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Abstract
In this study, we discover a subtle yet serious timing side
channel that exists in all generations of half-duplex IEEE
802.11 or Wi-Fi technology. Previous TCP injection at-
tacks stem from software vulnerabilities which can be
easily eliminated via software update, but the side chan-
nel we report is rooted in the fundamental design of IEEE
802.11 protocols. This design flaw means it is impos-
sible to eliminate the side channel without substantial
changes to the specification. By studying the TCP stacks
of modern operating systems and their potential interac-
tions with the side channel, we can construct reliable and
practical off-path TCP injection attacks against the latest
versions of all three major operating systems (macOS,
Windows, and Linux). Our attack only requires a device
connected to the Internet via a wireless router, and be
reachable from an attack server (e.g., indirectly so by ac-
cessing to a malicious website). Among possible attacks
scenarios, such as inferring the presence of connections
and counting exchanged bytes, we demonstrate a partic-
ular threat where an off-path attacker can poison the web
cache of an unsuspecting user within minutes (as fast as
30 seconds) under realistic network conditions.

1 Introduction

Side channels in networking stacks have recently been
demonstrated to precipitate serious attacks. One of the
most noteworthy cases is CVE-2016-5696 [18] where
a completely blind off-path attacker can infer whether
two arbitrary hosts on the Internet are communicating
using a TCP connection. The attacker can even infer
the TCP sequence numbers in use from both sides of
the connection. In addition to this serious vulnerabil-
ity, other types of side channel vulnerabilities have also
been discovered in various scenarios and protocol com-
ponents [39, 40, 25, 24, 27, 33, 23, 48, 13]. Fundamen-
tally, like any side channel vulnerabilities, these vulner-
abilities are introduced by shared resources between the

attacker and victim.
In the case of TCP, for example, a server has many

kinds of shared resources implemented by operating sys-
tems such as a global IP ID counter [1, 25, 23], SYN
cache and RST limit [24], SYN-backlog [33], and chal-
lenge ACK rate limit [18]. These resources are shared on
a host between a connection established with the attacker
and a connection with the victim.

When the attacker sends spoofed packets to the server
that appear to come from the victim, these shared re-
sources are used differently, depending on the validity of
the spoofed packets (e.g., in-window vs out-of-window
sequence number). By observing the shared resources,
how these spoofed packets are processed are visible to
the attacker.

All existing vulnerabilities related to off-path TCP ex-
ploit essentially stem from software artifacts. The ones
that can lead to serious attacks are already patched pri-
marily by (1) eliminating the shared resources in protocol
implementations (or adding randomness to them) [7, 8]
and (2) reducing the opportunities that the shared re-
sources leak information, e.g., employing a more strin-
gent acknowledge(ACK) number check [44]). As we
will discuss later in §2.3, almost all previously reported
off-path TCP attacks no longer work.

Unlike yet another software side channel, we report a
fundamental side channel inherent in all generations of
IEEE 802.11 or Wi-Fi technology, because they are half-

duplex. From its definition: when there are uplink wire-
less frames being transmitted, downlink frames have to
wait, and vice versa. This basic and fundamental design
seems benign but it creates a timing channel sensitive to
the contention between uplink and downlink traffic. For
example, a downlink packet measuring the RTT will in-
cur a higher latency if uplink traffic is going on. As we
will show in the paper, an attacker can leverage the tim-
ing channel to craft clever sequences of packets, creat-
ing primitives to infer TCP sequence number and ACK
number, ultimately completing a working off-path TCP
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Figure 1: Threat model

exploit.
Through extensive experimentation, we demonstrate

that the timing channel is reliable (through amplification)
and can be used even when the attacker and victim are far
away (with RTTs over 20ms). We implement a realistic
blind off-path attack that can achieve web cache poison-
ing within minutes. The video demo can be found on our
project website [3]. We also open sourced the attack im-
plementation at [5] to assist the reproduction and further
research of the work.

The contributions of the paper are the following:
• We report the timing side channel inherent in all gen-

erations of IEEE 802.11 or Wi-Fi technology. We
show the timing channel is reliable and amplifiable
and unfortunately almost impossible to eliminate with-
out substantial changes to the 802.11 specification.

• We show that the side channel affects macOS, Win-
dows, and Linux by studying the overlaps and differ-
ences in their TCP stack implementations. We con-
struct the only off-path TCP exploit working at the
moment based on this new side channel.

• We provide a thorough analysis and evaluation
of the proposed attack under different router/net-
work/OS/browser combinations. We also suggest pos-
sible defenses to alleviate this attack.

Roadmap. The rest of the paper is organized as follows:
we begin with background introduction and the most rel-
evant work in § 2, and then present the timing side chan-
nel in Wi-Fi technology in § 3. § 4 describes an overview
of the off-path TCP exploit and its goal. In § 5, we elab-
orate the implementation of the attack against different
OSes. In § 6, we evaluate our attack under different con-
ditions. § 7 discusses some potential attacks that exploit
the vulnerability. We propose some mitigation schemes
at different layers in § 8. We also introduce previous re-
search related to side channels in § 9. Finally, § 10 con-
cludes the paper.

2 Off-Path TCP Exploits

2.1 Generic Threat Model
Fig. 1 illustrates a typical off-path TCP hijacking threat
model consisting of three hosts: a victim client, a victim
server and an off-path attacker. The off-path attacker,
Mallory, is capable of sending spoofed packets with the
IP address of the legitimate server. In contrast to Man-in-
the-middle attack, Mallory cannot eavesdrop the traffic
transferred between a client C and a server S. Depending
on the nature of the side channel, an unprivileged appli-
cation or a sandboxed script may be required to run on
the client side [40, 27] to observe the results of the shared
state change and determine the outcome of the spoofed
packets (e.g., whether guessed sequence numbers are in-
window). In rare cases, if the state change is remotely
observable, an off-path attacker can complete the attack
alone without the assistance from the unprivileged ap-
plication or script [18]. After multiple rounds of infer-
ences, starting from whether a connection is established
(four tuple inference) to the expected sequence number
and ACK number inference, the attacker can then inject a
malicious payload that becomes acceptable to the client
at the TCP layer.

The side channels typically manifest themselves
through the following control flow block:

if (in_packet.seq is in rcv_window)
// shared state change 1

else
// shared state change 2

The example illustrates two variables: (1) the attacker-
controlled variable in packet.seq — guessed sequence
number in a spoofed packet and (2) the receive window
deciding what in packet.seq are valid. Depending on the
outcome of the comparison, the shared state may change
to different values. The change also has to be observable
by the attacker through some side channel. Two neces-
sary building blocks are needed in a TCP off-path side
channel attack: (1) existence of vulnerable packet valida-
tion logic; (2) the shared state has to be observable by an
attacker (i.e., the sandboxed script, unprivileged app, or
the off-path attacker). Note that together these two build-
ing blocks result in a violation of the non-interference
property [29, 50].

Next we give an overview of these two building blocks
used by previous attacks and explain why those attacks
no longer work. Simply put, they either rely on outdated
TCP packet validation logic or shared state that can be
easily eliminated.
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Figure 2: Incoming packet validation logic in RFC

2.2 Latest TCP Incoming Packet Valida-
tion Logic

To understand how incoming packets are validated, we
refer to the standards of RFC 793 [4] and RFC 5961 [44].
We focus on the latest standard only as it is helpful in
understanding why attacks against old versions now fail.
Note that even though different operating system imple-
mentations may differ in reality, they still try to keep up
with the standards (albeit with their own tunings) and
overall it provides a foundation for discussion. We dis-
cuss the specific operating system implementations in §4.

We distill the latest standard and summarize it in Fig.
2. It involves primarily three types of checks, and each
of them has some form of vulnerable logic — different
actions are taken depending on the outcome of the check
(e.g., a response packet is sent vs. not).

