
17

App in the Middle: Demystify Application Virtualization in

Android and its Security Threats

LEI ZHANG, Fudan University, China

ZHEMIN YANG, Fudan University, China

YUYU HE, Fudan University, China

MINGQI LI, Fudan University, China

SEN YANG, Fudan University, China

MIN YANG, Fudan University, China

YUAN ZHANG, Fudan University, China

ZHIYUN QIAN, University of California Riverside, USA

Customizability is a key feature of the Android operating system that di�erentiates it from Apple’s iOS. One

concrete feature that gaining popularity is called “app virtualization”. This feature allows multiple copies of

the same app to be installed and opened simultaneously (e.g., withmultiple accounts logged in). Virtualization

frameworks are used by more than 100 million users worldwide. As with any new system features, we are

interested in two aspects: (1) whether the feature itself introduces security risks and (2) whether the feature

is abused for unintended purposes. This paper conducts a systematic study on the two aspects of the app

virtualization techniques.

With a thorough study of 32 popular virtualization frameworks from Google Play, we identify seven areas

of potential attack vectors and �nd that most of the frameworks are susceptible to them. By deeply inves-

tigating their ecosystem, we show, with demonstrations, that attackers can easily distribute malware that

takes advantage of these attack vectors. In addition, we show that the same virtualization techniques are

also abused by malware as an alternative and easy-to-use repackaging mechanism. To this end, we design

and implement a new app repackage detector. After scanning 250,145 apps from app markets, it �nds 164

repackaged apps that attempt to steal user credentials and private data.

CCS Concepts: • Security and privacy → Software and application security; Mobile platform security;

Virtualization and security.

Additional Key Words and Phrases: Application Virtualization, Access Control, Android Security

ACM Reference Format:

Lei Zhang, Zhemin Yang, Yuyu He, Mingqi Li, Sen Yang, Min Yang, Yuan Zhang, and Zhiyun Qian. 2019. App

in the Middle: Demystify Application Virtualization in Android and its Security Threats . Proc. ACM Meas.

Anal. Comput. Syst. 3, 1, Article 17 (March 2019), 24 pages. https://doi.org/10.1145/3311088

Authors’ addresses: Lei Zhang, Fudan University, Shanghai, China, lei_zhang14@fudan.edu.cn; Zhemin Yang, Fudan Uni-

versity, Shanghai, China, yangzhemin@fudan.edu.cn; Yuyu He, Fudan University, Shanghai, China, heyy16@fudan.edu.cn;

Mingqi Li, Fudan University, Shanghai, China, limq16@fudan.edu.cn; Sen Yang, Fudan University, Shanghai, China,

syang15@fudan.edu.cn; Min Yang, Fudan University, Shanghai, China, m_yang@fudan.edu.cn; Yuan Zhang, Fudan Univer-

sity, Shanghai, China, yuanxzhang@fudan.edu.cn; Zhiyun Qian, University of California Riverside, California Riverside,

USA, zhiyunq@cs.ucr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2019/3-ART17 $15.00

https://doi.org/10.1145/3311088

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.

https://doi.org/10.1145/3311088
https://doi.org/10.1145/3311088


17:2 L. Zhang et al.

1 INTRODUCTION

As a popular operating system, Android has 2 billion [3] monthly active devices around the world
with a huge number of applications (apps for short) that are connected to our daily life, including
social network, games and digital wallets. Android users tend to customize the systems and apps —
something that Android o�ers as a major di�erentiation factor fromApple. For example, users may
want to replace the default theme of Twitter, to mock the device location when playing the game
Pokemon Go, or to manage multiple accounts of WhatsApp simultaneously. However, many apps
apply obfuscation/packing techniques to prevent themselves from being modi�ed/repackaged.

The demand of app customization forms the basis of the growing popularity of app virtualiza-
tion in Android, which provides mobile users the capability to easily customize obfuscated/packed
Android apps. Speci�cally, a virtualization framework (an Android app) implements a virtual exe-
cution environment, and other apps can be executed on top of it. Then, the framework provides the
ability to instrument andmodify the virtualized apps. One of themost popular virtualization frame-
works, Parallel Space, claims that over 100 million users worldwide are using the app [33]. Besides,
considering only Google Play, dozens of virtualization frameworks are available to the public, and
they are already downloaded by over 84 million users. As many sensitive apps can be run on top
of these virtualization frameworks, the security of these frameworks is critical. Prior work [44]
reported that app virtualization techniques can be abused to launch several attacks. Speci�cally,
two attacks leverage the vulnerabilities of app virtualization frameworks, and the remaining one is
a malware that leverages app virtualization to evade the malware detectors. However, since there
is a lack of systematic studies of the vulnerabilities in the wild and a deep understanding of the
attack surface, the severity of the threat is still unclear.
We �rst investigate the security mechanisms built into these frameworks. Speci�cally, app vir-

tualization can be viewed as a new layer of sandboxing infrastructure where apps running on top
should be isolated from each other, e.g., one app can not steal data from another. However, app vir-
tualization inherently changes the assumption of the Android’s original sandboxing mechanism.
That is, from the Android operating system’s perspective, it fails to identify di�erent virtualized apps

executed in the same virtualization framework. It is the app virtualization framework’s responsibil-
ity to further isolate the apps running on top. We empirically analyze the 32 popular frameworks
we collected fromGoogle Play regarding their app isolationmechanisms and security enforcement
of access controls. We are surprised to �nd that the content of any app can be easily stolen/tam-
pered by another. We further study these frameworks by probing whether the Android security
considerations remain enforced. Unfortunately, by studying eight Android security considerations,
our experiments show that almost all the access control mechanisms are broken in all the virtu-
alization frameworks. Although some frameworks attempt to remediate the broken sandboxing
assumptions, we �nd that attackers can bypass most of them.
Additionally, we study the severeness of these vulnerabilities. Speci�cally, (1) what apps can be

attacked? (2) how can malware be distributed to end-users? By analyzing user reviews of virtual-
ization frameworks on Google Play, we observed that the users mostly utilize these frameworks to
customize social apps (about 56.7%) and games (about 16.6%). Thus, a lot of user privacy (managed
by social apps) are potentially exposed to malware that run on top of the same virtualization frame-
work. Then, we study how users can launch and use Android apps in the virtualization frameworks.
We observed that almost all these frameworks support app installations from insecure sources. For
example, users can install apk �les from globally accessible SD cards, which can be easily tempered
with by any app on the same device. Furthermore, some commercial virtualization apps provide
embedded app markets with insecure transmission channels. Additionally, a common usage of
virtualization frameworks for gaming is to use bots, and game bots are not available on the app

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:3

markets [29]. Thus, to install bots, users download and install apps from non-o�cial and inse-
cure sources (e.g., 3rd party game forums). We study a well-known game bots community which
utilizes the virtualization frameworks. Interestingly, as we will describe in §4.2.2, we �nd that to
instrument game apps, the bots framework is utilizing a vulnerability introduced in this paper. We
also illustrate that developers can easily distribute malicious game bots which target virtualiza-
tion frameworks. An exploitation demo (https://youtu.be/Mk_ZISSitow) is provided to illustrate
this attack scenario. Additionally, we observed that an app on Google Play attempts to use one of
the vulnerabilities discussed in this paper (details in §7) and we argue that these vulnerabilities
may cause severe consequences in the future.
Another important but orthogonal question is whether the app virtualization framework itself

can be abused to achieve unintended functionality. For example, we observe that app virtualization
is used by developers as an alternative approach to repackage existing Android apps. Repackaging
apps used to be a commonway to create and distribute malware [39] —making a malicious version
of Angry Birds with a backdoor. As defenses, a large number of detection techniques (mostly based
on similarity) were proposed to detect app repackaging [21]. However, using app virtualization,
existing techniques become insu�cient.One reason is that the original app is now wrapped by
the virtualization framework, which encrypts the original app and decrypts it at runtime, and
is invisible to traditional static analysis tools. We therefore propose a new approach to address
this challenge. Speci�cally, by analyzing 250,145 apps automatically from four app markets, we
are able to locate 164 zero-day malware and 29 suspicious apps. Furthermore, we upload these
apps to VirusTotal [37], and �nd that although some apps are labeled as PUP (potential unwanted
program), few of them are explicitly labeled as malware. Our further investigation shows that the
existing anti-virus engines cannot tell malware from benign app virtualization frameworks.
Contributions. The contributions of our work are summarized as follows:

• We systematically identi�ed the security vulnerabilities of app virtualization, and revealed
that many Android existing security assumptions/policies are broken in almost all studied
virtualization frameworks, causing serious consequences (e.g., stolen cookie and login to-
ken).

• We thoroughly investigated the severeness of these vulnerabilities. Our experiments re-
vealed that a large amount of private data (in social apps) are exposed to malware, and
malware can be easily pushed to users who use the virtualization frameworks.

