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Detecting Anti Ad-blockers in the Wild
Abstract: The rise of ad-blockers is viewed as an eco-
nomic threat by online publishers who primarily rely on
online advertising to monetize their services. To address
this threat, publishers have started to retaliate by em-
ploying anti ad-blockers, which scout for ad-block users
and react to them by pushing users to whitelist the web-
site or disable ad-blockers altogether. The clash between
ad-blockers and anti ad-blockers has resulted in a new
arms race on the Web. In this paper, we present an auto-
mated machine learning based approach to identify anti
ad-blockers that detect and react to ad-block users. The
approach is promising with precision of 94.8% and recall
of 93.1%. Our automated approach allows us to conduct
a large-scale measurement study of anti ad-blockers on
Alexa top-100K websites. We identify 686 websites that
make visible changes to their page content in response to
ad-block detection. We characterize the spectrum of dif-
ferent strategies used by anti ad-blockers. We find that
a majority of publishers use fairly simple first-party anti
ad-block scripts. However, we also note the use of third-
party anti ad-block services that use more sophisticated
tactics to detect and respond to ad-blockers.
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1 Introduction
The online advertising industry has been largely fuel-
ing the Web for the past many years. According to the
Interactive Advertising Bureau (IAB), the annual on-
line advertising revenues in the United States totaled
$59.6 billion for 2015 [15]. Online advertising plays a
critical role in allowing web content to be offered free of
charge to end-users, with the implicit assumption that
end-users agree to watch ads to support these “free” ser-
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vices. Unfortunately, the economic magnetism of online
advertising has made it an attractive target for various
types of abuses. First, the online advertising ecosystem
incentivizes the widespread tracking of users across web-
sites raising privacy [25] and surveillance [34] concerns.
To show targeted ads to users, advertisers track users
across the web using cookies, beacons, and fingerprint-
ing [22]. Second, the online advertising ecosystem not
only lacks transparency but also does not provide any
meaningful control for users to limit tracking and the
use of personal information. Third, hackers are increas-
ingly launching malvertising campaigns, where they use
online advertising to target malware at a large number
of users [41]. Finally, many publishers choose to place
ads that interfere (e.g. autoplay, pop-ups, and anima-
tion) with the organic content and annoy users [23].

Ad-blockers have become popular in recent years
and they can block ads and/or trackers seamlessly with-
out requiring any user input. A wide range of ad-
block extensions are available for popular web browsers.
Adblock Plus is the most popular ad-block extension
[2, 31]. 22% of the most active residential broadband
users of a major European ISP use Adblock Plus [37].
Another recent study showed that 18% of users in the
U.S. and and 32% of users in Germany have installed
ad-blockers [31]. According to PageFair, more than 600
million people around the world use ad-blockers on desk-
top and mobile devices [1, 16]. To the online advertising
industry and content publishers, ad-blockers are becom-
ing a growing threat to their business model.

To combat ad-blockers, two strategies have
emerged: (1) publishers such as Google and Microsoft
have enrolled in the acceptable ads program [14] to have
their ads whitelisted; and (2) publishers have begun to
detect the presence of ad-blockers and may refuse to
serve any user with ad-blocker turned on. The latter
strategy has emerged as an increasingly popular solution
to counter ad-blockers. For example, Yahoo! Mail [35],
WIRED [19], and Forbes [18] reportedly did so recently.
The anti ad-block phenomenon has been manually stud-
ied by researchers in [36, 38] on a relatively small scale
due to lack of automated anti ad-block detection meth-
ods. To fill this gap, in this work we perform automated
detection and measurement of the anti ad-block phe-
nomenon in the wild. Specifically, we are interested in
understanding: (1) how many websites are reacting to
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ad-blockers; and (2) what type of technical approaches
are used.

Key Contributions. The key contributions and find-
ings of the paper are the following:
– We propose a machine learning based approach to

automatically identify websites that use anti ad-
blockers. Our key idea is that websites that employ
anti ad-blockers will make distinct changes to their
web page content for ad-block users (e.g. displaying
a pop-up message) as compared to users without
ad-blockers. We extract these distinct features and
feed them to train machine learning models. The
approach is promising with precision of 94.8% and
recall of 93.1%.

– Using our proposed approach, we conduct a mea-
surement study of Alexa top-100K websites. The
results show that 686 websites visibly react to
ad-blockers. Out of these websites, 165 websites
show intrusive notifications that cannot be dis-
missed by users without disabling their ad-blocker
or whitelisiting the website. We also find that some
websites have started to ask ad-block users to pay
a subscription fee (42 websites) or make a donation
(30 websites).

– We cluster different anti ad-block approaches by
analyzing their JavaScript snippets. Our analysis
shows that anti ad-block approaches range from
fairly simple to much more sophisticated. We find
that many websites use simple anti ad-block scripts
that are served from first-party domains. Others
use third-party anti ad-block services that are much
more sophisticated.

2 Background & Related Work
In this section, we first provide a brief background of ad-
blockers and anti ad-blockers and then discuss relevant
prior work.