• Connection (four-tuple) Identification: The first
check tries to identify if an incoming packet belongs to
any established connection based on the four tuples –
source and destination port numbers as well as IP ad-
dresses. If no ongoing connection matches the four tu-
ples, an incoming packet not containing a RST causes a
RST to be sent in response. Otherwise, if the SYN bit
is set, irrespective of the sequence number, TCP must
send an ACK referred to as challenge ACK to the remote
peer to confirm the loss the previous connection. Upon
receipt of this challenge ACK, a legitimate remote peer
who truly lost its connection, after a restart, sends a RST
packet back with the sequence number derived from the
ACK field of the challenge ACK, which can terminate
the connection at that point. The challenge ACK is hence
a defense against blind off-path attacks that attempt to
terminate a connection forcefully through spoofed SYN
packets.

• Sequence number check: This check makes sure that
the sequence number falls in the receive window. Oth-
erwise, according to the TCP specification RFC 793, an
immediate duplicate ACK packet should be sent in re-
ply (unless the RST bit is set, in which case the packet
is dropped without reply). If the sequence number is
in window and RST bit is on, similar to handling SYN,
RFC 5961 suggests the use of challenge ACKs to defend
against off-path RST attacks: only if the sequence num-
ber matches the next expected sequence number, a re-
ceiver terminates the connection; otherwise, the receiver
must send a challenge ACK.

• ACK number check: Pre-RFC 5961, the ACK num-
ber is considered valid as long as it falls in the wide range
of [SND.UNA�(231�1), SND.NXT]1, which is effectively
half of the ACK number space. Thus, an attacker only
needs to guess two ACK numbers for every guessed se-
quence number to successfully inject data into a connec-
tion, resulting in a guaranteed successful data injection
with up to 2⇤232/RCV.WND2 spoofed data packets. RFC
5961 proposes a much more stringent check suggest-
ing a valid ACK number should be within [SND.UNA -
MAX.SND.WND, SND.NXT]3, where MAX.SND.WND is the
maximum receive window size the receiver has ever seen
from its peer. If the ACK number is out of this win-
dow, the packet is dropped and an ACK should be sent
back [44]. If the ACK number is in window yet there is
no payload, then the packet should be silently dropped.

Besides, to alleviate the waste of CPU and bandwidth
resources caused by challenge ACKs, an ACK throttling
mechanism is also proposed. Specifically, the system ad-
ministrator can configure the maximum number of chal-
lenge ACKs that can be sent out in a given interval.

2.3 Prior Attacks and Side Channels
Now that we understand how the generic TCP packet val-
idation logic is envisioned by the standard, we describe
the known shared states that lead to side channels, com-
bined with the variants in TCP packet validation logic in
different operating systems (sometimes out-of-date), that
were leveraged by existing attacks.

• Global IPID counter. Until recent years, Windows
is the only operating system that chooses to maintain
a globally incrementing IPID counter shared across all
connections and stamped onto the IPID field in IP header
for every outgoing packet [23]. This creates a side chan-
nel that allows an attacker to count how many outgoing

1SND.UNA: the sequence number of the first byte of data that has
been sent but not yet acknowledged; SND.NXT: the sequence number
of the next byte of data to be sent

2RCV.WND: size of receive window
3The window can be as small as a few thousand bytes, which makes

the guess much more difficult



Side channel Requirement Affected OS Patch/Mitigation
Global IPID count [1, 25] Pure off-path or Javascript Windows Global IPID counter eliminated

Direct browser page read [27] Javascript Any old OS RFC 5961
Global challenge ACK rate limit [18] Pure off-path Linux Global rate limit eliminated

Packet counter [40, 39] Malware Linux,macOS Namespace / macOS* patch [9, 10]
Wireless contention (this work) Javascript Any N/A

Table 1: Summary of Different Off-Path TCP Side Channel Attacks including the one we propose in this paper

packets have been sent during a time interval, through
diffing the queried IPIDs of a Windows machine. This
is leveraged in several off-path TCP attacks [1, 25]. Us-
ing IP spoofing, an off-path attacker can tell whether the
guess is correct based on whether a response is triggered.

However, at the time of writing, we experimentally
verify that Windows 10 has finally eliminated this side
channel by adopting a safer IPID generation algorithm
similar to that used in Linux [33], where connections
destined for different IP addresses will no longer share
the same IPID counter.

• Browser page read. In this attack [27], the shared
state is a browser page where an attacker runs malicious
Javascript and attempts to inject data into connections to
a benign website (both the benign connection and ma-
licious script run under the same page). The success-
ful guess of the TCP sequence number results in a di-
rect feedback from the browser page load. There are
three main culprits of the attack: (1) older operating sys-
tems follow an earlier standard RFC 793 that consid-
ers half of the ACK number space valid. An off-path
attacker only needs to guess two ACK values with ev-
ery guessed sequence number to inject data successfully.
Therefore, the feedback about when the injection suc-
ceeds is when the malicious payload gets loaded and ren-
dered by the browser. (2) modern browsers are tolerant
of response data: if the HTTP response header is miss-
ing, the browser simply attaches one automatically. This
frees the attacker from having to prepare the header at
an exact sequence number (otherwise the browser con-
siders the response invalid and closes the connection).
(3) HTTP pipeline is required so that a response arrives
ahead of time will be deemed valid.

This attack no longer works because the first culprit is
eliminated by most modern operating systems (including
Windows, Linux, Android), which adopted a more strin-
gent check on ACK numbers as defined in RFC 5961
where only a much smaller window is considered valid.
In addition, from our testing, HTTP pipeline is disabled
or not implemented in all modern browsers, eliminating
the third culprit as well.

• Global challenge ACK rate limit. The Linux kernel
first implemented all the features suggested in RFC 5961
in version 3.6 and its TCP packet validation logic closely

matches the one shown in Fig. 2. Notably, it implements
the recommended ACK throttling feature by introducing
a global system variable to control the maximum num-
ber of challenge ACKs generated per second. As this
limit is shared across all connections, the shared state
can be exploited as a side channel. For instance, to in-
fer if an ongoing connection exists, an off-path attacker
can initially send a spoofed packet with one guessed port
number and SYN bit set; after the attacker sends another
100 4 non-spoofed in-window RST packets to exhaust
the challenge ACK count, it can then observe the num-
ber of responses to tell whether its initial spoofed packet
matches the four tuples of an ongoing connection and
hence triggers a challenge ACK.

Since the shared rate limit is a simple software artifact,
shortly after the vulnerability was reported, it was elimi-
nated in a patch introduced in Linux 4.6 [8, 42] where a
per-socket rate limit is used instead.

• System-wide packet counter. Packet counters report
aggregated statistics across all connections and are re-
liable side channels demonstrated in recent off-path at-
tacks [40, 39]. These attacks require a piece of unprivi-
leged malware to run on the client machine that can ac-
cess these packet counters and use them as feedback for
spoofed packets sent by the off-path attacker. Due to the
fact that these counters are internal to TCP implementa-
tions, they may leak more diverse and fine-grained infor-
mation (more than what the standard packet validation
logic can leak). In the extreme case, for example, a Lin-
ux/Android TCP packet named DelayedACKLost is in-
cremented only when it receives a packet with a sequence
number smaller than the expected one. This allows an
attacker to conduct a binary search on the expected se-
quence number. Similar dangerous packet counters exist
on macOS as well [40].

These packet counters are being mitigated in a num-
ber of ways. For Linux, it introduced the mechanism
of namespace so that sensitive apps and untrusted apps
can run in separate namespaces with isolated counters.
For macOS, the side channel vulnerability has recently
been assigned CVE-2017-13810 and patches have been
pushed out to zero the sensitive counters [9, 10].

4It’s the default threshold in Linux version 3.6
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Figure 3: Vulnerability caused by wireless contention

Summary. Overall we listed four different types of
software-based side channels that have been exploited
to launch off-path TCP attacks. We summarize them in
Table 1 for reference. In short, only the packet counter
side channels still exist (validated on Linux and Android
8.0). In any event, this side channel requires a high bar to
launch because of the malware requirement. In the next
section, we describe our newly discovered side channel
in detail.

3 Wi-Fi Timing Channel

Fundamentally, the half-duplex nature of Wi-Fi creates
a “shared resource” among uplink and downlink traffic,
a prerequisite of any side channel. By sharing the same
set of frequency bands with both directions, Wi-Fi relies
on carrier-sense multiple access (i.e., CSMA) to share/-
divide the channel over time. This means that a node
transmits only when the channel is sensed to be idle and
thus it has the exclusive right to transmit. This effectively
creates a timing channel that delays the local transmis-
sion if the opposite direction is transmitting at the same
time.