• We pointed out that malware is using app virtualization as an alternative way to repackage
apps. We proposed a new approach to detect such malware and �nd 164 zero-day Android
malware in 4 app markets.

2 BACKGROUND

In this section, we provide necessary background for understanding how the app virtualization
works and how the access controls are performed in Android.

2.1 App virtualization

App customizations are highly demanded by Android users. For example, many users need to
manage multiple Facebook or Twitter accounts within one Android device. However, the social
apps normally disallow the users to login multiple accounts simultaneously from the same device.
Besides, many apps apply obfuscation or packing techniques to protect their code integrity. Thus,
it is di�cult to modify a highly obfuscated Android app. App virtualization is a popular solution
to customize apps without modifying their code.
Currently, app virtualization is applied to achieve various customization requirements, includ-

ing: (1) creating multiple instances of a customized app without installing it to an Android device;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.

https://youtu.be/Mk_ZISSitow


17:4 L. Zhang et al.

Android Framework

Virtualization Framework

Customized Game

Facebook

Facebook

App Request Wrapper Access Control

Virtualized Apps

Fig. 1. The overall architecture of virtualization frameworks.

(2) mocking device information including IMEI, phone number, location, etc; (3) bots, for exam-
ple, automatically clicking the window of a game, sending messages to a group of people; (4) en-
crypting/decrypting user privacy in a given app; (5) breaching device restrictions. For example, in
China, Google Play Service (gps) is forbidden, thus most of the Android devices cannot utilize the
gps framework, causing many apps to be not functional. Android users can break the restriction
by using a virtualization framework which pre-installed a gps framework.
As depicted in Figure 1, virtualization frameworks act as a virtual execution environment. Specif-

ically, they load the code of the customized apps at runtime, and execute the code in their own
process. When an app is executed on such a framework, all its requests to Android are collected
and submitted by the request wrappers. On one hand, these wrappers are convenient to customize
the virtualized apps, for example, to forge the location bymodifying the response of system service
LocationManagerService. On the other hand, they take the place of the virtualized apps to commu-
nicate with the Android framework. As a result, Android determines the virtualization framework
as the owner of all the requests, although none of them are generated by the framework itself.
However, many Android access control policies are built upon the assumption that Android can
correctly identify the senders of requests, which is invalid in the virtualization frameworks. For ex-
ample, to enforce that each app can only manipulate its own internal storage, Android framework
checks the uid of apps. However, for all apps executed on the same virtualization framework, their
code is executed under the same uid, that is, the uid of the framework. As a result, the isolation
mechanism is broken. Actually, in any of the studied virtualization frameworks, a virtualized app
can arbitrarily read or write �les of another. Thus, a systematic review of Android security model
in virtualization frameworks is necessary.

2.2 Access controls in Android

To maintain the security of Android system and mobile users, Android enforces many access con-
trol mechanisms, including its permission-based security model and some app-level isolation poli-
cies.

Permissions. To prevent apps from abusing Android system resources, Android provides a set of
permissions and ensures that each app should be granted the corresponding permission before it
accesses a sensitive resource. Before Android version 6.0, permissions can only be granted when
users are installing apps. To install an app, users should grant all the requested permissions to the
installed app, otherwise the installation is canceled. After version 6.0, Android starts to support
dynamic permission granting. In the new permission model, normal level permissions are granted
automatically, and any higher-level permissions should be explicitly granted. Speci�cally, when

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:5

an app is going to access a system resource with a dangerous level permission, a popup window
appears to ask the user to grant the permission or deny the access. Besides, signature level permis-
sions can only be granted to apps signed by the same developer.

App-level Isolations. Android security model provides a set of isolation and access control poli-
cies. As a fundamental piece of this model, every Android app is assigned a unique id (uid). Then,
Android isolates the execution spaces of apps by their uids. For example, Figure 2 illustrates a code
snippet, which veri�es the identity of the caller by checking its uid.

1 int uid = Binder.getCallingUid ();

2 if (uid == System_UID){

3 # sensitive operation

4 } else {

5 throw new SecurityException (... ...);

6 }

Fig. 2. Code example for enforcing app-level isolations by checking the caller uid.

3 VULNERABILITIES OF VIRTUALIZATION FRAMEWORKS

As we introduced in §2.1, the adoption of app virtualization may break many security assumptions
of the Android access control system, causing security threats to the apps executed on the virtual-
ization frameworks. In this section, we �rst give an example to illustrate the real-world damage of
vulnerabilities in these frameworks. Then, we systematically study the virtualization frameworks
collected from Google Play.
Our results in §3.5 show various security threats to these frameworks. Finally, we show several

real-world exploitation demos and introduce how they work. We reported these vulnerabilities to
the corresponding developers of the virtualization frameworks, and nowwe received con�rmation
from one of them.

3.1 A motivating example

WhatsApp is one of the most popular social apps in the world, and it maintains a plenty of user
privacy. To manage two WhatsApp accounts simultaneously in one Android device, many users
install it into a virtualization framework, e.g., Parallel Space. By calling getDataDir(), WhatsApp
aims to get the directory of its internal storage( /data/data/WhatsApp/ in Android �le system).
However, to achieve virtualization, Parallel Space redirects the return value of this function call
to a speci�c subdirectory of its own storage (/data/data/Parallel_Space/parallel/0/WhatsApp/ ). As
a result, all user private data are stored to the new location. Suppose a malware Mal is also
installed to the virtualization framework. When Mal is attempting to access /data/data/Paral-

lel_Space/parallel/0/WhatsApp/, Android security policy is not violated because both WhatsApp
and Mal are executed in the same app (Parallel Space) with the same uid. Furthermore, since Paral-
lel Space does not restrict the access of Mal, user privacy managed by WhatsApp is leaked to Mal.
Our proof-of-concept demo illustrates this attack.

3.2 Overall methodology

Android implements a series of isolation and access control policies to restrict the capability of
Android apps. However, our motivating example illustrates that apps running on commercial vir-
tualization frameworks can easily bypass certain security policies. To thoroughly unveil the se-
curity of these virtualization frameworks, we summarize the security concerns enforced by the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:6 L. Zhang et al.

Application Virtualization 

Framework
Clean Android 8.0 System

Attack Reports Reference Reports

Comparison

Penetration Sample

Vulnerability Reports

Fig. 3. The overall architecture of ourmethodology for discovering vulnerabilities in app virtualization frame-

works. We use a clean Android 8.0 system as reference, since it is currently the newest mainstream version

of Android, in which almost all the security enforcement for Android are applied.

Android operating system, and design a set of penetration test samples that carry a set of mali-
cious behaviors. Then, we run the samples on various virtualization frameworks. We also execute
the sample on a clean Android system as a reference. If a malicious behavior fails in the reference
system but succeeds in a virtualization framework, we report that the framework is vulnerable to
the corresponding behavior. Figure 3 reveals our methodology to systematically study the security
of virtualization frameworks.

3.3 Studied virtualization frameworks

Our crawling process that collects virtualization frameworks works as follows: �rst, we locate a
popular virtualization framework (Parallel Space). Then, we search this app in Google Play, where
a list of apps are reported as similar apps. Wemanually check them and identify new virtualization
frameworks. By repeatedly searching for similar apps, we successfully locate 32 app virtualization
frameworks. We list the ten most popular virtualization frameworks in Table 1.

Package Name #Downloads

com.lbe.parallel.intl 50,000,000+
com.ludashi.dualspace 10,000,000+
info.cloneapp.mochat.in.goast 10,000,000+
com.parallel.space.lite 5,000,000+
com.jiubang.commerce.gomultiple 5,000,000+
com.excelliance.multiaccounts 1,000,000+
com.ludashi.superboost 500,000+
com.in.parallel.accounts 500,000+
com.nox.mopen.app 500,000+
com.polestar.domultiple 100,000+

Table 1. Parts of the virtualization frameworks studied in this paper. All these frameworks are downloaded

from Google Play. The second column lists their download numbers on Google Play.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:7

3.4 Penetration test configuration

Permissions. As aforementioned, permissions are granted to apps by the Android framework.
However, when using app virtualization, all the virtualized apps are executed on the virtualiza-
tion framework, instead of the Android system. Thus, no matter how many virtualized apps are
executed, the only app installed to Android devices is the framework itself. As a result, all the
virtualized apps can inherit the permissions granted to the virtualization framework. To pre-
vent apps from abusing privileged system resources, virtualization frameworks should imple-
ment Android permission model themselves. Our experiments evaluate whether an app with no
permission can access a permission protected resource. Speci�cally, our penetration test sam-
ple attempts to access the precise device location (which is protected by a dangerous permis-
sion ACCESS_FINE_GRAINED_LOCATION ) without explicitly granted permissions. It also runs
a background service and stealthily sends an SMS message without requesting for the corre-
sponding permission android.permission.SEND_SMS. Furthermore, our sample attempts to access
the resources in the Amazon app, which is protected by a signature level 3rd party permission
(com.amazon.CONTENT_PROVIDER_ACCESS).