2.1 Background

The popularity of ad-blockers. The issues with on-
line ads have resulted in the proliferation of ad-blocking
software. Ad-blocking software (or ad-blocker) is an ef-
fective tool that blocks ads seamlessly, generally pub-
lished as extensions in web browsers such as Chrome
and Firefox. More recently, Apple has also allowed con-
tent blocking plugins on iOS devices [28]. Other popular

(a) forbes.com

(b) independent.co.uk

Fig. 1. Examples of ad-block detection responses.

relevant tools such as Ghostery [9] are primarily focused
on protecting user privacy by blocking trackers. Most
ad-blockers include filter lists to remove both ads (e.g.
EasyList [6]) and/or trackers (e.g. EasyPrivacy [7]). Re-
cent reports have shown that the number of users using
ad-blocking software has rapidly increased worldwide.
According to PageFair, more than 600 million people
around the world use ad-blockers on desktop and mo-
bile devices [1, 16].

How do ad-blockers work? Ad-blockers eliminate
ads by either page element removal or web request block-
ing. For page element removal, ad-blockers use various
CSS selectors to access the elements and remove them.
For web request blocking, ad-blockers look for particular
URLs and remove the ones which belong to advertisers.
For both of these actions, ad-blockers are dependent on
filter lists that contain the set of rules (as regular ex-
pressions) specifying the element selectors and domains
to remove. There are various kinds of filter lists available
which can be included in ad-blockers. Each of these lists
serves a different purpose. For example, Adblock Plus
by default includes EasyList [6], which provides rules
for removing ads from English websites. EasyPrivacy
[7] helps ad-blockers to protect user privacy by remov-
ing trackers.

The rise of anti ad-blockers. The online adver-
tising industry sees ad-blocking tools as a growing
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(a) (b) (c)

Fig. 2. Web page load evolution for www.vipleague.tv. (a) The original website content is loaded. (b) Ad-blocker removes ads from the
page. (c) Anti ad-blocker blocks the content and shows a pop-up notification asking the user to disable ad-blocking software.

threat to the ad-powered “free” web business model.
The widespread use of ad-blockers has prompted a cat-
and-mouse game between publishers and ad-blocking
software. IAB recently released a script [26] to DEAL
(Detect, Explain, Ask, Limit) with ad-blockers. Using
such scripts, publishers have started to detect whether
users are visiting their websites while using ad-blocking
software (detection step). Once detected, publishers no-
tify users to turn off their ad-blocking software (reac-
tions step). These notifications can range from a mild
non-intrusive message which is integrated inside website
content to more aggressive blocking of website content
and/or functionality. Figure 1 shows a couple of exam-
ples of ad-block detection responses. To detect the use
of ad-blocking software, publishers employ anti ad-block
scripts in their pages. When a user with the ad-blocking
software opens such a website, these scripts typically
monitor the visibility of ads on the page to identify the
use of ad-blockers. If ads are found hidden or removed
by an ad-blocker, publishers take countermeasures ac-
cording to their policies.

Illustration of anti ad-blockers. To understand how
anti ad-blockers operate, let’s walk through the com-
plete cycle of a typical anti ad-blocker. Figure 2 shows
the web page loading process of http://www.vipleague.
tv, which detects the presence of ad-blockers and subse-
quently reacts to them, on a web browser with Adblock
Plus. A JavaScript is employed by the publisher which
attempts to detect the presence of ad-blocker. Fig-
ure 3 shows the JavaScript employed by http://www.
vipleague.tv. The functionality of the JavaScript can be
divided into three parts: timeout, condition check, and
response. In Figure 2, we note that the web browser
starts loading the HTML and other resources included
in the HTML code. While the content is loading, ad-
block extension kicks in and starts evaluating the HTML
code and page content to remove potential ads. Since
the ad-blocker starts working after a small delay, the

1 // step 1: set timeout
2 var myVar = setInterval ( function () {
3 myFunc ()
4 }, 2000);
5
6 function myFunc () {
7
8 // step 2: condition check
9 if ( window . iExist === undefined || (!$(

10 "# XUinXYCfBvqpyDHOrOAVClxoWJemrlPpfCdWfiyAzNY ")
11 .is(": visible ") && (($(". vip_052x003 "). height ()
12 < 100 && !$("# vipchat "). length ) &&
13 $(". vip_09x827 "). height () < 25))) {
14
15 // step 3: response
16 $("# XUinXYCfBvqpyDHOrOAVClxoWJemrlPpfCdWfiy
17 AzNY").css("width :100%; height :100%; position
18 :fixed;z-index :999999; top :0");
19 $("# XUinXYCfBvqpyDHOrOAVClxoWJemrlPpfCdW
20 fiyAzNY ").show ()
21 }
22 else if ($("# XUinXYCfBvqpyDHOrOAVClxoWJemrlPpfC
23 dWfiyAzNY ").is(": visible ") && $(". vip_052x003 ")
24 . height () > 249) {
25
26 $("# XUinXYCfBvqpyDHOrOAVClxoWJemrlPpfCdWfi
27 yAzNY").hide ()
28 }
29 }

Fig. 3. Ad-block detection JavaScript extracted from http://
www.vipleague.tv

anti ad-block script has to wait some time before mon-
itoring the ads. In Figure 3, the timeout is set at 2000
milliseconds. Once the timer expires (typically a few sec-
onds), the condition check is executed to verify the pres-
ence/absence of ads, e.g. by checking the height, width,
or visibility of ad frames. If the script detects that ads
were removed or hidden, then the response step is exe-
cuted. As discussed earlier, the implementation details
of this step varies across publishers. A few publishers
gently request users to remove/disable their ad-blockers,
while others aggressively show a page-wide notification
and/or block content. For example, in Figure 3, the pub-
lisher responds by changing CSS properties of a div to
show a pop-up message that asks the user to disable
ad-blocker or whitelist the site.

www.vipleague.tv
http://www.vipleague.tv
http://www.vipleague.tv
http://www.vipleague.tv
http://www.vipleague.tv
http://www.vipleague.tv
http://www.vipleague.tv
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2.2 Related Work

Below, we discuss prior literature on online advertising,
ad-blockers, and anti ad-blockers.