Even worse, this timing difference becomes more vis-
ible due to retransmissions caused by contention (col-
lision). Specifically, the protocol starts by listening on
the channel and immediately sends the first frame to the
transmit queue if the channel is found to be idle; how-
ever, this leads to waste of transmissions if collision oc-
curs. If the channel is subsequently sensed to be busy,

it waits for a period of time (e.g., usually random or
exponential backoff [17]) attempting to avoid collision.
Although it might benefit the performance when many
nodes are active, it creates a significant overhead when
only one is present (plus the AP). In addition to backoffs,
Request to Send/Clear to Send (RTS/CTS) [16] may op-
tionally be used to mediate access to the shared medium
to solve the hidden-terminal problem [46] where multi-
ple stations can see the Access Point but not each other.
Unfortunately, in the same scenario where there is only
one node, it introduces unnecessary traffic to the net-
work, slowing everything down. Finally, it is important
to note the latency is amplified further when more con-
tention is present (e.g., more frames to be transmitted in
either direction).

Exploiting the timing channel. To demonstrate the tim-
ing channel, we create a probing strategy to measure the
delay effects. As we can see in Fig. 3a, we simulate an
off-path TCP attack where the attacker sends a spoofed
probing packet, along with a pre-probe query and post-
probe query to measure the RTT before and after. If the
spoofed packet does not trigger an ACK on the client,
e.g., because the guessed sequence number is in-window
(left half of the figure), then the post-probe query arrives
at the client faster and gets back sooner (smaller RTT).
On the other hand, if the spoofed packet triggers an ACK
on the client, e.g., because the guessed sequence number
is out-of-window (right half of the figure), then the post-
probe query experiences contention with the ACK from



the client, and therefore prolongs the measured RTT. In
addition to the RTT difference (RT T 2 > RT T 1), we
can also measure the gap between the replies of the first
query and the second, which should capture the delay ef-
fects similarly.

In Fig. 3b, we also illustrate the amplifiable nature of
the timing channel where the attacker sends two spoofed
probing packets, causing more contention which delays
post-probe query even further.

In summary, this side channel allows an attacker to
determine if the spoofed probing packets have triggered
any response or not, coincidentally achieving the same
purpose as the global IPID counter on Windows (which
is no longer available). In contrast, Wi-Fi contention is
here to stay.

Empirical testing. So far we only conceptually analyzed
the side channel and its effects. We now conduct a con-
trolled local experiment to understand its real-world im-
plications. Following the same topology in Fig. 7, we
created a total of 16 different setups to make sure that the
side channel exists in various generations of technologies
and products. We used 4 different wireless routers (from
Linksys, Huawei, Xiaomi, and Gee): all latest genera-
tions that support 802.11ac and 802.11b/g/n. We used
two different machines as clients: an early-2017 Mac-
book and a mid-2017 Dell Desktop. Finally, we varied
the frequency of the router between 2.4GHz and 5GHz
so that both 802.11n and 802.11ac were tested (802.11ac
is used for 5GHz only).

The measurements are conducted in a single-family
house where we have relatively little wireless interfer-
ence (with at most 4 potential users at home). Due to
space constraint, we present 6 representative results of
the measurement in Fig. 4. Each plot with a box and
whiskers presents the data measured with 100 runs. On
average, we can see that the timing difference for RTT is
about 1 to 3ms when the number of probing packets is 30
or more. Although differences exist among those setups,
the timing side channel is clear and measurable(see §5.4).
Later in §6, we also evaluate its robustness to noise.
Half-duplex vs. Full-duplex To better understand that
the significant part of the RTT difference is due to the
half-duplex nature of wireless rather than the processing
time to generate an ACK response on the client, we also
conducted an experiment with the setup where both the
victim and attacker machine connect to a Huawei router
via ethernet. As depicted in Fig. 5, the timing side chan-
nel is no longer visible and amplifiable (note the heavily
overlapped boxes), because of two reasons: (1) Now that
downlink and uplink can transmit at the same time, there
is simply no contention regardless of how many packets
are transmitted. (2) Packets belonging to different sock-
ets can be processed simultaneously on different CPU

(a) RTT measurement of ma-
cOS using 5GHz network of a
Huawei router

(b) RTT measurement of Linux
using 5GHz network of a
Linksys router

(c) RTT measurement of ma-
cOS using 2.4GHz network of a
Xiaomi router

(d) Gap measurement of ma-
cOS using 5GHz network of a
Huawei router

(e) Gap measurement of Linux
using 5GHz network of a
Linksys router

(f) Gap measurement of macOS
using 2.4GHz network of a Xi-
aomi router

Figure 4: Selective measurement of wireless connections
in a local setup. X axis is the number of probing pack-
ets that attackers send per test. The box extends from
the lower to upper quartile values of the data. And the
whiskers extend from the box to show the range of the
data at specific percentiles (i.e. [0, 90]). Beyond the
whiskers, data are considered outliers, plotted as individ-
ual points.

cores (by OS design), allowing the post-probe query to
be processed in parallel to probes. Even if the probes
trigger ACKs, they still consume resources (CPU, mem-
ory) that are mostly isolated from the post-probe query.
The experiment demonstrates that contention caused by
half-duplex is the root cause of the timing channel.

4 Attack Overview

In this section, we show how such an inherent side chan-
nel can be leveraged in our off-path TCP attack.
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• Threat model. Obviously, since the side channel is
inherent in Wi-Fi, the threat model requires either the
client or server connected through Wi-Fi. As it stands,
we do not consider servers here as most of them do not
use Wi-Fi (see §7 for a special case of IoT devices).
This paper therefore focuses on the threat model as de-
picted in Fig. 6 where a user is lured into visiting a mali-
cious website first. Subsequently, a sandboxed malicious
script (by convention [25, 27], we call them puppets)
initiates a connection to the attacker (who is not neces-
sarily close to the victim) to circumvent the reachability
problem caused by NAT or firewall commonly found on
wirelessly-connected clients. The off-path attacker can
then take measurements of RTTs from outside and con-
duct the side channel attack. Based on this threat model,
we consider a number of related attack goals:

(1) inferring the presence of a connection from the
client to a server (connection inference);

(2) counting the number of bytes exchanged on the
connection, or forcefully terminating the connection (se-
quence/ACK number inference);

(3) injecting malicious payload into a connection
(ACK number inference).

For attack goal (1) and (2), the attack can be targeted at
any connection from the client, not necessarily just those
that are puppet-initiated. For (3), although not strictly
required, it is generally assumed that a puppet-initiated
connection is targeted (as shown in prior side channel
attacks [25, 27]) because the attacker controls the timing
of the connection/request, greatly simplifying the attack.

Overall procedure. Attack goal (1) and (2) are gener-
ally straightforward. For (3), in this paper, without loss

of generality, we focus on the “web cache poisoning”
attack (which is the most powerful among a few other
web attacks described in [25, 27]). Assuming a puppet-
initiated connection is targeted, the attack can choose to
poison any unencrypted target website at any time. It
relies on the basic design principle that browsers reuse
TCP connections for requests sent to the same server IP
address. This means that the puppet in the malicious
website can create a single persistent connection to a
target domain by repeatedly including HTML elements
(e.g., images). The off-path attacker can then conduct the
side channel attack to infer the port number and sequence
numbers used in the target connection. Afterwards, the
puppet can embed a target web object in the page, e.g.,

<iframe src = "www.bank.com/index.html" />

This triggers an HTTP request over the same old TCP
connection; the off-path attacker can now simply inject
a fake HTTP response that will be cached for arbitrar-
ily long, because the HTTP response header can ask the
browser not to re-check the freshness of the object, lead-
ing to a persistent cache poisoning5. If an attacker caches
a commonly used malicious third-party javascript (e.g.,

jQuery), it can impact a large number of websites.
In the remainder of this section we describe the three

different attacks that progressively build on top of each
other, and detail strategies for all three major operating
systems.

