any copyright notation hereon.

References

[1] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach,
Ian Pratt, and Andrew Warfield. Live migration of
virtual machines. In Proceedings of the 2nd con-
ference on Symposium on Networked Systems De-
sign & Implementation-Volume 2, pages 273–286.
USENIX Association, 2005.

[2] Soo-Jin Moon, Vyas Sekar, and Michael K Reiter.
Nomad: Mitigating arbitrary cloud side channels
via provider-assisted migration. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1595–1606.
ACM, 2015.

[3] Ahmed Atya, Zhiyun Qian, Srikanth V. Krishna-
murthy, Thomas La Porta, Patrick McDaniel, and
Lisa Marvel. Malicous co-residency on the cloud:
Attacks and defense. In Infocom. IEEE, 2017.

[4] Yuval Yarom and Katrina Falkner. Flush+reload:
A high resolution, low noise, l3 cache side-channel
attack. In USENIX Security, August 2014.

[5] William Voorsluys, James Broberg, Srikumar
Venugopal, and Rajkumar Buyya. Cost of virtual
machine live migration in clouds: A performance
evaluation. In Cloud Computing, pages 254–265.
Springer, 2009.

[6] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel at-
tacks are practical. In 36th IEEE Symposium on
Security and Privacy (S&P 2015), 2015.

[7] Stefan Achleitner, Thomas La Porta, Patrick Mc-
Daniel, Srikanth V. Krishnamurthy, Alexander
Poylisher, and Constantin Serban. Stealth migra-
tion: Hiding virtual machines on the network. In
Infocom. IEEE, 2017.

[8] Pradip D Patel, Miren Karamta, MD Bhavsar, and
MB Potdar. Live virtual machine migration tech-
niques in cloud computing: A survey. International
Journal of Computer Applications, 86(16), 2014.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. In ACM SIGOPS operating systems re-
view, volume 37, pages 164–177. ACM, 2003.

[10] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,
and Anthony Liguori. kvm: the linux virtual ma-
chine monitor. In Proceedings of the Linux sympo-
sium, volume 1, pages 225–230, 2007.

[11] Yi Zhao and Wenlong Huang. Adaptive distributed
load balancing algorithm based on live migration
of virtual machines in cloud. In INC, IMS and
IDC, 2009. NCM’09. Fifth International Joint Con-
ference on, pages 170–175. IEEE, 2009.

[12] Mayank Mishra, Anwesha Das, Purushottam
Kulkarni, and Anirudha Sahoo. Dynamic re-
source management using virtual machine migra-
tions. IEEE Communications Magazine, 50(9),
2012.

[13] Jon Oberheide, Evan Cooke, and Farnam Jahanian.
Empirical exploitation of live virtual machine mi-
gration. In Proc. of BlackHat DC convention. Cite-
seer, 2008.

[14] Fengzhe Zhang, Yijian Huang, Huihong Wang,
Haibo Chen, and Binyu Zang. Palm: security pre-
serving vm live migration for systems with vmm-
enforced protection. In Trusted Infrastructure Tech-
nologies Conference, 2008. APTC’08. Third Asia-
Pacific, pages 9–18. IEEE, 2008.

[15] Matt Bishop, Michael Dilger, et al. Checking for
race conditions in file accesses. Computing sys-
tems, 2(2):131–152, 1996.

[16] William S. McPhee. Operating system integrity
in os/vs2. IBM Systems Journal, 13(3):230–252,
1974.

[17] Kai Hwang and Deyi Li. Trusted cloud computing
with secure resources and data coloring. Internet
Computing, IEEE, 14(5):14–22, 2010.

[18] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu,
and Chen Yu. Live migration of virtual machine
based on full system trace and replay. In Pro-
ceedings of the 18th ACM international symposium
on High performance distributed computing, pages
101–110. ACM, 2009.

[19] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party com-
pute clouds. In Proceedings of the 16th ACM con-
ference on Computer and communications security,
pages 199–212. ACM, 2009.

[20] Yuval Yarom and Katrina E Falkner. Flush+ reload:
a high resolution, low noise, l3 cache side-channel
attack. IACR Cryptology ePrint Archive, 2013:448,
2013.

[21] Daniel P Bovet and Marco Cesati. Understanding
the Linux kernel. ” O’Reilly Media, Inc.”, 2005.

[22] Venkatanathan Varadarajan, Yinqian Zhang,
Thomas Ristenpart, and Michael Swift. A place-
ment vulnerability study in multi-tenant public
clouds. In 24th USENIX Security Symposium
(USENIX Security 15) Washington, DC, pages
913–928, 2015.

[23] Amazon EC2. T2 Instance Requirements.
http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/t2-instances.html,
2016.

[24] Kernel Virtual Machine. http://www.

linux-kvm.org/page/Main_Page, 2014.

[25] Trusty Tahr. Ubuntu 14.04.3 LTS. http://

releases.ubuntu.com/14.04/, 2014.

[26] Centos 7. https://www.centos.org/, 2014.

[27] Apache CloudStack. Open Source Cloud Comput-
ing. https://cloudstack.apache.org/, 2016.

[28] Taiga. https://taiga.io/, 2016.

[29] ownCloud. https://owncloud.org/, 2016.

[30] MediaWiki. https://www.mediawiki.org/

wiki/MediaWiki, 2016.

[31] Daniel Ge, David Mally, and Nick Meyer. Im-
plementation of the FLUSH+RELOAD side chan-
nel attack. https://github.com/DanGe42/

flush-reload, 2016.

[32] Felix Salfner, Maren Lenk, and Miroslaw Malek. A
survey of online failure prediction methods. ACM
Computing Surveys (CSUR), 42(3):10, 2010.

[33] CD Lai, Min Xie, Kim-Leng Poh, Yuan-Shun Dai,
and P Yang. A model for availability analysis
of distributed software/hardware systems. Infor-
mation and software technology, 44(6):343–350,
2002.

[34] Constantine P Sapuntzakis, Ramesh Chandra, Ben
Pfaff, Jim Chow, Monica S Lam, and Mendel
Rosenblum. Optimizing the migration of virtual
computers. ACM SIGOPS Operating Systems Re-
view, 36(SI):377–390, 2002.