Internal storage. The internal data of each Android app is stored in its local storage direc-
tory /data/data/package_name/, and Android prevents an app from accessing the directories
owned by other apps (e.g., /data/data/Facebook/). In the environment of app virtualization, the
app data are stored in the subdirectories of the virtualization framework (i.e., /data/data/Paral-
lel_Space/parallel/0/package_name/ ). Our penetration test sample scans the directories of the vir-
tualization frameworks (/data/data/framework_name/ ), and attempts to access the local storage of
another virtualized app (such as Facebook).

Protected external storage. Like the internal storage, the data of apps can also be stored to the
system-protected external storage directory (/sdcard/Android/data/package_name/ ), and Android
access control policies prevent this directory from being accessed by other apps. However, in vir-
tualization frameworks, this directory is also redirected to a subdirectory of the framework itself.
Thus, we also scan it to evaluate whether a malicious app can access the data of another app (Drop-
Box in our experiment). Actually, DropBox uses a temporary �le (e.g., share.jpg) in the external
storage to cache the user shared �les, and our penetration test sample attempts to locate and read
it.

Private app component. As practice of modularity programming, many Android apps consist of
multiple components that communicate with each other. Most of the components are private to the
app itself, and cannot be accessed outside the app. For example, many apps use content providers
as databases to store user private data. In the Firefox app, sensitive data (i.e. browser history, search
history and bookmarks) are stored in a content provider org.mozilla.gecko.db.BrowserProvider.
Once executed in a clean Android system, this component can only be accessed by Firefox it-
self through a speci�c URI (content://org.mozilla.�refox.db.browser/ ). Our penetration test sample
attempts to query this content provider and steal the sensitive information.

System services.Android system services provide various sensitive operations, for example, user
accounts are managed by the AccountManagerService, app downloads are managed by the Down-
loadManagerService. To isolate data from di�erent apps, these services verify the app’s identity
before it accesses a speci�c sensitive resource. Our penetration test sample attempts to access the
account of another app (Twitter) by querying the system service AccountManagerService.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:8 L. Zhang et al.

Shell commands. Inherited from Linux, Android supports a set of shell commands, for example,
ps and ptrace. Since malware can leverage the responses of shell commands and steal private in-
formation from other apps (e.g., side channel attacks [19]), Android enforces a set of �ne-grained
access controls to restrict the usage of these commands. Our experiment detects whether an app on
the virtualization framework can breach the access controls and obtain log history of other virtual-
ized apps from the shell command logcat, or monitor the execution environment with commands
ps and top.

Socket. Android apps can utilize sockets to transfer sensitive data between di�erent processes
or communicate with remote cloud servers. Commonly, these sockets are private and inaccessi-
ble by other apps. For example, a map navigator app (BaiduMap) uses a private socket to accept
commands from its voice assistance, such as starting or stopping the navigation, or changing the
navigation destination. Thus, to test the protection of private sockets, we design an experiment
which connects to the socket of other virtualized apps. Speci�cally, our penetration test sample
scans and locates the sockets of a popular VPN app (openVPN ).

3.5 Results & findings

We run our penetration test sample on 32 commercial virtualization frameworks and a clean An-
droid 8.0 system. The following results are collected on Google Pixel. As the result shows, all the
tested virtualization frameworks are vulnerable to most of the attacks. Our penetration test is suc-
cessful on most of the attack targets. The only exception is info.cloneapp.mochat.in.goast, which
provides e�ective defense against our attacks to system service and content provider. On the other
hand, although com.lbe.parallel.intl and com.parallel.space.lite enforce some sorts of protections
so that our simple attack fails to attack an unauthorized external storage, these protections can
be bypassed by our relative attack and link attack. We detail the successful attacks as well as our
�ndings as follows:

Inherit permissions from the virtualization framework. Our experiment shows that no vir-
tualization framework checks the permission of the virtualized apps. More severely, Table 2 shows
the number of permissions declared by the 10 most popular virtualization frameworks, and almost
all the frameworks over-claim a large amount of permissions. Our experiment shows that an app
installed in virtualization frameworks without any granted permission can easily access highly
privileged system resources like device locations and SMS.
Additionally, in Android, signature level permissions are commonly used as higher privileged

permissions than normal or dangerous ones. Such permissions are granted by the system only if
the requesting app is signed with the same certi�cate as the app that declared the permission. For
example, an app with com.amazon.CONTENT_PROVIDER_ACCESS permission can access user’s
shopping history on Amazon. Unfortunately, we observed that all signature level permissions are
downgraded to normal in virtualization frameworks. Thus, malware can easily access various sen-
sitive resources, causing severe data leakage to end users.

Arbitrarily access the internal/external storage of apps.All the 32 studied commercial frame-
works do not restrict the accesses to the internal storage of apps. That is, a malicious app can easily
read/write the cookies of WhatsApp, login token of Facebook, etc. Besides, many apps store their
executable �les (such as .so or .jar �les) in their private directories (/data/data/package_name/ ).
Attackers can replace these �les with their own crafted ones, causing code injection attacks.

Likewise, most of the virtualization frameworks do not verify accesses to the protected
external storage (i.e. /sdcard/Android/data/package_name/ ). Although com.lbe.parallel.intl and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:9

#Permissions
Package Name AOSP 3rd Party Total

com.lbe.parallel.intl 94 39 133
com.ludashi.dualspace 102 80 182
info.cloneapp.mochat.in.goast 163 216 379
com.parallel.space.lite 94 38 132
com.jiubang.commerce.gomultiple 102 101 203
com.excelliance.multiaccounts 102 101 203
com.ludashi.superboost 104 80 184
com.in.parallel.accounts 102 80 182
com.nox.mopen.app 97 78 175
com.polestar.domultiple 104 88 192

Table 2. The permission declarations of virtualization frameworks. The second column lists the number of

Android AOSP [4] permissions declared by the frameworks. The third column lists the number of customized

permissions for 3rd party vendors (e.g., Samsung and Huawei).

com.parallel.space.lite enforce access controls and can defend against our simple test, we �nd
that they can be bypassed with the following attacks.

• Relative Attack. To verify an app’s accessibility to a protected external �le, some of
the virtualization frameworks compare the package name of the requesting app with
a substring of the �le name. For example, suppose the external �les of Facebook are
stored in /sdcard/Android/data/virtualization_framework/Facebook/, and an app Mal requests
to access the �le. The virtualization framework denies the access since it assumes that
Mal can only access �les whose name is started with /sdcard/Android/data/virtualiza-

tion_framework/Mal/. However, such mechanism accepts a relative path /sdcard/Android/-

data/virtualization_framework/Mal/../Facebook/, although it also directs to the same path as
before.

• Link Attack. Parallel Space is the only framework which is not a�ected by the relative at-
tack. However, we �nd it vulnerable to another kind of attack. The malware can create a link
�le which points to targeted external �le (e.g., using command "ln -s la /data/data/Parallel

Space/parallel/0/Facebook" to create a link to the Facebook directory in Parallel Space). Since
this link �le (la) is stored in the directory of the malware, the accessibility check passes,
although it actually points to an unauthorized location.

Information leakage in system services. Revealed by our experiments, 30 of the tested frame-
works lack access controls to restrict the queries to the system services. Thus, malware can steal
the data of other virtualized apps. For example, Twitter stores the user credentials in a system
service AccountManagerService. Any customized app can query this service to get all the account
information stored in it, which leads to account leakage of Twitter users.

Abuse the private app components. In 30 of the tested virtualization frameworks, malware
can easily access the private components of other apps. Thus, all the data in these private com-
ponents are leaked to attackers. For example, Firefox uses a private content provider to store the
browser histories and bookmarks of its users. Attackers can query this component using a spe-
ci�c URI (Uri.parse("content://org.mozilla.�refox.db.browser/")), which actually leaks all the sensi-
tive user data in this content provider.

Monitor other processes through shell commands. To prevent sensitive information leakage
and side-channel attacks, Android restricts the usage of shell commands (e.g., logcat, ps and top).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:10 L. Zhang et al.

Commonly, these commands can list the runtime information of the foreground processes. For
example, some apps (i.e. TP-Link) log user credentials in plain text. Utilizing these commands,
existing work shows that malware can launch targeted phishing attacks [27]. Unfortunately, 29
of the 32 tested virtualization frameworks do not restrict these commands. Thus, every app in
virtualization frameworks can monitor other processes by utilizing these shell commands.

Abuse socket. Android apps use private sockets to communicate with di�erent processes or re-
mote servers. However, 26 of the tested frameworks do not enforce e�ective protections to them.
That is, all our tested sockets are exposed to attackers. For example, our penetration test sample
can read or write data in the socket of a popular VPN app openVPN in virtualization frameworks.
Besides, each socket domain can be bound by only one app. Thus, an attacker can preemptively
bind to the socket domain of other apps and conduct DoS attacks.