• Leveraging the TCP packet validation logic. As
mentioned in §2.2, the latest RFC standards specify the
packet validation behavior, which consists of connec-

tion (four-tuple) identification, sequence number check

and ACK number check. In each check, depending on
the validity of the incoming packet, a response will be
generated, or not. This is exactly what the Wi-Fi tim-
ing channel allows an off-path attacker to observe —
whether spoofed packets have triggered responses or
not. Similar to the Windows global IPID side channel
that provides the same feedback (but is now eliminated),
prior attacks also take advantage of the TCP packet val-
idation logic [1, 25]. However, there are two issues to
consider. First, clients connected through Wi-Fi are al-
most always behind NAT and/or firewall (the wireless
router itself often acts as NAT). Therefore, the packet
validation logic may change slightly. Second, it is un-
clear whether the operating systems will follow the stan-
dard faithfully.

For the first problem, NAT and firewall primarily
change the behavior of connection identification. If an
incoming packet does not match any ongoing connec-

5HTTP response header can specify a “max-age”, indicating that
the response is to be considered stale after X seconds where X can be
as large as 231 or 68 years (see RFC7234)



tion, NAT and firewall will simply drop the packet, pre-
venting the client from even observing it; if an incom-
ing packet matches an ongoing connection, the packet is
let through and handled as usual. This actually simpli-
fies the connection inference, as the attacker can simply
choose to send spoofed packets that always trigger re-
sponses (e.g., incoming SYN packets); if there is no re-
sponse, it must be the case that no connection exists and
packet is dropped by a NAT.

For the second problem of real operating system im-
plementations, we survey the latest Linux, macOS, and
Windows in terms of their packet validation logic. Our
methodology is to inspect the kernel source code of
Linux and macOS [11] as they are readily available. We
then experimentally verify our understanding of them.
Finally, we apply the same test program to measure the
behavior of Windows. We summarize our findings in Ta-
ble 2.

The result is, for the most part, consistent with the
standard (except Windows which we talk about later).
Linux is the one that most closely follows the standard
(also observed previously in [18]). It has implemented
the challenge ACKs and the rate limit as suggested by
RFC 5961. MacOS is similar to Linux except that it does
not implement rate limit and is in general weaker in its
validation logic. For instance, even if an incoming packet
has no flag bit set, it still checks the sequence number of
the packet instead of dropping it without any processing.
Based on the concrete testing results, we conclude that
all three operating systems have packet validation logic
that can be exploited via the Wi-Fi timing channel. We
describe how to leverage their specifics to conduct the
attack:

Connection (Port Number) Inference. This attack
breaches the user privacy because knowing the websites
a user visits often reveals a user’s medical condition and
sexual orientation [36]. As with previous off-path TCP
exploits [25, 18], the first step is to infer whether an on-
going connection with a particular target (server IP and
server port are given) exists. We know that NAT drops
incoming packets that do not match any ongoing con-
nections. All we need to make sure is that all operating
systems do generate outgoing ACKs otherwise. Indeed,
from the table, an incoming ACK matching an ongoing
connection with an out-of-window sequence number is
guaranteed to trigger an ACK on all operating systems
(row no. 1, 10, and 17)). Fig. 7a depicts the sequence of
packets that an off-path attacker can send to differentiate
between the cases of (i) the presence or (ii) the absence
of an ongoing connection. In both cases, the attacker
sends the same sequence of packets, leveraging the prob-
ing strategy described in §3 to measure the delay effects.

Sequence Number Inference Assuming the attacker
has already identified the four-tuple connection, the off-
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Figure 7: Infer port and sequence number by exploit-
ing the timing side channel. Note that these diagrams
are simplified for clearness. In reality, packets belong-
ing to different sockets can be processed simultaneously,
and uplink and downlink should have equal access to the
wireless channel rather than uplink waiting for downlink.

path attacker now needs to guess a valid sequence num-
ber. By continuously tracking how the sequence number
progresses, the attacker can effectively count the num-
ber of bytes received by the client (and the reverse di-
rection can be monitored similarly through ACK number
inference). We label the sequence number inference op-
portunities in Table 2 by combining two rows with dif-
ferent outcomes (w/ or w/o responses) when the same se-
quence of packets are processed. For Linux, if 10 incom-
ing ACK packets with just one-byte payload are received,
depending on their sequence numbers, 10 responses are
triggered (out-of-window), or at most 1 (in-window) due
to rate limiting (row no. 1, 2, and 3). For macOS, if an
incoming packet with no flags is received, a response is
triggered for the out-of-window case; otherwise no re-
sponse is triggered (row no. 10 and 11). Interestingly,
if the ACK flag is on, macOS only generates ACKs half
of the time (row no. 12 and 13). Windows is similar
and requires only the regular ACK packets (row no. 17
and 18); SYN packets can do the trick as well (row no.
17 and 19). Fig. 7b demonstrates the sequence of packets
that an attacker can send to distinguish between the cases
of in-window and out-of-window sequence number.

ACK Number Inference Finally, knowing the four



No. OS FLAG SEQ ACK PAYLOAD #Responses Operation
1 Linux ACK|SY N|RST Out-of-window Any 1 10

SEQ inference2 Linux ACK|SY N|RST
+ In-window < SND.UNA -

MAX.SND.WND
Any 1⇤

3 Linux ACK|SY N|RST
+ In-window > SND.MAXa Any 0

4 Linux ACK|SY N|RST Out-of-window Any 0 1⇤

5 Linux ACK In-window In-window 1 10�

6 Linux ACK In-window In-window 0 0

7 Linux ACK RCV.NXTa �1 < SND.UNA -
MAX.SND.WND

1 1⇤

ACK inference8 Linux ACK RCV.NXT-1 > SND.MAX 1 0
9 Linux ACK RCV.NXT-1 In-window 1 10

10 MacOS None|ACK Out-of-window Any Any 10
SEQ inference11 MacOS None In-window Out-of-window Any 0

12 MacOS ACK In-window < SND.UNA 0 0 ACK inference13 MacOS ACK In-window > SND.MAX Any 10
14 MacOS RST != RCV.NXT Any Any 0
15 MacOS SY N|FIN Any Any Any 10
16 MacOS ACK In-window < SND.UNA 1 10
17 Windows ACK|FIN|SY N Out-of-window Any Any 10

SEQ inference18 Windows ACK|FIN In-window Out-of-window Any 0
19 Windows SY N|RST In-window Out-of-window Any 1
20 Windows RST Out-of-window Out-of-window Any 0
21 Windows ACK RCV.NXT-1 Any 1 10
22 Windows ACK In-window SND.NXT† 1 10� Idle connection23 Windows ACK In-window != SND.NXT† Any 0
24 Windows ACK In-window In-window 1 10� Busy connection25 Windows ACK In-window In-window 0 0
⇤: Due to rate limit in Linux, we can get at most 1 response per half a second.
+: The sequence number should be in window but not equal to the next expected number, otherwise the connection is reset.
�: Although the client replies to such packets, it would also cause de-synchronization leading to the victim connection
to be closed during the keep-alive procedure, if the SACK option enables.
†: Typically, ACK number window refers to the range [SND.UNA-MAX.SND.WND, SND.NXT], but Windows deploys
a more stringent check if the connection is idle, requiring a valid ACK to equal SND.NXT.
a : RCV.NXT = next sequence number expected on an incoming segments, and is the left or lower edge of the receive
window; SND.MAX = latest unacknowledged sequence number