Online Advertising. Online advertising relies on so-
phisticated tracking of users across the web to target
personalized ads. Roesner et al. [39] conducted an ac-
tive measurement study of third-party tracking on the
Web. They found a total of 7264 (524 unique) track-
ers on the Alexa top 500 websites. They found that
a few trackers cover a large fraction of popular web-
sites. More specifically, they reported that Google An-
alytics and DoubleClick (both owned by Google) are
used on 40%–60% of the top 500 websites. Using real
users’ browsing history, they reported that a few track-
ers cover as much as 66% of the pages visited by a user.
Metwalley et al. [32] conducted a passive measurement
study to determine the extent of tracking on the Web.
They found more than 400 tracking services, of which
top 100 regularly track more than 50% of users. They
found that 80% of the users are tracked by at least
one tracking service within a second after starting web
browsing. Lerner et al. [29] conducted a longitudinal
active measurement study using the Wayback Machine.
The authors found that the scope and complexity of
online tracking has dramatically increased over the last
20 years. They showed that popular websites use more
third-party trackers now than ever before. The authors
reported that the coverage of top trackers on the Web
is increasing rapidly, with top 5 trackers now covering
more than 60% of the top 500 websites as compared to
less than 30% ten years ago. Englehardt and Narayanan
[22] showed that a handful of third parties including
Google, Facebook, Twitter, and AdNexus track users
across a majority of top 1 million websites. The au-
thors showed that Google alone tracks users across more
than 80% of the top 1 million websites. The authors
also showed that stateless tracking based on Canvas,
WebRTC, and AudioContext fingerprinting is employed
across thousands of websites.

Researchers have also studied security aspects of
online advertising. Li et al. conducted the first large-
scale study of malicious advertising (called malvertis-
ing) on the Web [30]. Their analysis of 90,000 websites
showed that not only malicious ads affect top websites
but they also evade detection by various cloaking tech-
niques. Zarras et. al. also conducted a large-scale study
to determine the extent at which users are exposed to
malicious advertisements [41]. Their measurement study
of more then 60,000 ads showed that around 1% ads ex-
hibit malicious behavior. They also showed that a few

ad networks are more prone to malicious advertisements
than others.

Ad-blockers. Due to the popularity of ad-blockers,
researchers have tried to study the prevalence of ad-
blockers. Pujol et al. conducted a measurement study
using passive network traces of thousands of users from
a European ISP to quantify ad-block usage [37]. Their
results show that 22% of users use AdBlock Plus. They
also found that ad-block users still generate signifi-
cant ad traffic due their enrollment in the acceptable
ads program. Walls et al. [40] conducted a study of
the whitelists used by ad-blockers for allowing the ac-
ceptable ads. They analyzed the evolution of ad-block
whitelists and performed active measurements on pop-
ular websites. Their analysis showed that the whitelist
contains around 5,936 filters and 3,545 unique pub-
lisher domains. They reported that whitelists are in-
clined towards top ranked Alexa websites (59% filters
are for top 5000 websites). Gugelmann et al. [24] pro-
posed a methodology to complement manual filter lists
of ad-blockers by automatically blacklisting intrusive
ads. They trained a classifier on HTTP traffic statistics
and identified around 200 new advertising and tracking
services.

Anti Ad-blockers. Since the arms race between ad-
blockers and anti ad-blockers is a relatively recent phe-
nomenon, prior research is limited to small scale and
manual analysis of anti ad-blockers. Researchers [36, 38]
have recently reported anecdotal evidence of ad-block
detection and retaliation by publishers. Rafique et al.
[38] conducted manual analysis to report that 163 out
of the top 1000 free live video streaming aggregators
employ anti ad-blockers. Nithyanand et al. [36] clus-
tered JavaScript snippets and manually analyzed the
clusters to identify third-party anti ad-blockers. They
found that 6.7% of top 5000 Alexa websites employ anti
ad-blockers. Unfortunately such manual analysis is hard
to scale up. In contrast, we use machine learning models
to conduct large scale analysis of anti ad-blockers. Fur-
thermore, while Nithyanand et al. [36] consider all web-
sites that include anti ad-block scripts, we identify those
anti ad-blockers that alter content to restrict access in
response to ad-block detection because users only get
affected by anti ad-blockers that retaliate by restricting
user access. To the best of our knowledge, we present
the first automated large-scale measurement study of
anti ad-blockers in the wild.
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3 Detecting Anti Ad-blockers
In this section, we design and implement our approach
for automatically identifying websites that employ anti
ad-blockers. The main premise of our approach is that
websites conducting ad-block detection make distinct
changes to their web page content for ad-block users as
compared to users without ad-blockers. Our goal is to
identify, quantify, and extract such distinct features that
can be leveraged for training machine learning models
to automatically detect websites that employ anti ad-
blockers.