3.6 Case study: several demonstrations

We conduct several exploitation demos to illustrate the real-world damage of the vul-
nerabilities introduced before. The demonstration videos are available on YouTube
(https://youtu.be/Mk_ZISSitow), and the details are introduced below:

Abusing Facebook account. Facebook is a popular social app with numbers of users. Using its
Android app, users can manage their contacts, share their photos with friends or record their daily
life. To ease the usage of Facebook, it manages a token as the certi�cate of each login transaction.
The token is generated by the Facebook server, and stored locally by the client-side app.

The login token is stored in the local directory (/data/data/Facebook/ ) of the Facebook app. Nor-
mally, thanks to the isolation mechanism of Android, an app can only access its own local storage.
However, our studies show that this access control mechanism does not work on virtualization
frameworks. Thus, we write a demonstration app which dumps all the local �les of Facebook, and
sends them to our remote server. In this server, we run an Android emulator, and pre-install the
Facebook app. After the server receives the dump �les from the victim, it replaces the login token
of its local Facebook app with the token stolen from the victim. As a result, our remote server can
login Facebook as the victim, and abuse its account (i.e. steal chatting history or send messages).
The victim is unaware of the attack because Facebook allows an account to be logged in from
multiple devices simultaneously.

Phishing attacks to in-app billing. In-app billing is a common feature of Android apps. Users
usually bill in apps to enjoy the advanced functionalities. To the best of our knowledge, no existing
phishing attack targets in-app billing, because in Android, it is hard for attackers to know when
the in-app billing starts and to hijack the billing activity. However, these restrictions are not in
e�ect within the virtualization frameworks. Our demonstration attack targets a popular wallet
app (AliPay). The attack can be easily ported to other apps.
To conduct the phishing attack, our demonstration app runs a background service that mon-

itors when the AliPay starts. Speci�cally, it obtains the foreground app information by calling
the interface getRunningProcessInfo() of a system service ActivityManagerService. By continuously
monitoring this interface, our app can be noti�ed when the AliPay starts up. Then, we pop up a
transparent phishing window to cover the top activity. This window can capture the user inputs
(password for payment), and send them to our remote server.

Leaking chatting history. WeChat is a widely used chatting app in China. To protect the chat-
ting history, WeChat encrypts these data and stores them in a private database of its internal
storage. Like other local storage data, Android isolation mechanisms prevent the chatting history
of WeChat from being stolen.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.

https://youtu.be/Mk_ZISSitow


App in the Middle 17:11

Due to the weakness of virtualization frameworks, our demonstration app can directly obtain
the encrypted chatting history. Besides, WeChat open-sourced their encryption algorithm, which
uses user account information and device information to generate an encryption key. We read
the SharedPreference of the WeChat to get the account information of the user and query the
device information from the Android system services. Then, based on the encryption algorithm,
we compute the encryption key, and use it to decrypt the chatting history. Finally, we obtain all
the user chatting history in plain text.

Steal/forge user email. Gmail is a popular email service developed by Google. Its Android app
uses a content provider (com.android.email.provider.EmailProvider) to store user sensitive data such
as login credential and email history. To protect this content provider, Gmail de�nes a signature

level permission (com.google.androidgm.email.permission.ACCESS_PROVIDER), which only can
be granted to apps signed with Google’s certi�cate. However, our experiment shows that within
virtualization frameworks, this content provider can be arbitrarily accessed by any other virtual-
ized apps. As a result, attackers can query this content provider to obtain the email history of a
Gmail user. More severely, attackers can also forge a fake email as the victim, and send it to his/her
friends, conducting phishing attacks. Figure 4 illustrates a code example for forging a fake email.

1 ContentValues values = new ContentValues ();

2 values.put("fromList", "Bob@gmail.com");

3 values.put("toList", "Alice@hotmail.com");

4 values.put("snippet", "Hello ,Alice -from:Bob");

5 values.put("displayName", "Bob");

6 ... ...

7 Uri uri = Uri.parse("content :// com.google.android.gm.email.provider/message");

8 ContentResolver resolver = getContentResolver ();

9 resolver.insert(uri , values);

Fig. 4. Code example for forging fake email in Gmail.

4 SEVERENESS OF VULNERABILITIES

To better understand how malware can attack the virtualization frameworks and virtualized apps,
we systematically study the ecosystem of app virtualization. To be speci�c, our study proceeds
from two perspectives: �rst, we study what kinds of apps are actually executed on virtualiza-
tion frameworks by Android users. The result reveals the real-world attack surface of app vir-
tualization. Second, we study how apps are launched and used in virtualization frameworks. This
experiment shows how malware can be distributed. Finally, we provide real-world case studies
and proof-of-concept exploitations to demonstrate the attack scenario in our anonymous video:
https://youtu.be/Mk_ZISSitow. Our study unveils a complete exploitation scenario: a malware can
be installed and launched in an app virtualization framework (§4.2), utilizes the vulnerabilities of
the underlying virtualization framework (§3), and attacks the benign Android apps residing in the
framework (§4.1).

4.1 Understanding the a�ack surface

To understand the attack surface, we �rst study what kinds of apps are executed on virtualization
frameworks. To achieve this, we design an experiment based on the observation that user reviews
illustrate the usage scenarios of apps. Thus, our experiment proceeds in three steps. First, we
crawled user reviews of the top ten studied frameworks fromGoogle Play. Despite the non-English

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.

https://youtu.be/Mk_ZISSitow


17:12 L. Zhang et al.

and invalid reviews (shorter than three words), we collected 11,008 user reviews in total. Second,
we crawled the names of the top 100 ranked Android apps from each category on Google Play.
Then, we compare the user reviews with the app names, revealing what apps are used by users.
Since users are likely to use a short abbreviation (i.e. WhatsApp) rather than the whole name of
the app (WhatsApp Messenger), we apply a normalization phase as follows:

App name normalization. To normalize the app names, we �rst compute the occurrence fre-
quencies for every words and phrases in app names. For example, there are two words (WhatsApp

and Messenger) and one phrase (WhatsApp Messenger) in the name “WhatsApp Messenger". After
computing the occurrence frequencies of these words and phrases in other apps’ names, we �nd
Messenger occurs much more frequently than WhatsApp. (f req(WhatsApp)/f req(Messenдer ) <

Threshold). Thus, the word Messenger is a common word that should be excluded, and we use
WhatsApp as the normalized app name.

App Category #App Names #Reviews #Total

COMMUNICATION⋆ 22 1,279 (39.8%)

1,824 (56.7%)
SOCIAL⋆ 20 394 (12.3%)
FAMILY⋆ 13 131 (4.1%)
DATING⋆ 6 20 (0.6%)

GAME 95 534 (16.6%) 534 (16.6%)

Others 108 858 (26.7%) 858 (26.7%)

Table 3. The category of apps executed in virtualization frameworks. App categories labeled with⋆ are used

for social communication. The second column lists the number of app names. The third column lists the

number of corresponding reviews.

App Name App Category #Reviews

WhatsApp Messenger COMMUNICATION 639
Google⋆ Others 171
YouTube⋆ Others 103
Facebook SOCIAL 92
MESSENGER COMMUNICATION 77
Clash of Clans GAME 76
Gmail⋆ COMMUNICATION 60
WeChat COMMUNICATION 33
Instagram SOCIAL 22
Google Play Games GAME 19

Table 4. Top 10 ranked apps executed on virtualization frameworks, and the number of corresponding re-

views. In most virtualization frameworks, the apps labeled with ⋆ are pre-installed by default, unless the

users explicitly choose not to install them.

Table 3 and Table 4 illustrate the distribution of apps executed on virtualization frameworks.
In the 11,008 valid reviews, 3,216 reviews mention app names. Among them, more than 56% are
related to social communication apps, such as chatting apps, social network apps or teamwork
apps. We deeply investigate the corresponding reviews and �nd that Android users prefer to have
multiple user spaces for their social network (mostly one for the private space, some others for
public spaces). Social apps manage a large amount of user private data (e.g., contacts and chatting

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:13

histories). Thus, leveraging the vulnerabilities above, these private information are exposed to the
malware. Additionally, we notice that some users use these frameworks to manage on-line shops,
or even their digital wallets (i.e., Pockets). These apps can also be targeted by malware. Another
important part of apps in virtualization frameworks are game apps. Users commonly virtualize
games to use game bots. We investigate a game bot community in §4.2.2.
We observed that users of the virtualization frameworks care about their privacy, and some of

them even worry about the security of the virtualization frameworks [28]. However, no existing
work studies the security of these frameworks systematically, thus many users still consider them
secure. Indeed many users believe that virtualization frameworks use a secure sandbox to execute
their apps and apps are well isolated, which makes the users ignore the threats of malware.

4.2 Understanding the malware distribution channels

To understand how malware can be distributed to the virtualization frameworks, we conduct a
comprehensive study of how apps can be launched and used in these frameworks.