Table 2: Behaviors on different OSes when processing 10 identical packets

tuples and the expected sequence number, the attacker
now needs to learn the correct ACK number to success-
fully inject malicious payload. According to the standard
behavior earlier in §2.2, an attacker can infer whether a
guessed ACK number is in-window or not by sending a
pure ACK (no payload) assuming its sequence number is
already in-window. If its ACK number is out-of-window,
a response is triggered and otherwise no response. Sur-
prisingly, from our analysis and experiments, we con-
clude that no operating system is fully compliant with
the standard. Their own variants have often allowed sim-
pler strategies to conduct the ACK number inference.
Linux. As shown in Table 2, instead of always trigger-
ing an ACK packet for out-of-window ACK numbers,
when the ACK number is too old (smaller than SND.UNA
- MAX.SND.WND), Linux responds with an ACK (with
rate limit); when the ACK number is too new (larger
than SND.NXT), Linux incorrectly drops the packet with-
out any reply (row no. 2 and 3). Had there been no rate
limit, an attacker can infer the correct ACK number via
binary search. With rate limit, however, one response

versus zero cannot create significant enough of a timing
channel. In addition, if a packet with in-window ACK
number has no payload, Linux also ignores the packet
with no response (row no. 6), which leaves no oppor-
tunity to differentiate the in-window and out-of-window
cases (result similar to row no. 2 and 3). However, it
does correctly handle packets with payload; a response
is triggered only when the ACK number is in window
(row no. 5). The issue is that when an ACK number is
inferred, the client buffers the payload in its receive win-
dow, which is undesirable for two reasons: (1) it may
cause future server’s responses to be corrupted; (2) if
selective ACK (SACK) is enabled, the client selectively
acknowledges the data which has not actually been sent
by the server, causing the server to ignore future packets
from the client, effectively de-synchronizing the client
and server. Interestingly, Linux has a special edge case
that allows us to infer ACK number without the hassle.
According to the specification, if the sequence number of
an incoming packet is equal to RCV.NXT-1 (indicating a
keep-alive message), it should trigger an ACK. Interest-



ingly, the specification has an ambiguity. RFC 1122 [43]
specifies only the valid sequence number of a keep-alive
packet, but not the ACK number. Based on the source
code, Linux does not actually handle keep-alive explic-
itly. Instead, it simply treats such a packet (with one-byte
payload and end seq = RCV.NXT) as in-window, and
decides how to respond based on its standard ACK num-
ber check. Therefore, in-window ACK numbers with the
specific sequence number (i.e., RCV.NXT-1) still trigger
responses (row no. 9) and yet no actual data are buffered
at the client, while out-of-window ACK numbers can
trigger at most one reply (line 7 and 8 in Table 2).
MacOS. Based on the source code and experiments, ma-
cOS explicitly handles keep-alive packets and always
responds with an ACK regardless of the ACK number
so the strategy against Linux does not apply to macOS.
On the other hand, macOS has its own implementation
of ACK number validation which correctly responds to
packets with ACK numbers that are too new (row no.
13). Interestingly, it chooses not to reply to packets with
ACK numbers that are too old when there is no payload
(row no. 12). The implementation of macOS is likely
to be misled by the old statement in RFC 793 that states
packets with ACK numbers smaller than SND.UNA can
be ignored, which is reinterpreted in RFC 5961 (quote):
“All incoming segments whose ACK value doesn’t sat-
isfy the above condition MUST be discarded and an ACK
sent back”, where the “above condition” is the acceptable
window of [SND.UNA - MAX.SND.WND, SND.NXT]. In
summary, this non-compliant behavior of macOS allows
an attacker to infer if a guessed ACK number is too large
or too small, resulting in a binary search.
Windows. Windows is for the most part similar to Linux
on the ACK number validation, except that it has made
one subtle customization. Initially, we were surprised
to find that an incoming data packet with an in-window
sequence number is always silently dropped unless the
ACK number is equal to SND.UNA or SND.NXT (the con-
nection is idle during our initial experiments so the two
numbers are equal). This implementation is not con-
formant to the standard at all. Recall the standard says
that the acceptable ACK number range is defined to be
[SND.UNA - MAX.SND.WND, SND.NXT] in RFC 5961
and both Linux and macOS follow the standard. In fact,
we thought the implementation was completely wrong
because it may drop legitimate data packets in cases like
out-of-order packet arrivals. We then realize that it ap-
pears to be a reasonable decision, especially when the
connection is idle. Indeed, if there are no outstanding
data to send, it is safe to require the peer to acknowledge
one and only one ACK number. However, as soon as
there are outstanding data, it should enlarge the accept-
able ACK number range. We experimentally confirmed
that this is exactly what Windows does. In summary, the

behavior of Windows still allows ACK number inference
when it has outstanding data during the inference. This
makes our attack in §5.3 more complicated but still pos-
sible by taking advantage of the behaviors in row no. 18
and 24.

5 Implementation

Now that we know the Wi-Fi timing side channel applies
universally to all operating systems, we want to test them
in real-world attack scenarios.

5.1 Connection (Four-tuple) Inference
General method. The general probing strategy is al-
ready discussed in §4. In our implementation, we con-
servatively test one port every round with 30 repeated
packets, followed by a post-probe query to measure RTT.
When a guessed port number is correct, we see a sub-
stantial increase in the measured RTT. If the goal is to
infer the presence of any arbitrary connection initiated
by the client, then a bruteforce strategy is all that can be
done. However, if the attacker is attempting to conduct
web cache poisoning attack later on, it is possible to tar-
get a connection initiated by the puppet itself [25], which
opens up an additional optimization below taking advan-
tage of the ephemeral port selection algorithm employed
by different OSes.
Windows and macOS. They use a global and sequential
port allocation strategy to select ephemeral port number
for their TCP connections. This means that the attacker
can deduce the next port number to be used once it ob-
serves the initial connection to the malicious web server.
This eliminates the need of port number inference com-
pletely.
Linux. It uses the Simple Hash-Based Port Selection
(SHPS) [27] where there is an independent local port
number space for each remote IP and port pair. This
means that the local port number observed from the con-
nection to the malicious web server can no longer predict
the next local port number for the connection to a differ-
ent target server which the attacker does not control. To
avoid bruteforcing all possible port numbers, we develop
an optimized strategy based on the observation that local
port numbers allocated for the same remote server and
port pair are sequential; therefore, the puppet can poten-
tially create n connections to the target server and only
needs to test the port number every n increments.

At this point, we can conduct the side channel attack
on the connection of which we guessed the correct port
number. Also, by carefully scheduling those n requests
we are guaranteed that a future request will use the con-
nection with the smallest port number as opposed to the



others closed later.
NAT. In our experience with Wi-Fi routers, we find that
they typically are port preserving. So we do not have
to worry about the external port being translated and be-
come unpredictable. This is based on our testing of 4
different home routers and the university network. How-
ever, if non-port-preserving NAT are indeed used for Wi-
Fi, then the attacker can either fall back to the brute-
force approach, or apply the optimized solutions pro-
posed in [27] (which has its own benefits and caveats).
Multiple IP addresses from a domain. This essentially
requires the attacker to double or triple the effort of port
number inference. For Windows and macOS, this is not
much more effort. However, for Linux it does require
some more time.

5.2 Sequence Number Inference
General method As shown in table 2, we’re able to
distinguish in-window sequence number from out-of-
window one by leveraging timing side channel to tell
whether there are corresponding responses. As soon as
we get an in-window sequence number, we further nar-
row down the sequence number space to a single value
RCV.NXT by conducting a binary search. This is similar
to prior work [39, 18]. Similar to connection inference, if
the attacker is attempting to conduct web cache poison-
ing attack against a connection initiated by the puppet
itself [25], an additional optimization is possible.
Optimization: Increase window size. To substan-
tially decrease the number of iterations of guesses, one
straightforward approach is to drastically enlarge the
client’s receive window. To this end, the puppet can re-
quest excessive amounts of large objects. Upon the re-
ceipt of enough full segments, the receiver would sig-
nificantly increase its receive window size according to
TCP flow control. In our experiments, we found that
the window size could be typically scaled up to around
x = 500,000, in striking contrast to the original size (e.g.,

65,535). It’s worth noting that the window size can never
be shrunk once it is enlarged, according to RFC793 [4].
Similarly, by uploading data, the ACK window (i.e., the
peer’s sequence window) can be extended, though it’s
usually much smaller than the maximum sequence win-
dow size that we can achieve.

5.3 TCP Hijacking
We assume in this section that the attacker is attempting
to poison the web cache through hijacking the puppet-
initiated connection, which enables the attack to be more
efficient. In principle, the attacker can hijack any con-
nection initiated by the client; it is simply more difficult

to control the timing and predict what fake response to
inject.