3.1 Overview

We want to identify distinct features that capture the
changes made by anti ad-blockers to the HTML struc-
ture of web pages. One plausible approach is to apply
image analysis which is commonly used to detect phish-
ing websites [17, 21]. However, in pilot experiments, we
found that the visible changes made by anti ad-blockers
can be non-intrusive and hard to distinguish from other
dynamically generated content. For instance, news web-
sites may simply replace one news item with a different
one that talks about ad-blocker (Figure 4). More de-
tails are given in §3.5. Therefore, we decided to analyze
changes in the HTML content of web pages.

The changes made by anti ad-blockers to the HTML
content can be categorized into: (1) addition of extra
DOM nodes, (2) change in the style of existing DOM
nodes, and (3) changes in the textual content. Below,
we provide an overview of our proposed features and
also discuss how they capture the changes made by anti
ad-blockers in response to ad-block detection.

Node changes. In order to show notification to users
with ad-blockers, websites dynamically create and add
new DOM nodes. Thus, node additions in the DOM
can potentially indicate anti ad-blockers. We can log
the total number of DOM elements inserted in a web
page.

Style changes. A few websites include notifications
which are in their page content but hidden. If these
websites detect the use of ad-blockers, they change the
visibility of their notification. To cover such cases, we
can log attribute changes to DOM elements of a web
page.

Text changes. Some websites change the textual con-
tent (i.e. text-related nodes) in response to ad-block

Fig. 4. Non-intrusive changes made by anti ad-blockers on www.
pri.org (the top right news item is replaced with a warning about
ad-blocker).

detection. Therefore, we can log changes in the textual
content of a web page and addition of text-related nodes
in a web page.

Structure changes. In addition to the above-
mentioned features, we also consider other features like
innerHTML to detect whether the structure is modified
and track changes in URL to detect redirection.

3.2 Methodology

Figure 5 provides an overview of our methodology to
automatically detect anti ad-blockers. We conduct A/B
testing to compare the contents of a web page with and
without ad-blocking software. To automate this process,
we use the Selenium Web Driver [11] to open separate
instances of the Chrome web browser, with and with-
out Adblock Plus (we also attempted different config-
urations for Adblock Plus). We implement a custom
Chrome browser extension to record changes in the con-
tent of web pages during the page load process. Our
extension records the structure of the DOM tree, all
textual content, and HTML code of the web page. We
implement a feature extraction script to process the col-
lected data and generate a feature vector for each web-
site. We feed the extracted features to a supervised clas-
sification algorithm for training and testing. We train
the machine learning model using a labeled set of web-
sites with and without anti ad-blockers. Below we de-
scribe these steps in detail.

Ad-blocker configurations. Since different ad-
blocker configurations can affect the results (some may
trigger more anti ad-blocking than others), we decide
to configure Adblock Plus in three different ways (each

www.pri.org
www.pri.org
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Fig. 5. Overview of our methodology for detecting anti ad-
blockers.

configuration should catch more anti ad-blocking web-
sites than the last):
• EasyList + Acceptable Ads. This represents the con-
figuration for most users. By default, Adblock Plus
includes EasyList to remove ads but allows some ac-
ceptable ads [14] to be displayed.

• EasyList. In this configuration, we use EasyList but
disallow acceptable ads. Adblock Plus will block all
ads (including the acceptable ads).

• EasyList - Anti Ad-block rules. In this configuration,
we disallow acceptable ads as well as eliminate filter
rules in EasyList that can circumvent anti ad-blockers
(these rules suppress anti ad-blocking which makes

the websites look as if no anti ad-blocking were em-
ployed). EasyList has recently started to include fil-
ter rules (1461 at the time of writing) to circumvent
anti ad-blockers. These rules are separated in !Anti-
Adblock sections of EasyList.

A/B testing.We implement a web automation tool us-
ing the Selenium Web Driver [11] to conduct measure-
ments. For A/B testing, our tool first loads a website
without Adblock Plus, and then opens it with Adblock
Plus in a separate browser instance. However, we find
that many websites host dynamic content that changes
at a very small timescales. For example, some websites
include dynamic images (e.g. logos), which can intro-
duce noise in our A/B testing. Similarly, many news
websites update their content frequently which can also
add noise. Thus, we may incorrectly attribute these
changes to the ad-blocker or the anti ad-blocker used by
a publisher. To mitigate the impact of such noise, our
tool opens two instances of each website without Ad-
block Plus in parallel (at the same time) and excludes
content that changes across both instances.

Data collection. To collect data while a web page
is loading, we use DOM Mutation Observers [13]
to track changes in a DOM (e.g. DOMNodeAdded,
DOMAttrModified, etc.). The changes we track include
addition of new DOM nodes or scripts, node attribute
changes like class change or style change, removal of
nodes, changes in text, etc. We implement the data col-
lection module as a Chrome extension. The extension is
preloaded in the browser instances that are launched by
our web automation tool. As soon as a web page starts
loading, the extension attaches an observer listener with
it. Whenever an event occurs, the listener fires and we
record the information. For example, we record the iden-
tifier, type, value, name, parent nodes, and attributes of
the corresponding node. For each attribute change, in
addition to above-mentioned information, we record the
name of attribute which changes like style or class and
its old and new value. We also log page level data such
as the complete DOM tree, innerText, and innerHTML
as well.