4.2.1 Insecure app launching. First, by manually analyzing the 32 selected frameworks, we notice
that these frameworks support installing apps from various sources. Despite that all the frame-
works can launch an app that is already installed to the Android device, each virtualization frame-
work supports at least one of the following approaches to install apps:

Launch an app from the SD card. Almost all the virtualization frameworks support app
installation from the SD card. To install an app, the user can �rst download the installation
package (.apk �le) to the global accessible SD card, and use the virtualization framework to
load the package. In Android, content on SD card is global accessible by any app with a
READ_OR_WRITE_EXTERNAL_STORAGE permission, thus, a malware can easily replace the in-
stallation package before it is loaded by the virtualization framework.

Embedded app market. Some virtualization frameworks embed their own app markets. How-
ever, according to our observation, most of them are vulnerable to attacks. For example, Go Multi,
a popular virtualization framework in Google Play, uses plain-text HTTP links when users are
downloading apps from its web disk servers. Thus, attackers can conduct a man-in-the-middle
attack to replace the downloaded app �les.

4.2.2 Insecure game app usage. By analyzing the user reviews of using virtualization frameworks
for gaming, we �nd that many users utilize app virtualization to launch game bots. Then, we
investigate a famous game bots community which uses the virtualization framework.

A game bots community using virtualization frameworks.GameGuardian is a popular game
bots tool and community. Typically, it can only be executed in a rootedAndroid device. AfterMarch
2018, it supports being executed without rooting the device [14], which is replaced by using the
virtualization frameworks. Interestingly, we observe that GameGuardian is utilizing a vulnerability
we introduced to instrument the game apps. Although the vulnerability is exploited to achieve the
legitimate need of GameGuardian, it is not certain that the vulnerability will not be abused.

Figure 5 depicts how game bots work with the help of app virtualization. Users should �rst load
the GameGuardian app into the virtualization framework. Then, various game bots (written in
LUA) can be loaded to GameGuardian. LUA is a powerful and lightweight programming language.
Since a LUA program can easily embed posix C code [18], a LUA-based game bot can implement
any of the exploitations discussed in §3.5. GameGuardian also supports a game bots market to
distribute 3rd party bots. As a result, malicious developers can easily distribute their attack scripts.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:14 L. Zhang et al.

Android Framework

Application Virtualization Framework

Customized GameFacebook GameGuardian

hijack

LUA Bots

Fig. 5. The infrastructure of GameGuardian, which uses virtualization frameworks to load game bots.

4.3 A real-world demonstration

Our demonstration example (https://youtu.be/Mk_ZISSitow) illustrates a real-world attack to Face-
book. In this attack, we succeed in replacing an executable �le of Facebook with a crafted one, by
means of a simple customized game bot.

1 ParallelSpace= /data/data/com.lbe.parallel.intl/parallel /0

2 Facebook_SO = /com.facebook.katana/lib -xzs/libcaffe2.so

3 function replaceExecutable( path )

4 local f2 = io.open(path ,'w')

5 f2 : write( PAY_LOAD )

6 f2 : close()

7 end

8 function main()

9 replaceExecutable( ParallelSpace + Facebook_SO )

10 end

Fig. 6. A LUA program that manipulates an executable file (libca�e2.so) of Facebook.

To launch the attack, we �rst upload a game bot (LUA program) to the GameGuardian forum.
To be ethical and avoid it been downloaded by other users, we explicitly notify that this bot is
used for testing purpose. Our script passes the vetting processes, and it is visible by all the users of
GameGuardian. Figure 6 shows the content of the LUA program. In this program, line 9 replaces an
executable �le (libca�e2.so) of Facebookwith a crafted one. Once activated, the replaced executable
�le takes control of the Facebook app. Then, attackers can easily steal user privacy, or abuse the
user account.

5 REPACKAGEWITH APP VIRTUALIZATION

The above sections illustrate how malware can leverage the vulnerabilities of app virtualization
frameworks to launch attacks. In this section, we show that malware can abuse the app virtualiza-
tion techniques from another scenario: by repackaging malicious payload into Android apps using
virtualization techniques. We observed that app virtualization techniques are frequently applied
by developers to repackage Android apps. Repackage used to be a common approach to distribute
Android malware, and a plenty of techniques are proposed to detect repackaged apps. However,
they are disabled by the virtualization techniques. In this section, we �rst propose a new method
to detect apps repackaged by virtualization techniques. Then, utilizing this tool, we drive a large
scale analysis on Android apps.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.

https://youtu.be/Mk_ZISSitow


App in the Middle 17:15

5.1 Methodology

Existing approaches for detecting repackaged Android apps are based on code similarity analy-
sis [21, 39]. Commonly, they drive static analysis to capture the signatures of apps, and calculate
code similarity based on the analysis results. Figure 8.(a) illustrates an example of a repackaged
app without utilizing app virtualization. In Android, the execution code of apps are packed into a
�le named classes.dex. Malware are used to directly inject the malicious payload into this �le. Thus,
the repackaged app and the original app share common code (the Original App Code in Figure 8) in
their executable �les (classes.dex). This is a common assumption of existing repackage detection
approaches. However, as illustrated in Figure 8, this assumption is incorrect on repackaged apps
with virtualization techniques. In this example, the original Android app is stored in the local stor-
age of the framework (assets), and dynamically loaded at runtime. As a result, the executable �le
of the repackaged app is the code of the virtualization framework, thus it does not share common
code with the original app.
We propose a new approach to detect repackaged apps. First, we summarize several common

features of virtualization techniques, and propose a static analysis approach to detect apps with
virtualization. Second, if an app virtualizes another app, we drive another analysis to determine
whether the virtualization is applied to repackage the app. Our detection method is supported by
two key insights. First, popular apps tend to sign their code with private signatures that malicious
developers are di�cult to obtain. Then, these apps commonly check their signatures before execu-
tion, preventing malicious developers from repackaging them with a di�erent signature. Malware
therefore is di�cult to evade our analysis, that is, using a same signature as the repackaged app.
The details of our approach are described below:

1 <activity >

2 android : name = com.lbe.doubleagent.client.proxy.ActivityProxy$P40

3 android : process = :P40

4 android : exported = false

5 ... ...

6 android : configChanges = keyboard|keyboardHidden|navigation|orientation|

screenSize

7 </activity >

1 <activity >

2 android : name = com.lbe.doubleagent.client.proxy.ActivityProxy$P41

3 android : process = :P41

4 android : exported = false

5 ... ...

6 android : configChanges = keyboard|keyboardHidden|navigation|orientation|

screenSize

7 </activity >

Fig. 7. A code example for similar components in virtualization apps. The code snippets are extracted from

Parallel Space.

Recognizing virtualization techniques.According to our observation, the apps with virtualiza-
tion techniques share the following common features: First, apps with virtualization tend to use a
large number of wrapper components to provide proxies between the original app and the Android
framework. These wrapper components are structurally similar to each other. For example, Fig-
ure 7 illustrates two wrapper components from Parallel Space, which have similar con�gurations

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:16 L. Zhang et al.

Repackaged.apk

originalApp Code

maliciousPayload

Virtualization Repackaged.apk

VirtualFramework Class.dex

Virtual framework

decompiledecompile

originalApp.apk

maliciousPayload.dex

dynamic load

}}

Repackaged Class.dex

Class MainActivity{ Class MainActivity{

installPkg(“originalApp.apk”)

...

installPkg(“maliciousPayload.dex”)

Fig. 8. Android repackaged apps with or without virtualization techniques.

(line 2 to line 6) to each other. Thus, we analyze the similarity between the components of each
app. We consider two components to be similar if over 80% of their code is identical. Empirically,
if more than 50 percent of the components are similar to each other, the corresponding app is very
likely to use virtualization techniques. Second, apps with virtualization need to hook the original
apps, thus, they commonly override the instrumentation callback (callApplicationOnCreate()). Our
approach detects these two features, and reports an app if it matches both of them.

Identifying Repackage.An appwith virtualization is not necessarily a repackaged app. A benign
app can also use virtualization to achieve modularity programming. Fortunately, we observe that,
di�erent from the benign apps, a malicious repackaged app tends to repackage an app that is
developed by a di�erent party. As a result, the certi�cate of the original app (originalApp.apk in
Figure 8) is di�erent from the certi�cate of the repackaged app (Virtualization_Repackaged.apk in
Figure 8). Thus, we �rst recognize the inlined apk �les of each app. Then, we compare the signature
of the inlined �les with that of the root apk �le, and report an app if the signatures di�er. Besides,
some cases encrypt their inlined apk �les so that we cannot obtain their signatures. Our tool labels
them as suspicious apps.

5.2 Data set

With the help of our tool, we evaluated 250,145 apps from various app stores. As depicted in Table 5,
we crawled 97,304 random apps from Google Play, and 152,841 random apps from three 3rd party
Android app stores.