Since all three systems do not comply with the specifi-
cations in terms of ACK validation, we have to cope with
each variant differently:
MacOS incorrectly interpreted the standard, allowing us
to perform a binary search (see §4). Once the expected
ACK number is inferred, we perform a desynchroniza-
tion attack [18] to avoid a race condition where the re-
sponse is sent back by the server first. Then, as soon as
the puppet requests for the target object, it informs the
attacker to send a spoofed response, which is accepted.
Linux It’s feasible to exploit the timing side channel to
infer ACK number, though the valid ACK window size
is much smaller compared to the receive window size,
resulting in longer inference time. One alternative ap-
proach is to conduct blind data injection without know-
ing the exact value of the expected ACK number. Our
observation is that by now we’ve known the exact se-
quence number and the size of any object that the client
retrieves (see §5.4), we are capable of predicting a fu-
ture expected sequence number after N objects are re-
trieved. The attack then goes as follows: (1) Desynchro-

nization. The puppet keeps requesting an object, while
the attacker sends a number of spoofed packets with the
same in-window sequence number that matches a fu-
ture RCV.NXT, bruteforcing the ACK numbers (which is
much faster than side channel attack as there is no wait
for any feedback). When the last valid response comes
back advancing the sequence number to the value we an-
ticipate, suddenly the attacker-injected response will be
appended and forwarded together to the browser (and
yet the browser always has only one pending request).
Chrome will close the connection, stopping the attack;
in contrast, Firefox will simply accept the first response,
ignoring the second one, resulting in desynchronization
between the client and server (i.e., the client believes it
has received more data than the server has actually sent).
(2) Blind data injection. Now the puppet will switch
the target web object to the one we want to attack (i.e.,

homepage of a banking website). The attacker now has
enough time to send a valid response. Since the attacker
knows the next expected sequence number, it only needs
to again bruteforce all possible ACK numbers. Note that
this strategy requires two rounds of bruteforcing of ev-
ery possible ACK number, and each round takes only a
couple of seconds as there is no waiting. In contrast, a
side channel attack would take much longer (minutes)
because every guessed ACK number takes 30 packets,
and the timing measurement needs to be collected before
the next guess can be made.
Windows As we mentioned in §4, to prevent the valid
ACK window size being one-byte only, the client has to



keep sending requests to make sure there are always out-
standing data, which complicates our attacks because the
attacker has to synchronize the next expected sequence
number. Besides, a large amount of traffic also intro-
duces noise to the timing side channel. Moreover, the
blind data injection we utilize on Linux does not apply
to the same version of Firefox on Windows according
to our tests; it immediately drops the connection when
it receives two responses for only one pending request.
We therefore devise a new strategy that exploits the TCP
behavior of handling overlapping data and the browser
behavior of handling corrupted HTTP responses. If a
new incoming TCP data packet has an overlapping se-
quence number range with some previously buffered
data, we find that old data are always preferred in Win-
dows whereas new data are preferred in Linux (this ob-
servation is consistent with prior studies [38]). In other
words, attacker-injected data buffered on a Windows host
can corrupt a real HTTP response from the server. Given
the insight, we present the exploit in two steps which
are illustrated in Fig. 8: (1) Inject. The puppet continu-
ously requests scripts from the server, while the attacker
sends 232

|wnd| spoofed packets with a deliberate in-window
sequence number that matches a future RCV.NXT plus a
small offset, where wnd denotes the size of the accept-
able ACK window. The i

th packet has a guessed ACK
number i·|wnd|, and contains payload as:
websocket.send(i · |wnd|)

Hence, exactly one of these packets contains a valid
ACK number and will be buffered. We intentionally
construct the overlap such that the HTTP header of the
real response will become corrupted. Interestingly, the
browser would still try to interpret the corrupted response
where it simply ignores corrupted header and accepts the
next header (injected by the attacker) along with the re-
maining attack payload. When the browser executes the
injected script, it will send the guessed ACK number
via websocket, providing a valid in-window ACK num-
ber. (2) Exploit. Since the client has accepted the extra
spoofed payload, advancing its expected sequence num-
ber, the client and server are effectively already desyn-
chronized. The attacker can now simply send a spoofed
response (knowing both the expected sequence number
and a valid ACK number). Alternatively, if we only
want to perform a one-time injection, simply replacing
the payload in the first step with a malicious script is suf-
ficient. Note that the attack strategy against Windows is
even more efficient than the one for Linux because only
one round of bruteforcing of ACK numbers is needed.

Furthermore, there exists an even more general alter-
native strategy to the inject step against Windows that
does not depend on browser behaviors at all. Specifi-
cally, as the first few bytes of HTTP responses are pre-
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Figure 8: HTTP injection by exploit tolerant browsers

dictable (i.e., HTTP), instead of corrupting the real re-
sponse, one overwrite the header and the body to form
a legitimate but malicious response. A browser in this
case will be completely oblivious to the existence of in-
jection. This demonstrates that once sequence number
is leaked, there exist various ways to inject data into
browsers efficiently, without conducting the much slower
timing-channel-based ACK number inference.

5.4 Other Challenges
Dealing with noise by setting a proper threshold. La-
tency may vary under different network conditions, thus
it is a bad idea to manually set a threshold to differenti-
ate a quiet probe round (without triggering ACKs) ver-
sus a responsive probe round (triggering ACKs). In our
implementation, we devise a simple procedure that auto-
matically sets a threshold based on a preliminary round
of test probes prior to launching the actual attack. Since
we have full control of the connection established be-
tween the client and attacker, we can send non-spoofed
packets to measure RTTs for quiet probe rounds and re-
sponsive probe rounds. After we collect data for both
cases, we sort the data and set a threshold such that 80%
of the responsive round measurements will be above the
threshold. The threshold is a trade-off between efficiency
and effectiveness. Since most of the rounds we’re testing
do trigger ACKs (so larger RTTs should be observed),
setting a lower threshold will ensure that we correctly
classify such cases to avoid double checking the results.
However, a threshold too low runs the risk of misclas-
sifying a quiet round into a responsive round, missing
the correct guess altogether; this forces us to repeat the
whole search process. Finally, we ignore cases where
abnormally large RTT values are perceived (e.g., from
network noise), if it is out of the range of three times the
standard deviations.
Dealing with noise by error recovery. Even with a
properly selected threshold, we may still end up with in-
correct inferences. We cope with this challenge by em-
bedding extensive error recovery mechanisms into the in-



ference process, such as relative comparisons and double
checking. We assume that network jitter/noise does not
vary much during the short time interval of testing a few
rounds (a common assumption in the networking liter-
ature [26]). In the case of sequence number inference
as an example, once a sequence number is believed in-
window, we further try to narrow down the space to a
single value RCV.NXT by binary search. During the pro-
cedure, we also simultaneously measure additional RTTs
(using out-of-window sequence numbers) and their rela-
tive difference to the RTTs (using in-window sequence
numbers). If the comparison results are not consistent,
we can deduce that we made a mistake earlier and will
rollback. As for false negatives where an in-window
number is believed out-of-window, there is no simple
way to detect them but repeating the whole process till
the program finally finds out the correct number or fails
due to timeout.
Pipeline In order to significantly reduce the time the at-
tack costs, instead of simply probing a single SEQ/ACK
number at a time, we also use a pipelined process aiming
at maximizing network utilization by scheduling probing
packets for multiple targets at appropriate times. How-
ever, due to the fact that packet loss may happen from
time to time, we suspend the procedure every few tests
to wait until we get all the results or restart in a fixed
time interval.
Moving SEQ/ACK window and unknown window
size Since the victim connection is controlled by the pup-
pet, it’s idle most of the time unless the puppet triggers
a request. Therefore, the attacker can be fully aware of
when the SEQ/ACK window is moving. Besides, regard-
ing the unknown window size to an off-path attacker, our
strategy is to initially choose a relatively large window
size q and then half it afterwards. So q

2i�1 will be the
window size we use in i

th iteration. Note that we do not
test an exact number that has been tested in previous it-
erations to avoid redundancy.
Detecting the size of any object So far, we have as-
sumed that we are aware of the size of the response sent
from the server to the client so that we can predict where
to insert the forged payload. This is in fact not difficult
to achieve because once we know the next expected se-
quence number, we can ask the puppet to request the ob-
ject and then infer the new expected sequence number;
the increment is exactly the size of the response.