Feature extraction. We then process the output of
data collector to extract a set of informative features
which can distinguish HTML content changes due to
anti ad-blockers. Let A denote the data collected with
an ad-blocker, and let B and B’ denote the data col-
lected by loading a web page twice without an ad-
blocker. We provide details of the feature extraction
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Table 1. Features used to identify anti ad-blockers

Feature Set Description
Change in number of div nodes

Change in number of h1 nodes

Change in number of h2 nodes

Change in number of h3 nodes

Change in number of img nodes

Change in number of table nodes

Change in number of p nodes

Change in number of anchor nodes

Change in number of iframe nodes

Change in number of text nodes

Nodes

Total number of changes in nodes

Change in number of display attributes

Change in number of visibility attributes

Change in number of height attributes

Change in number of width attributesAttributes

Change in number of opacity attributes

Change in number of maxheight attributes

Change in number of background size attributes

Total number of changes in attributes

Change in number of lines

Change in number of words

Change in number of charactersTextual

Keywords (binary as presence/absence)

Cosine similarity of HTMLStructural

URL change (binary as yes/no)

process below. Table 1 includes the list of all features
used in our study.
• Node features. For each instance, we extract DOM re-
lated nodes because our pilot experiments revealed that
websites using anti ad-blockers add only DOM related
nodes. More specifically, we extract the list of anchor,
div, h1, h2, h3, img, table, p, iframe and text nodes
for each instance. Once we have a list of DOM nodes
for each instance, we compare A vs. B’ and B vs. B’ to
obtain the list of differences between these nodes. We
denote these lists as AB’ and BB’ lists. As explained
earlier, to remove node differences due to dynamic con-
tent of websites, we cross-validate nodes in AB’ with
BB’ using their properties. Our key idea is that if a
publisher ads random nodes to a web page, they may
have different identifiers but most of the other proper-

ties will be fairly similar. Thus, we remove the nodes
from AB’ that also appear in BB’.
• Attribute features. For each instance, we extract
changes in the style of DOM related nodes. More specif-
ically, we focus on changes to the display-related node
properties. For instance, we log whether the visibility
property of a node changes from hidden to non-hidden.
We also log changes to other display properties, e.g.
the number of changes in height, width, and opacity of
nodes. Similar to node features, we compare A, B, and
B’ to eliminate attribute changes from AB’ that also
appear in BB’.
• Textual features. We get the list of all text nodes in A,
B, and B’. Using the lists, we extract changes in num-
ber of lines, worlds, and characters. We again compare
A, B, and B’ to eliminate changes in textual features
from AB’ that also appear in BB’. We also use seven
keywords (adblock, ad-block, ad block, whitelist, block-
adblock, pagefair, fuckadblock) as binary (presense/ab-
sense) features in A.
• Structural features. We compare differences in the
overall page HTML using the cosine similarity metric.
If the cosine similarity between A and B/B’ is very
low, it indicates significant content change. To check for
potential URL redirections, we use change in URL as a
binary (yes/no) feature.

Model training and testing. We feed the extracted
features to a machine learning classifier for automati-
cally detecting websites that employ anti ad-blockers.
However, in order to train the classification algorithm,
we need a sufficient number of labeled examples of web-
sites that detect ad-blockers (i.e. positive samples) and
websites that do not detect ad-blockers (i.e. negative
samples). To get positive samples, we open websites
with Adblock Plus and manually analyze whether the
detect and respond to ad-blockers. Specifically, we an-
alyze Alexa top-1K websites and some listed in crowd-
sourced lists [3, 4]. Overall, we identify a total of 200
positive training samples. Since a majority of Alexa top-
1K websites do not deploy anti ad-blockers, we use them
as negative training samples.

3.3 Feature Analysis

We analyze the extracted features to quantitatively un-
derstand their usefulness in detecting anti ad-blockers.
We first visualize the distributions of a few features. Fig-
ure 6 plots the cumulative distribution functions (CDF)
of two features. We observe that websites which employ
anti ad-blockers tend to change more lines and add div
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Fig. 6. Distribution of features used to identify anti ad-blockers

nodes than other websites. These distributions confirm
our intuition that anti ad-blockers make changes in the
page content that are distinguishable.

To systematically study the usefulness of different
features, we employ the concept of information gain
[33], which uses entropy to quantify how our knowl-
edge of a feature reduces the uncertainty in the class
variable. The key benefit of information gain over other
correlation-based analysis is that it can capture non-
monotone dependencies. Let H(X) denote the entropy
(i.e. uncertainty) of feature X. H is defined as:

H = −
∑

i

pilog pi

Let H(Y ) denote the entropy (i.e. uncertainty) of the
binary class variable Y . Information gain is computed
as:

IG(Y |X) = H(Y )−H(Y |X).
We can normalize information gain, also called relative
information gain, as:

H(Y )−H(Y |X)
H(Y ) .

Table 2. Features ranked based on information gain

Name Information Gain
Change in number of words 35.44%
Change in number text nodes 27.89%
Change in number of lines 18.13%
Total number of changes in nodes 17.37%
Change in number of characters 17.19%
Change in number of div nodes 13.01%
Change in number of height attributes 10.67%
Change in number of display attributes 8.67%
Total number of changes in attributes 7.20%
Change in number of img nodes 5.82%

Using this, we can quantify what an input feature in-
forms us about the presence of anti ad-blockers. Table
2 ranks the top 10 features based on their information
gain. We note that textual features tend to have high
information gain. They are followed by node and style
based features (e.g. change in number of div nodes,
change in number of height attributes).