App Market #Apps (Total) Download Time

Google Play 97,304 2018 April
YingYongBao 44,831 2018 April
Qihoo 104,094 2018 April
Xiaomi 3,916 2018 Spring

Table 5. Android apps collected from Google Play and 3rd party app markets.

5.3 Overall results and precision

Table 6 illustrates the overall results of our experiments. Among the evaluated apps, 180 are re-
ported as repackaged apps with virtualization, and 29 apps are reported as suspicious apps.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:17

Fig. 9. The download numbers of the studied repackaged apps.

Precision. To check the false positive rate of our results, we manually verify the reported apps.
Because the suspicious apps use encryption to protect their code, and it is time-consuming to de-
crypt them, we verify all the repackaged apps and several random samples of suspicious apps. As
a result, among the 180 repackaged apps, only 16 of them are false positives. The reasons for false
positives are: six apps are virtualization frameworks with 3rd party plug-in apps. Our tool mis-
takenly classi�es them into repackaged apps because the plug-in apps have di�erent certi�cates
from the frameworks. The remaining 10 false positives utilize the virtualization techniques to load
3rd party apps. Our investigation shows that these apps only load a small portion of the 3rd party
apps, and reuse them as a separate module. All the false positives reuse the code from the virtual-
ized apps. However, they have no malicious intent. Furthermore, to study whether the suspicious
apps can be repackaged ones, we randomly select 10 samples and attempt to decrypt them manu-
ally. As a result, we successfully decrypt four of them, in which two samples are con�rmed to be
repackaged apps.

#Apps
App Market Using Virtualization Suspicious Repackaged

Google Play 52 10 6
YingYongBao 203 15 168
Qihoo 40 1 3
Xiaomi 7 3 3

Total 302 29 180

Table 6. The overall results of our experiments for detecting repackaged apps. The second column lists the

total number of apps using virtualization techniques.

To study the popularity of the repackaged apps, we collect their download numbers from app
markets. The results show that some of the repackaged apps earn lots of downloads. For exam-
ple, one repackaged version of a popular game app Daddy was a Thief has more than 500,000
downloads on YingYongBao, and another repackaged app has about 390,000 downloads. Figure 9
illustrates the download numbers of these repackaged apps.

5.4 Findings

Anti-virus tools are ine�ective to detect malware using virtualization techniques. Tomea-
sure whether the anti-virus tools can detect malware using virtualization techniques, we upload

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:18 L. Zhang et al.

 10

 20

 30

 40

 50

 1  2  3  4  5  6  7  8  9  10

#E
ng

in
es

 la
be

le
d 

as
 m

al
ic

io
us

#Apps uploaded to VirusTotal

Virtualization Frameworks
Repackaged Apps

Fig. 10. The detection results of anti-virus engines on VirusTotal. The results are collected by uploading the

10 commercial virtualization frameworks and 10 randomly selected repackaged apps.

the 164 repackaged apps to VirusTotal. The results show that, none of the 64 anti-virus engines
can detect all of them, and only 39 engines can detect part of the samples. We analyze the reports
of these anti-virus engines, and �nd that 18 of them treat these apps as PUP (potential unwanted
programs) or Riskware.
Furthermore, we upload 10 benign virtualization frameworks to VirusTotal, and �nd that they

are mistakenly reported as malware by 26 anti-virus engines. Depicted by Figure 10, many anti-
virus engines cannot tell apart malware from the benign apps, and show similar results to both of
them.

Most of the repackaged apps are developed by a small number of groups. To study the
developers of these repackaged apps, we conduct an experiment to categorize the signing certi�-
cates of these apps. As a result, we �nd that all these 164 true positive repackaged apps are signed
with 6 certi�cates, which indicates that these apps are developed by a small number of develop-
ers. We manually check the code of these apps, and �nd that apps with a same signature have
same code structures. Indeed, one of the malicious developers owns 58 repackaged apps, including
com.gamecircus.PrizeClaw, com.rebeltwins.aliensdrivemecrazy and other popular apps. This indi-
cates that virtualization techniques are capable of repackaging various Android apps, and can be
helpful to generate plenty of repackaged apps.

Apps are repackaged once and no need to update. An interesting �nding is that most of
the repackaged apps with virtualization techniques do not update on app stores. There is only
one version of each app and it has no version change logs. With a deep investigation, we �nd
that the repackaged apps can dynamically update themselves by replacing the apk �les in their
virtualization modules. As a result, once a repackaged app is installed, there is no need for the app
developer to update it on the app stores.

5.5 Case Study

A batch creation of repackaged apps. YingYongBao is the largest Android app market in
China [5]. Our tool locates 168 repackaged apps from it. We further analyze these results and �nd
that 58 of them are submitted by a same developer with similar package names, com.ab.pluginX (X
stands for a random string for each app). Additionally, the original apps are placed under the as-
sets directory, and renamed to plugin.apk. Considering the number of repackaged apps, it is highly
likely that they are created from a same template.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:19

Interestingly, among the repackaged apps, one sample embeds two apk �les under its assets di-
rectory. One is plugin.apk, and the other is a mis-spelled one, pulgin.apk. Furthermore, the app
information of this repackaged app on YingYongBao contains mixed information from these two
embedded apps. Speci�cally, the app description is inherited from plugin.apk, which is a car game.
However, its category is Fly&Shoot game, which is the same as the pulgin.apk. This mistake demon-
strates that the repackaged apps may be created without human e�orts.

A malware with severe obfuscation. Our tool locates a suspicious app, com.bantu.hxbzyz. Ac-
cording to its code in classes.dex, this app utilizes a virtualization framework KXQP to repack-
age an app. Using the framework, it loads two encrypted �les dynamically. One of them (named
com.bantu.hxbzyz.jar) is the encrypted apk �le of the original app. Interestingly, the other �le is
hidden in a suspicious png �le (background.png). After decryption, this png �le releases another
two �les. One of them is a supplement package of the virtualization framework, while the other one
is further encrypted. We uploaded this encrypted �le to VirusTotal [37], and 16 of the anti-virus
engines detect this �le as a Trojan.

6 MITIGATION

In §3 and §4, we show that malware can utilize the vulnerabilities of virtualization frameworks to
attack benign apps, causing privacy leakage, code injection, and other security threats. In §5, we
�nd that benign apps are repackaged by malware with virtualization techniques. To mitigate these
security threats, this section provides some recommendations to both the virtualization frame-
works and the app developers.

6.1 Enhancing the security of virtualization frameworks

The security is a critical consideration of virtualization frameworks. We notice that many vir-
tualization frameworks explicitly declare that they will not abuse permissions or leak user pri-
vacy [32, 34]. However, our experiments show that only a little e�ort is taken to prevent these
frameworks from being abused by malware. As discussed in §2.1, virtualization frameworks act
as a proxy between the virtualized apps and the Android framework, thus Android frameworks
cannot control accesses of apps executed in the virtualization frameworks. To ensure the security
while satisfying the virtualization demands of mobile users, OS developers can apply more �exi-
ble access controls. For example, Android provides a mechanism called “isolated process" to create
isolated processes in apps. By leveraging this mechanism, app virtualization frameworks can ex-
ecute virtualized apps in isolated processes, mitigating the security issues revealed in this paper.
However, the isolated processes are highly restricted in Android, for example, they are forbidden
to access any of the Android services, thus no app virtualization framework leverages such mech-
anism. It might be helpful if Android applies �ne grained access controls to the isolated processes,
instead of such a strong restriction to their functionality. From the perspective of these virtual-
ization frameworks, they should inherit the role of the Android framework and re-implement the
access control policies. To achieve this purpose, they should �rst hook the sensitive interfaces of
Android, and implement the access control policies in the hook functions. Fortunately, according to
our observation, almost all the frameworks already hooked all sensitive interfaces. The remaining
work for them is to implement the corresponding security enforcements.

6.2 Detecting the virtualization

An app can detect whether it is being virtualized by either a virtualization framework or a repack-
aged app:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:20 L. Zhang et al.

1. com.facebook.katana.LoginActivity.OnCreate()

2. android.app.Instrumentation.callApplicationOnCreate()

3. android.app.ActivitThread.handleServiceArgs()

 

4. dalvik.system.NativeStart.main()

1. com.facebook.katana.LoginActivity.OnCreate()

2. android.app.Instrumentation.callApplicationOnCreate()

3. com.doubleagent.client.e.callApplicationOnCreate()

4. com.lbe.doubleagen.client.g.a()

5. com.lbe.doubleagen.client.proxy.

 ServiceProxyImple.onStartCommand()

6. android.app.ActivitThread.handleServiceArgs()

 

7. dalvik.system.NativeStart.main()

(a) Call stack of Facebook in a clean Android system

(b) Call stack of Facebook in Parallel Space

Fig. 11. Call stacks of Facebook in a clean Android system and a virtualization framework, Parallel Space.