6 Evaluations

Experimental Setup Our network topology is the same
as in §3. The attack machine is an Ubuntu 14.04 host
in our lab. We tested those attacks against three differ-
ent operating systems, including macOS 10.13, Linux

4.14.0, and Windows 10 Pro version 1709 (they are also
the same versions used to study the behaviors of TCP
stacks shown in Table 2). We empirically evaluated dif-
ferent techniques with Chrome 64.0 and Firefox 58.0.1.
When we evaluated the attack for the ‘Remote Attacker’
scenario, the experiments were performed in the same
house as mentioned in §3 with at most 4 users, and RTTs
between the client and attacker were over 20ms. The
bandwidth we utilized in the remote and local experi-
ments are approximately 1000pkts/s and 4000pkts/s re-
spectively (or ⇠ 0.5Mbps and ⇠ 2Mbps), which we be-
lieve are moderate and comparable to prior work [18].
Noise Resilience of Timing Side Channel Using the
same experimental setups as in §3, we introduce two
different types of noise to evaluate the resilience of the
Wi-Fi timing side channel. First, for the 5GHz network,
the malicious webpage contains a Youtube video, which
would be automatically played while timing measure-
ments are performed. Second, as 2.4GHz networks tend
to influence each other, we have also conducted the mea-
surement in the lab where there were 43 accessible Wi-Fi
in total, 22 of which were 2.4GHz network and 6 used
the same channel that our test router used; there were
also more than 10 students actively using the network.
As depicted in Fig. 9, the timing channel does encounter
additional noise but RTTs are still visibly different.
Evaluation of Local Attacks Our victim webpage can
be any page transmitted over HTTP. Although Google
Chrome marks some non-HTTPS sites as “not se-
cure”, we still found some sensitive bank websites (e.g.,
www.icbc.com.cn) that haven’t deployed HTTPS on all
of its pages, rendering them vulnerable to our attack.
Typically, while allowing seemingly non-sensitive pages
(e.g., homepage) transmitted over HTTP, websites would
restrict sensitive pages (e.g., login pages) to HTTPS,
presumably because of their concern of both perfor-
mance and security. Consequently, an adversary who
successfully hijacked the homepage could have injected
a phishing login component already. Furthermore, even
if HTTPS is deployed on all pages, attackers could still
mount the attack, as long as HTTP Strict Transport Secu-
rity (HSTS) is absent; this is because the initial request
to the website will still use HTTP and it is the server
that subsequently redirects the browser to its HTTPS
site. One representative example is the news website
‘www.cnn.com’ which uses HTTPS but unfortunately
not HSTS. When a user tries to access its homepage, an
initial request is submitted via HTTP for which an ad-
versary can inject a fake reply, preventing the legitimate
response from redirecting to HTTPS.

Next we report the attack success rate and the average
time to succeed. Depending on our target OS, we lever-
age different strategies described in §5.3 along with the
timing side channel, and present the results in table 3. As
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Figure 9: Measurement of MacOS with additional inter-
ference in a local setup

it illustrates, three most popular operating systems are all
vulnerable to the attack if they connect to the Internet via
a wireless router. With respect to the random-increment
port selection strategy utilized by Linux, attacks against
Linux take around 1 more minute on average to infer
the port number. Some optimizations discussed in [28]
could be applied to significantly reduce the time of port
inference. We demo some of these attacks on our project
website [3].
Evaluation of Remote Attacks To further demonstrate
the practicality of the attack, we report results under a
“remote attacker” scenario described earlier (the RTT
between the outside attacker and victim is over 20ms).
First, we conducted the same measurements as in §3 to
ascertain the timing side channel is not eliminated due to
network jitter. Fig. 10 presents the results of measure-
ments at two different locations in the same city. Though
there is more overlap between the two boxes compared to
the local setup, the signal is clearly present. They can be

OS Browser Success
Rate

Avg time
cost(s)

Technique(s)

Linux Chrome
Firefox

10/10 188.80 Timing Side Channel

MacOS Chrome
Firefox

10/10 48.91 Timing Side Channel

Windows Chrome
Firefox

10/10 43.42 Timing Side Channel
& Direct Page Read

Linux Firefox 9/10 103.53 Timing Side Channel
& Blind Data Injection

Table 3: Summary of attacks in a local setup

distinguished with modest false negatives (i.e., missing
in-window numbers) and false positives (i.e., misclassi-
fying an out-of-window number), both of which could
be further reduced by increasing the number of probing
packets per test and more rounds of double-checking.

Next, to complete a realistic attack, we implemented
the web cache poisoning attack against MacOS with
aforementioned optimizations. Table 4 enumerates the
10 test results along with the number of false negatives
produced during each experiment. It’s worth noting that
we never encountered the case where the attack proce-
dure mistakenly reports a success due to error recovery
and double checking. Besides longer RTTs compared
to that of a local setup, the significant time cost is at-
tributed to the following factors: (1) Regarding sequence
number inference upon MacOS, though an attacker can
send probing packets without any flags as shown in ta-
ble 2, we found those packets are likely to be discarded
in a real-world network environment. To cope with it,
we send probing packets with ACK bit set and guess
two acknowledgement numbers (e.g., 0 and 2G) for ev-
ery guessed sequence number, effectively doubling the
number of packets sent. (2) Traversing through the entire
sequence number space already takes roughly 5 minutes,
if we happen to miss the correct sequence number (false
negative) even once, we need to repeat the search pro-
cess6. Nevertheless, since there is only one ‘critical’ test
(i.e., one correct sequence number) in each iteration, the
chance of missing it is quite small. We can further re-
duce this chance by tuning the RTT threshold parameter,
which we leave as a future exercise. (3) The time cost
varies substantially due to the large search space of the
sequence number. Specifically, while the attack attempts
to explore every possible sequence number from 0 to 232

per window, the procedure stops earlier if a correct se-
quence number happens to be small.

6In practice, we consider attacks over 10 minutes to be impractical,
thus attacks halt after two iterations of failure
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Figure 10: RTT measurement of macOS using 5GHz net-
work of a Xiaomi router at two different locations with
RTTs over 20ms

Result Time cost (s) #FN Result Time cost (s) #FN
success 25.66 0 success 23.08 0
success 286.31 0 success 580.32 1
success 549.15 1 success 195.03 0
success 335.10 0 success 227.43 0
failure 634.03 2 success 185.74 0
FN: False Negative (i.e., Missing correct SEQ number)

Table 4: 10 trials of remote attacks against macOS

7 Discussion

As discussed in §3, the timing side channel results from
the half-duplex nature of wireless networks. It is further
magnified due to the collision and backoff inherent in
wireless protocols. As we demonstrated, a full-duplex
system does not exhibit any timing channel (see §3) as
no collision will occur when uplink and downlink traffic
happen at the same time. Finally, as confirmed in our test
routers, modern wireless routers all support CSMA/CA
and RTS/CTS as it is part of the 802.11 standards [31],
and the principle is unlikely to change any time soon.

Although we only discuss the threat model where con-
nections originated from a victim client are targeted,
the attack actually also applies to connections originated
from other clients connected through the same wireless

router. This is because all these clients (e.g., behind the
same NAT) share the same collision domain and there-
fore suffer from the same timing channel. Responses
triggered on any client by probing packets will effec-
tively delay the post-probe query. In this case, the victim
connection (opened through puppet) simply opens up op-
portunities for an off-path attacker to measure collision.
In addition, we can expand the threat model to consider
servers that are wirelessly connected, e.g., IoT devices.
It has been shown that millions of IoT devices are reach-
able through public IP addresses and open ports [14]. In
such cases, a completely off-path attack can be launched
against a connection on such IoT devices, e.g., counting
bytes exchanged on the connection, terminating its con-
nection with another host, injecting malicious command
on an ongoing telnet connection (similar to the capability

described in [18]).