3.4 Classifier Evaluation

We use the standard k-fold cross validation methodol-
ogy to validate the accuracy of the trained models. For
this purpose we select k = 5, divide the data into 5 folds
where one fold is for testing while the other four folds
are used for training. To quantify the classification ac-
curacy of the trained models, we use the standard ROC
metrics: precision, recall, and area under ROC curve
(AUC). We try different machine learning classification
methods. We tuned parameters of each of these mod-
els to optimize their classification performance. Table 3
summarizes the classification accuracy of these classi-
fiers. We note that the random forest classifier, which is
a combination of tree classifiers, outperforms the C4.5
decision tree and the naive Bayes classifiers. The ran-
dom forest classifier achieves 93.1% recall, 94.8% preci-
sion, and 96.0% AUC.

Table 3. Effectiveness of different classifiers

Classifier Recall Precision AUC
Random Forest 93.1% 94.8% 96.0%

C4.5 Decision Tree 87.0% 89.0% 91.3%

Naive Bayes 82.0% 82.4% 89.0%
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Fig. 7. Visualization of decision tree model for anti ad-blockers

To further evaluate the effectiveness of different fea-
ture sets in identifying anti ad-blockers, we conduct
experiments using stand alone feature sets and then
evaluate their all possible combinations. We divide the
features into node features, attribute features, textual
features, and structural features. Among stand alone
feature sets, as expected, textual features provide the
best classification accuracy. We also observe that using
combinations of feature sets does improve the classifi-
cation accuracy. The best classification performance is
achieved when all feature sets are used together.

To further gain some intuition from the trained ma-
chine learning models, we visualize a pruned version of
the decision tree model trained on labeled data in Figure
7. As expected from the information gain analysis, we
note that a text feature (change in number of words) is
the root node of the decision tree. Moreover, changes in
visibility and number of div nodes are indicative of anti
ad-blockers. It is interesting to note that the top three
features in the decision tree belong to different feature
categories. This shows that different feature sets com-
plement each other, rather than capturing similar infor-
mation, which we also observed earlier when evaluating
different combinations of features.

3.5 In the Wild Evaluation

Detecting anti ad-blockers in the wild. We now
apply our trained random forest model on the home-
page of Alexa top 100K websites to gain an overall pic-

ture of anti ad-blockers in the wild. The experiments
are conducted in February 2017. We report the results
for the three different Adblock Plus configurations as
mentioned in Section 3.2.
1. For the first configuration of EasyList + Acceptable
Ads, the model predicted that 642 websites detect and
respond to ad-blockers. We manually inspect all identi-
fied websites to understand its detection accuracy. Un-
fortunately, it is sometimes difficult for us to deter-
mine the ground truth when subtle and hard to identify
changes (e.g. embedded text) are made, especially when
the language is not English. Nevertheless, we conserva-
tively estimated that 556 websites are true positives.
2. For the second configuration of EasyList, the model
predicted that 651 websites detect and respond to ad-
blockers. Upon manual inspection, 558 websites are true
positives. In theory, more websites should react to this
configuration as compared to the first configuration be-
cause websites are not allowed to display any ads (in-
cluding the acceptable ads). We surmise that only small
portion of ad-block users change the default setting, and
it is therefore not causing significant loss of revenue to
publishers. If more users were to disallow the acceptable
ads, we expect the results to change.
3. For the third configuration of EasyList - Anti Ad-
block rules, the model predicted that 786 websites de-
tect and respond to ad-blockers. Upon manual inspec-
tion, 686 websites are true positives. This represents an
increase of 130 websites that employ anti ad-blocking
compared to the first configuration. It is interesting to
note that anti ad-block filter rules in EasyList are only
moderately effective (130/686=19%) in evading anti ad-
blockers.

Due to the limitations of our methodology, as we
discuss later, the results represent a lower bound of anti
ad-block usage in the wild.

Characterizing ad-block detection responses. We
manually analyze ad-block detection responses of the
686 identified websites to categorize how they respond
to ad-blockers. We look at two different aspects: (1) how
aggressive are the response messages; and (2) what do
they ask the users to do.

We categorize the aggressiveness of the ad-block de-
tection responses into three types: (a) non-intrusive no-
tification, typically well integrated with the webpage
content (409 websites); (b) intrusive notification (e.g.
flashy popup) but it can be dismissed by the user (112
websites); and (c) intrusive notification which cannot
be dismissed by the user without disabling ad-blocker
or whitelisiting the website (165 websites). Our find-
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Fig. 8. Characteristics of websites that employ anti ad-blockers

ings show that a majority of the websites are still con-
servative and do not want to lose users by showing
intrusive notifications that can annoy users. However,
a substantial number of these websites are taking a
much more aggressive stance against ad-blockers, e.g.
www.forbes.com, by not allowing users to view content
if ad-block usage is detected.

We categorize the content of response messages into
three types: (a) users are asked to disable the ad-blocker
or whitelist the website (644 websites); (b) users are
asked to donate (30 websites); and (c) users are asked
to pay a subscription fee (42 websites). Note that the
responses of some websites fall into multiple categories.
We find that a small but non-trivial fraction of web-
sites are actually considering alternative monetization
models such as donations and paid subscriptions.