• Detecting instrumentation. Virtualization techniques usually override the system instru-
mentation callback (Instrumentation.callApplicationOnCreate()) of the original app. Thus, to
check whether an app is executed in a virtualization framework, we can monitor the call
stack and check whether the callback is replaced. For example, as illustrated in Figure 11, the
original callback (line 2) in Figure 11.(a)) has been replaced by a 3rd party implementation
(line 2 to line 5 in Figure 11.(b)), which illustrates that the app is executed in a virtualization
framework.

• Verifying the �le system structure. Virtualization framework redirects the �le opera-
tions of the virtualized apps. Thus, to ensure whether an app is executed in a virtualization
framework, one can also verify the structure of the �le system. For example, the system call
getDataDir() returns the location of the app’s internal storage. In virtualization frameworks,
this path is replaced by a subdirectory of the virtualization framework itself.

To prevent from being abused, apps can either alert the users that they are not executing the
original app, or restrict the usage of the apps (for example, execute a “safe mode" that does not
load user privacy from the server).

7 DISCUSSION

Other security impacts of the virtualization techniques. Our paper now focuses on how
malware can utilize app virtualization to either attack the mobile users or to repackage Android
apps. However, according to our observation, we �nd that not only malware, but also benign apps
are using the app virtualization techniques, causing other security issues. In §5.3, our tool �nds
that 302 Android apps are using the virtualization techniques. Among them, 209 are repackaged
or suspicious apps, and the remaining 93 apps are benign. We investigate these apps, and �nd
that although they utilize the virtualization techniques to achieve a benign purpose (e.g., achieve
modularity programming), they are all over-privileged by declaring a large number of Android
permissions (as illustrated in Table 2). A deep analysis shows that most of these permissions are
declared by the virtualization modules of these apps. Related researches [11, 20] studied the over-
privileged problem of Android apps, and discussed the security threats imposed by this issue.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:21

Aggressive results of anti-virus engines. Our paper illustrates that malware are armed by vir-
tualization techniques to evade malware detection. However, since anti-virus engines cannot tell
apart virtualization frameworks from malware with virtualization techniques, they aggressively
mark all of them as malware. As a result, many false positives are introduced to their results. On
the other hand, even such an aggressive approach is not su�cient to completely detect malware.
Actually, we observed that many malware still evade most anti-virus engines. Interestingly, we
observed that an open-sourced virtualization framework (VirtualApp [6]) is labeled as malware
by many anti-virus engines, thus another open-source project [36] is proposed to evade all the
engines.

Malware utilization of the vulnerabilities discussed in this paper. Our paper illustrates sev-
eral attacks to the virtualization frameworks. We also drive a comprehensive study on the attack
surface and attack scenarios. We observed an app (com.tiqiaa.remote) on Google Play uses the in-
ternal storage vulnerability in §3.5 to access �les of another virtualized app (com.tiqiaa.icontrol), as
illustrated in Figure 12. Though these two apps come from the same developer and use the vulnera-
bility for a legitimate purpose, we argue that these vulnerabilities may cause severe consequences
in the future. Actually, many existing malware on Android attempt to root the infected devices
before they read/temper sensitive user data. Leveraging the vulnerabilities discussed in this paper,
rooting the device is no longer a precondition of the attacks.

1 File file = new File("/data/data/com.lbe.parallel/parallel /0/ com.tiqiaa.

icontrol/");

2 if (file.exists ()){

3 ... ...

4 }

Fig. 12. Code snippet in a Google Play app com.tiqiaa.remote which a�empts to access files of another virtu-

alized app com.tiqiaa.icontrol.

Evasion techniques against our repackage detector. As aforementioned, utilizing the charac-
teristics of virtualization techniques, we propose a new detection method of repackaged Android
apps. Inevitably, deliberate evasion techniques can target our approach. For example, an adversary
can repackage the inlined app with its own certi�cate. However, even if the app is repackaged, we
can locate its malicious intention by calculating its similarity to popular Android apps [21, 22, 42].
Besides, malware can also obfuscate their code to evade our similarity analysis. Since application
virtualization techniques create a massive number of wrapper functions, we plan to calculate the
similarity of control �ow structure, instead of the code, in the future. Currently, we do not wit-
ness real-world examples with the evasion techniques above. Moreover, our detector locates 164
repackaged Android apps which evade all the existing related approaches.

Comparisonwith other virtualization techniques.Virtualization-based techniques have been
widely used in browsers and operating systems [7, 26, 40]. These virtualization frameworks com-
monly virtualize a complete operating system or a browser, which enforces comprehensive access
controls. Malicious apps or webpages therefore should �rst compromise the operating system or
browser before they can attack other benign apps or webpages. The app virtualization frameworks
discussed in this paper is di�erent, that is, the virtualized targets are mostly Android apps, which
applies limited access controls and assumes that the underlying Android runtime environment
is secure. Unfortunately, this paper shows that app virtualization frameworks break the security
assumptions, making virtualized apps vulnerable to malware.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:22 L. Zhang et al.

8 RELATEDWORK

In this section, we review related prior research and compare our work with those studies.

Security threats from Android customizations. The app virtualization techniques are com-
monly applied to customize an Android app. Prior related research studied the security risks in-
troduced by the Android system customization. Speci�cally, some prior works [1, 11, 12] focus
on the pre-installed apps in Android factory images and report several kinds of vulnerabilities,
such as over-privilege, permission re-delegation, hanging attribute references, etc. Other related
studies [2, 13, 16, 38] �nd that customized system images modify security con�gurations, and the
incorrect modi�cations bring in security vulnerabilities. These works focus on the customization
of Android system images. However, this paper reveals the security issues of app virtualization,
which is applied to customize apps. Thomas, et al. [35] identify that the �le and memory isolation
of some app virtualization frameworks may be vulnerable. Zheng, et al. [44] describe three attacks
against app virtualization techniques. Di�erent from these studies, we systematically study a more
comprehensive set of vulnerabilities on a large set of app virtualization frameworks in the wild,
and show a complete exploitation scenario of these vulnerabilities, by a deep analysis of the app
virtualization ecosystem. Our analysis on Android app markets discovers many real-world repack-
aged apps that abuse the app virtualization techniques. To the best of our knowledge, it is the �rst
systematic study of app virtualization and its security issues.

Vulnerability detection in Android. The problem of security vulnerabilities in Android has
been extensively studied. Unixdomain [31] and ION [43] study the Android sockets as well as
low-level heap interfaces, and report unprotected public interfaces by �nding missing permission
validations. Kratos [30] and AceDroid [41] reveal vulnerabilities caused by inconsistent permis-
sion enforcement in Android system. ASV [17] discovers a design trait in the concurrency control
mechanism of Android system server, which may be vulnerable to DoS attacks. These works focus
on vulnerabilities of Android framework. Other prior researches reveal vulnerabilities of Android
apps. MalloDroid [10], Georgiev, et al. [15] and Fahl, et al. [9] focus on the unsafe usage of SSL in
Android apps and other non-browser apps. Poeplau, et al. [25] study the dynamic class loading fea-
ture of Android. Luo, et al. [23] and Chin, et al. [8] reveal the vulnerabilities caused by introducing
Webviews into apps without proper input veri�cation. CryptoLint [24] shows the vulnerabilities
introduced by misusing cryptographic libraries in Android apps. The above related works focus on
either Android framework or apps. Our paper is di�erent because the security threats discussed in
this paper are not caused by vulnerabilities of either the Android framework or virtualized apps,
but are introduced by the app virtualization techniques.

Repackage detection in Android. This paper reveals that app virtualization is applied by mal-
ware as an alternative of repackage techniques. The existing work detects app repackage based on
the code similarity between apps. Speci�cally, PiggyApp [45] detects the repackaged apps based
on the assumption that they share the same primarymodules as the original apps. DroidMOSS [39]
proposes a fuzzy hashing technique to locate the changes in the repackaged app. DNADroid [21]
computes the code similarity with the help of program dependency graphs. AnDarwin [22] de-
tects repackage by computing similarity based on app’s semantic information. As introduced in
Section 5.1, these works assume that the repackaged app and the original app share similar code
in the execution �le, and this assumption is not valid for repackaged apps which use the virtualiza-
tion techniques. Besides, ViewDroid [42] computes the similarity between apps based on their user
interface layout (various xmls under layout directory in apk). Similarly, when an app is repackaged
with virtualization techniques, its layout �les are di�erent from those of the original apps.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



App in the Middle 17:23

9 CONCLUSION

In this work, we make the �rst attempt to systemically study the app virtualization in Android
and their security threats to users. As a result, virtualization frameworks are used by more than
100 million users worldwide, and the major customization targets are the social communication
apps and game apps. With a thorough study of 32 virtualization frameworks from Google Play, we
propose seven attacks, and reveal that most of the frameworks are vulnerable to them. By deeply
investigating their ecosystem, we show that attackers can easily distribute a malware that targets
the virtualization frameworks. We present several demonstrations to illustrate these attacks. On
the other side, we show that the virtualization techniques are also applied by malware as an alter-
native approach for repackage. To this end, we design and implement a new repackage detector,
and �nd 180 repackaged app from four app stores. Our manual veri�cation shows that only 16 apps
are false positives. Finally, to mitigate the security threats, we propose several recommendations
for both the virtualization frameworks and the app developers.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful comments that helped im-
prove the quality of the paper. This work was supported in part by the National Program on Key
Basic Research (NO. 2015CB358800), the National Natural Science Foundation of China (U1636204,
61602121, U1736208, 61602123, U1836213, U1836210). Yuan Zhang was supported in part by the
Shanghai Sailing Program under Grant 16YF1400800. Min Yang is corresponding author of Shang-
hai Institute of Intelligent Electronics & Systems, and Shanghai Institute for Advanced Communi-
cation and Data Science.