8 Defenses

After we discovered the time side channel issue, we have
disclosed it to the working group in February 2018. They
have quickly acknowledged this weakness and became
highly engaged in discussion of the matter. However, due
to the expected challenges in changing the half-duplex
design, we are yet to see an appropriate solution at the
802.11 level. Therefore, the immediate mitigations are
expected to be at higher levels. We’ve also disclosed it to
vendors of the routers that we tested, among whom only
one replied and actively discussed it with us. Though the
company employees acknowledged this weakness, they
decided to submit this security issue to Wi-Fi Alliance,
hoping that this would be fixed in the protocol standard.
In the reminder of this section, mitigations/patches at dif-
ferent layers are offered and thoroughly discussed.

Defenses in Wi-Fi technology. Unlike the previous
software-induced side channels, the timing channel in-
troduced by Wi-Fi is inherently difficult to eliminate or
mitigate (just as the recent meltdown and spectre vulner-
ability in CPUs [35, 34]). One straightforward defense
would be to make the Wi-Fi channel full-duplex. For in-
stance, with frequency-division duplexing, different fre-
quency sub-bands can be used for uplink and downlink
traffic. However, this can potentially introduce low band-
width utilization as separate dedicated sub-bands have to
be pre-allocated (and real-world Internet traffic volume
is not symmetric). Even though IEEE 802.11ax work-
ing group has been considering the possibility of sup-
porting in-band full-duplex communication [2], research
still needs to be done to make sure the real-world chal-
lenges such as backward compatibility are carefully con-
sidered and addressed [12, 30]. At this point though, it is
unclear when the technology will be widely deployed in
practice, according to our conversation with the 802.11
working group.

Defenses in the TCP stacks. As described in §2.2,
the packet validation logic of the latest TCP specification
inherently treats valid and invalid incoming packets dif-
ferently, in terms of whether a response should be gener-
ated. One solution is to revisit the specification and look
for alternatives. A good hint is that all three modern op-
erating systems implement the ACK number validation
differently, yet they have co-existed without any major
issues for a long time now. This leaves some flexibility
in the ACK number validation logic. Ideally, no matter
what ACK number an incoming packet has, it should ei-
ther consistently respond or never respond. Assuming an
incoming packet already has a valid sequence number,
the only constraints we have here are:



(1) if it is a data packet and its ACK number is also in-
window, a correct TCP receiver should always respond
with an ACK (or delayed ACK); (2) when a pure ACK
with sequence number in-window and ACK number in-
window arrives, there should be no response (otherwise,
an ACK war [6] may be triggered).

In the remaining cases: (3) a data packet with out-
of-window ACK number; (4) a pure ACK with out-of-
window ACK number, their responses appear to be flex-
ible in practice — see row no. 2, 3, 13, 16, and 18 in
Table 2) for the data packet case and row no. 2, 3, 12,
13, and 18 for the pure ACK case. Therefore, assum-
ing an incoming packet already has an in-window se-
quence number, we can always force a response for a
data packet, and no response for pure an ACK packet re-
gardless of their ACK numbers. We plan to validate this
idea by formally model checking the proposed changes
together with legacy behaviors for the absence of ACK
war.

With regards to sequence number validation, we hy-
pothesize that the responses of receiving packets with
valid and invalid sequence numbers can also be consis-
tent. However its implications must be evaluated more
carefully. A good strategy to consider is to rate limit
ACK responses generated for various types of incoming
packets. Even if inconsistent, this would allow the dif-
ferences in responses (e.g., one response vs. zero) to be
small enough and impossible to measure. The same rate
limiting idea applies to connection identification, where
packets are likely dropped by NAT or firewall if no con-
nection is present and some response will be triggered if
there is an active connection.

Defenses in Application layer Clearly, HSTS and
HTTPS will help ward off most serious web attacks
such as the web cache poisoning attack. Other TCP-
level attacks (e.g., inferring presence of connection [18],
byte counting [20], connection reset [18]) could still
be mounted by exploiting the vulnerability. HSTS and
HTTPS can prevent only web cache poisoning attack
(application-layer attacks) but not the TCP-level attacks.

Some versions of our attack also exploit features of
browser implementations, and thus we believe some mit-
igations can be made in the browser (i.e., make parsing
of responses stricter) to complicate the ACK number in-
ference step. The idea is that whenever the browser ob-
serves anything abnormal regarding the responses, e.g.,

malformed or longer than expected, it should immedi-
ately drop the connection and restart. A small tradeoff
is that this may break some backward compatibility with
non-standard-conforming web servers. In terms of its ef-
fectiveness in stopping web cache poisoning attacks, it
really only helps Linux as the attack now needs to fall-
back to a much slower version of the ACK number infer-
ence (likely tripling the time for a complete attack). Re-

garding Windows, although it also defeats our first strat-
egy to infer ACK number by creating a malformed re-
sponse, our alternative strategy is unaffected. MacOS’s
TCP stack implementation is so vulnerable that we will
always favor the binary search on the ACK number to
exploiting any browser-specific weakness. Finally, con-
nection inference (privacy breach) and sequence number
inference (byte counting and reset) attacks remain potent
as they only rely on the TCP stack.

For the purpose of supporting further research to re-
produce and mitigate the attack, we open sourced our
implementation of the attack against different OSes, now
publicly available at [5].

9 Related Work

We have described the most relevant work of various off-
path TCP attacks in §2.3. In this section, we discuss a
different set of related works.

Other off-path side channels. Besides the TCP se-
quence number, it has been shown that other types of in-
formation can be inferred by a blind off-path attacker.
[24, 33, 23, 48, 13, 49, 26, 41, 37]. Most of these
side channels do not in themselves allow serious attacks.
However, much of the research translates to measure-
ment tools that can be useful. For example, Knockel et

al. [33] demonstrate the use of a new per-destination
IPID side channel that can leak the number of packets
sent between two arbitrary hosts on several major operat-
ing systems. Alexander et al. [13] can infer the RTT be-
tween two arbitrary hosts through the shared SYN back-
log. Qian et al. [41] used global IPID side channel to
measure directional port blocking. More recently, the
Augur system [37] used the same IPID side channel to
measure Internet censorship and connectivity disruption.
The same side channel has also been used to count how
many hosts are behind a NAT [15] and other applica-
tions [21].

Side channel discovery and defenses. Typically,
when a specific type of vulnerability becomes known,
there are many strategies to discover more concrete in-
stances of them. For instance, static taint analysis has
been applied to look for TCP packet counter side chan-
nels [19]. The problem is modeled as an information
flow problem where the secret is the current sequence
number, and the sink is the set of packet counters that re-
port aggregated statistics to user space programs. If the
secret sequence number can leak to the sink, then it is
flagged as a potential side channel. There may be false
positives (due to the over-approximation of the static
analysis) but should not have false negatives by design.
In the case of CPU cache side channels, symbolic execu-
tion has been applied to track the precise cache state over
execution traces [47]. If the cache states can be different



at any point in the trace with different secret inputs, the
program is flagged to have leakage. Since the analysis is
applied over concrete execution traces, the approach has
no false positives (but may have false negatives). Unfor-
tunately, the Wi-Fi side channel is not a software artifact
and therefore cannot be discovered unless it is explicitly
modeled and analyzed.

In terms of side channel defenses, there are various
standard strategies such as perturbing the channel by in-
jecting noise [7, 22, 45], and isolating the resources al-
together [8, 32]. Unfortunately for Wi-Fi, these stan-
dard techniques would mean introducing wireless la-
tency (which hurts performance), or making the channel
full-duplex which we discussed earlier to be challenging
as well.

10 Conclusions
To conclude, we have discovered a subtle yet fundamen-
tal side channel inherent in all generations of Wi-Fi or
IEEE 802.11 technology because they are half-duplex.
Furthermore, we show the timing channel is reliable and
amplifiable, and also implement a real off-path TCP ex-
ploit in practice, allowing the attackers to inject data into
a TCP connection and force the browser to cache mali-
cious objects. Our study reveals that this novel attack
affects all three most popular operating systems: ma-
cOS, Windows, and Linux. We provide a thorough anal-
ysis and evaluation of the proposed attack under different
router/network/OS/browser combinations. Finally, we
propose possible defenses against this attack.
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