Characterizing websites that employ anti ad-
blockers.We characterize the websites that use anti ad-
blockers in terms of their popularity (using Alexa ranks)
and categorization (using McAfee’s URL categorization

service). Figure 8(a) shows that websites employing anti
ad-blockers are very much uniformly distributed across
the Alexa top 100K, without any obvious skews. This
can happen as websites that heavily rely on ads to mon-
etize are spread across top 100K websites. Figure 8(b)
shows the top 15 categories of the websites that em-
ploy anti ad-blockers. The overall categorization trend
is similar to what has been observed for top 5K websites
in [36]. The top five categories are blogs, news, enter-
tainment, games, and pornography. The remaining 25%
websites (not shown in the figure) are grouped in the
other category.

Limitations. Our proposed methodology cannot iden-
tify all websites that employ anti ad-blocking. There are
several reasons. First, we only visit the homepages of
Alexa top-100K websites. Some websites may only em-
ploy anti ad-blocking on specific subpages. Second, some
websites may detect ad-blockers but may not react to
them. Since our methodology relies on detecting changes
in the HTML content, we will not detect these websites.
Third, the default EasyList is primarily constructed
based on ads in English websites, and may not have
the best coverage in blocking ads in other websites (al-
though we do observe ads blocked in many non-English
websites). Including additional filtering lists (such as
those that target other languages) may improve the de-
tection rate of anti ad-blocking [10]. Finally, websites
can employ anti ad-blockers non-deterministically, e.g.
once every 10 site visits, or after a long delay. Our mea-
surements will likely miss these websites as well. In sum-
mary, our results represent a lower bound on the web-
sites that employ anti ad-blockers, and we plan to ad-
dress the limitations as future work.

4 Analyzing Anti Ad-block Scripts
In this section, we characterize the functionality of anti
ad-blockers. More specifically, we analyze anti ad-block
JavaScript code snippets to study different ad-block
detection strategies. For systematic analysis, we first
automatically cluster anti ad-blockers based on their
JavaScript code similarity and then manually analyze
different anti ad-block clusters. Through this analysis,
we are able to identify several third-party anti ad-block
services that are used by multiple publishers.

www.forbes.com
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4.1 Collecting Anti Ad-block JavaScript
Snippets

As a first step, we collect the JavaScript snippets on all
websites that employ anti ad-blockers. Analyzing the
functionality of JavaScript code is non-trivial because
the code can be obfuscated and packed inside functions
such as eval. To overcome these issues, we leverage the
fact that the packed code needs to unpack itself before
execution. We attach a debugger between the Chrome
V8 JavaScript engine [12] and the web pages. Specifi-
cally, we observe script.parsed function, which is in-
voked when eval is called or new code is added with
<iframe> or <script> tags. We implement the debug-
ger as a Chrome extension and collect all JavaScript
snippets parsed on a webpage and manually identify the
snippet responsible for ad-block detection.

4.2 Clustering

We want to cluster anti ad-block JavaScript snippets
into a few groups. To this end, we map JavaScript snip-
pets using a tree representation and then group the ones
with similar structure.

To identify similar anti ad-block JavaScript snip-
pets, we first parse them to produce abstract syntax
trees (ASTs). ASTs have been used in prior literature
for JavaScript malware detection [20, 27]. ASTs allow
us to retain the structural and logical properties of the
code while ignoring fine-grained details, such as variable
names, which are not useful for our analysis. Figures 9
and 10 show two anti ad-block JavaScript snippets and
their corresponding AST visualizations. We use the Es-
prima JavaScript parser [8] to visualize the ASTs. Note
that although these JavaScript snippets look fairly dif-
ferent due to different variable names and values, but
their ASTs have similar logical structure except for mi-
nor differences near the leaf nodes.

We transform ASTs of all anti ad-block JavaScript
snippets to normalized node sequences by perform-
ing the pre-order traversal. These sequences are com-
posed of different AST node types such as IfStatement,
WhileStatement, and AssignmentExpression. Note that
these sequences are of different lengths. We identify 88
distinct node types in the set of anti ad-block JavaScript
snippets. To transform variable length normalized node
sequences to a fixed number of dimensions, we convert
each sequence into a 88-dimensional summary vector.
Each anti ad-block JavaScript snippet is represented as
an 88-dimensional point, where each dimension corre-

1 $( document ).ready( function () {
2 setTimeout ( function () {
3 if ( localStorage .noad === undefined &&
4 (16 >= $("#gAds"). height () ||
5 16 >= $("#gAd2". height ()))) {
6 $("#Blog1"). remove ();
7 sweetAlert ("Oops .. please don ’t
8 block my ADs"," warning ");
9 }

10 }, 3456)
11 });

Fig. 9. Example 1: AST of anti ad-block JavaScript snippet.

sponds to a node type. The value of each dimension is
the occurrence frequency of the node type in the se-
quence.