REFERENCES

[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou, Wenliang Du,

and Michael Grace. 2015. Hare Hunting in the Wild Android: A Study on the Threat of Hanging Attribute References.

In CCS.

[2] Yousra Aafer, Xiao Zhang, andWenliang Du. 2016. Harvesting inconsistent security con�gurations in custom android

Roms via di�erential analysis. In USENIX SECURITY.

[3] Android. 2017. Android: 2 billion monthly active devices. https://www.youtube.com/watch?v=S_M4B-pl05M.

[4] Android. 2019. Android Open Source Project. https://source.android.com/.

[5] AppInChina. 2018. TOP 20 CHINESE ANDROID APP STORES. https://www.appinchina.co/market/.

[6] asLody. 2018. VirtualApp. https://github.com/asLody/VirtualApp/tree/master.

[7] Bromium. 2019. Browser Isolation with Microsoft Windows Defender Application Guard (WDAG): What It Does,

How It Works andWhat It Means. https://www.bromium.com/browser-isolation-with-microsoft-windows-defender-

application-guard/.

[8] Chin Erika andWagner David. 2013. Bifocals: AnalyzingWebView Vulnerabilities in Android Applications. InWISA.

[9] Sascha Fahl, Marian Harbach, and Perl Henning. 2013. Rethinking ssl development in an appi�ed world. In CCS.

[10] Sascha Fahl, Marian Harbach, and Thomas Muders. 2012. Why eve and mallory love android: an analysis of android

ssl (in)security. In CCS.

[11] Adrienne-Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011. Android permissions demysti-

�ed. In CCS.

[12] Adrienne-Porter Felt, Helen J. Wang, and Alexander Moshchuk. 2011. Permission Re-Delegation: Attacks and De-

fenses. In USENIX SECURITY.

[13] Roberto Gallo, Patricia Hongo, and Ricardo Dahab. 2015. Security and system architecture: Comparison of android

customizations.. InWISEC.

[14] GameGuardian. 2018. No root via Parallel Space Lite on x86 - GameGuardian.

https://gameguardian.net/forum/gallery/image/447-no-root-via-parallel-space-lite-on-x86-gameguardian/.

[15] Martin Georgiev, Subodh Iyengar, and Suman Jana. 2012. The most dangerous code in the world: validating ssl

certi�cates in non-browser software. In CCS.

[16] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic detection of capability leaks in stock

Android smartphones.. In NDSS.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.



17:24 L. Zhang et al.

[17] Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu. 2015. From system services freezing to system server shutdown

in android: All you need is a loop in an app. In CCS.

[18] Programming in LUA. 2018. An Overview of the C API. https://www.lua.org/pil/24.html.

[19] Infosec institute. 2018. Exploiting Unintended Data Leakage (Side Channel Data Leakage).

http://resources.infosecinstitute.com/android-hacking-security-part-4-exploiting-unintended-data-leakage-side-

channel-data-leakage/#gref.

[20] Jeon Jinseong, Micinski Kristopher K., and Vaughan Je�rey A. 2012. Dr. Android and Mr. Hide: Fine-grained Permis-

sions in Android Applications. In SPSM.

[21] Crussell Jonathan, Gibler Clint, and Chen Hao. 2012. Attack of the Clones: Detecting Cloned Applications on Android

Markets. In ESORICS.

[22] Crussell Jonathan, Gibler Clint, and Chen Hao. 2013. AnDarwin: Scalable Detection of Semantically Similar Android

Applications. In ESORICS.

[23] Tongbo Luo, Hao Hao, and Wenliang Du. 2011. Attacks on WebView in the Android system. In ACSAC.

[24] Egele Manuel, Brumley David, Fratantonio Yanick, and Kruegel Christopher. 2013. An empirical study of crypto-

graphic misuse in android applications.. In CCS.

[25] Sebastian Poeplau, Yanick Fratantonio, and Antonio Bianchi. 2014. Execute This! Analyzing Unsafe and Malicious

Dynamic Code Loading in Android Applications. In NDSS.

[26] Qemu. 2019. QEMU, the FAST! processor emulator. https://www.qemu.org.

[27] Yinfeng Qiu. 2012. Bypassing Android Permissions: What You Need to Know. https://blog.trendmicro.com/trendlabs-

security-intelligence/bypassing-android-permissions-what-you-need-to-know/.

[28] Quora. 2016. Is the app parallel space on my android phone safe to use is there no risk of hacking or anything

like that? https://www.quora.com/Is-the-app-parallel-space-on-my-android-phone-safe-to-use-is-there-no-risk-of-

hacking-or-anything-like-that.

[29] Quora. 2016. What is the process of creating bots for Android games? https://www.quora.com/What-is-the-process-

of-creating-bots-for-Android-games.

[30] Yuru Shao, JasonOtt, Qi Alfred Chen, ZhiyunQian, and ZMorleyMao. 2016. Kratos: Discovering Inconsistent Security

Policy Enforcement in the Android Framework. In NDSS.

[31] Yuru Shao, Jason Ott, Yunhan-Jack Jia, Zhiyun Qian, and Z.Morley Mao. 2016. The Misuse of Android Unix Domain

Sockets and Security Implications. In CCS.

[32] Excelliance Tech. 2018. Multiple Accounts:Parallel App. https://play.google.com/store/apps/details?id=com.excellianc

e.multiaccounts.

[33] LBE Tech. 2018. Over 100 million users worldwide. https://www.facebook.com/parallelspaceapp.

[34] LBE Tech. 2018. Parallel Space -Multiple accounts & Two face. https://play.google.com/store/apps/details?id=com.lbe.

parallel.intl.

[35] Julien Thomas. 2018. In-App virtualization to bypass Android security mechanisms of unrooted devices.

https://2018.bsidesbud.com/wp-content/uploads/2018/03/julien_thomas.pdf.

[36] tiann. 2018. fuck_anti_virus.gradle. https://gist.github.com/tiann/42f829ae86b90934c8467f6f76dd6a85.

[37] VirtusTotal. 2018. VirtusTotal. https://www.virustotal.com.

[38] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The impact of vendor customizations on

android security. In CCS.

[39] Zhou Wu, Zhou Yajin, and Jiang Xuxian. 2012. Detecting Repackaged Smartphone Applications in Third-Party An-

droid Marketplaces. In CODASPY.

[40] Xen. 2019. Xen project. https://www.xenproject.org.

[41] Aafer Yousra, Huang Jianjun, and Sun Yi. 2018. AceDroid: Normalizing Diverse Android Access Control Checks for

Inconsistency Detection. In NDSS.

[42] Fangfang Zhang, Heqing Huang, and Sencun Zhu. 2014. ViewDroid: Towards obfuscation-resilient mobile application

repackaging detection. InWISEC.

[43] Hang Zhang, Dongdong She, and Zhiyun Qian. 2016. Android ION Hazard: The Curse of Customizable Memory

Management System. In CCS.

[44] Cong Zheng, Tongbo Luo, Zhi Xu, Wenjun Hu, and Xin Ouyang. 2018. Android Plugin Becomes a Catastrophe to

Android Ecosystem. In RESEC. ACM.

[45] Wu Zhou, Yajin Zhou, and Michael Grace. 2013. Fast, scalable detection of piggybacked mobile applications. In

CODASPY.

Received November 2018; revised December 2018; accepted January 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 17. Publication date: March 2019.


	Abstract
	1 Introduction
	2 Background
	2.1 App virtualization
	2.2 Access controls in Android

	3 Vulnerabilities of Virtualization Frameworks
	3.1 A motivating example
	3.2 Overall methodology
	3.3 Studied virtualization frameworks
	3.4 Penetration test configuration
	3.5 Results & findings
	3.6 Case study: several demonstrations

	4 Severeness of Vulnerabilities
	4.1 Understanding the attack surface
	4.2 Understanding the malware distribution channels
	4.3 A real-world demonstration

	5 Repackage with App Virtualization
	5.1 Methodology
	5.2 Data set
	5.3 Overall results and precision
	5.4 Findings
	5.5 Case Study

	6 Mitigation
	6.1 Enhancing the security of virtualization frameworks
	6.2 Detecting the virtualization

	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References