We use Principal Component Analysis (PCA) to re-
duce the dimensionality of the summary vector for visu-
alization. Figure 11 separately plots 3-dimensional visu-
alizations of first- and third-party anti ad-block scripts.
In Figure 11(a), we note that most first-party anti ad-
block scripts are in a dense cluster. The dense clus-
ter of first-party scripts indicates that they use a sim-
ilar approach for ad-block detection. In Figure 11(b),
third-party anti ad-block scripts are spread out from
each other. Multiple clusters of third-party anti ad-
block scripts indicate that they use different approaches
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1 jQuery ( document ).ready( function () {
2 setTimeout ( if ( jQuery ("# adblock "). height () == 0){
3 window . location = "/ adblock "
4 }, 3456);
5 });

Fig. 10. Example 2: AST of anti ad-block JavaScript snippet.

which are potentially more sophisticated than first-
party scripts.

4.3 Analysis and Discussions

Next, we analyze ad-block detection strategies used by
different anti ad-block clusters. We first study the anti
ad-blockers in the dense central cluster of Figure 11(a).
Most of these are customized anti ad-block scripts,
which are served as first-party by publishers. Our in-
spection of different clusters in Figure 11(b) revealed
that they are mostly third-party anti ad-block scripts.
Below, we provide an in-depth analysis of both first-
party and third-party anti ad-block scripts.
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Fig. 11. Visualization of anti ad-block clusters using PCA. Most
first-party anti ad-blockers are in one dense cluster. In contrast,
third-party anti ad-blockers are generally different from each
other.

4.3.1 First-Party Anti Ad-Block Scripts

First-party anti ad-block scripts are fairly simple. Most
of them are 5-10 lines of code, yet they can successfully
detect state-of-the-art ad-blockers. Ad-blockers block
ads by removing ad frames and they do not really try to
hide their operation. Therefore, such simple first-party
anti ad-blockers can easily detect ad-blockers.

Timing. First-party anti ad-blockers typically execute
their logic at the beginning of the page load process.
Since it may take a few seconds before an ad-blocker
removes ads, some websites delay the execution of their
logic using setTimeout() or setTimeIntervel(). In
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1 // http :// knowlet3389 . blogspot .hk
2 if ( localStorage .noad === undefined &&
3 (16 >= $("#gAds"). height ()
4 || 16 >= $("#gAd2"). height ()))
5 // http :// www. elahmad .com
6 if( jQuery ("# adblock "). height () ==0)
7 // http :// urlchecker .org
8 if ($("# adchecker "). height () < 10)
9 // http :// www. hentai .to

10 if( document . getElementById (" tester ")!= undefined )
11 // http :// forum.pac -rom.com
12 if (!ad || ad. innerHTML . length == 0 ||
13 ad. clientHeight === 0)

Fig. 12. Examples of detection logic used by first-party anti ad-
blockers

Figures 9 and 10, we show two example anti ad-block
scripts, one inserting delay and another without delay.
Since their ad-block detection logic is a one-time check
(i.e. it is not invoked periodically), adding a delay helps
to ensure that ad-blockers remove ads before anti ad-
blockers try to detect ad-blockers.

Detection logic. To detect ad-blockers, first-party anti
ad-blockers typically check different HTML elements to
detect ad-blockers. In Figure 12, we illustrate the de-
tection logic implemented by several websites. We note
that the detection checks are fairly simple and intuitive.
For example, consider urlchecker.org, which checks
whether the height of adcheker div is less then 10pxs.
Our further analysis revealed that Adblock Plus blocks
adsbygoogle.js script due to which the adcheker div is
empty and its height is equal to 1px. Other publishers
check CSS properties of different div elements. Since
the filter lists used by ad-blockers (e.g. EasyList [6])
are publicly available, anti ad-blockers can successfully
setup such high-precision detection rules.

Response. Although the detection logic used by first-
party anti ad-blockers is fairly similar across the board,
their response to ad-blockers vary widely. Figure 13 lists
a few of the responses. For hentai.to, a <p> element re-
quests users to disable the ad-blocker. Since the origi-
nal content is preserved, this response is not aggressive.
However, for knowlet3389.blogspot.hk, the#Blog1 div is
removed upon ad-block detection, which indicates that
the website hides its content from ad-block users. elah-
mad.com also aggressively responds by redirecting ad-
block users to a warning page. Overall, as discussed ear-
lier in Section 3.5, we find a wide spectrum of responses
to ad-block detection, ranging from gentle requests to
remove ad-blockers to more aggressive redirection.

Note that some first-party anti ad-block scripts in
Figure 11(a) are separated from the dense cluster. Our
analysis reveals that these scripts are generally more
sophisticated than simple first-party anti ad-blockers.
One such example is forbes.com, where the timing, de-

1 // http :// knowlet3389 . blogspot .hk
2 $("#Blog1"). remove ();
3 sweetAlert ("Oops .. please don ’t block my ADs",
4 " warning ");
5 // http :// www. elahmad .com
6 window . location ="/ adblock "
7 // http :// urlchecker .org
8 $("# ads_notify "). fadeIn ();
9 $("# getlinks ").hide ();

10 $("# adchecker_btn "). fadeIn ();
11 // http :// www. hentai .to
12 document .write(
13 ’<p class ="no"> Please <u>disable </u> your
14 adblocking software on hentai .to to keep
15 our community <u>FREE </u>! ^.^ </p>’);
16 // http :// forum.pac -rom.com
17 alert("We’ve detected an ad blocker running
18 on your browser ...");

Fig. 13. Examples of responses by first-party anti ad-blockers

tection logic, and response of its anti ad-blocker is much
more sophisticated. First, instead of waiting for a fixed
time before running the one-time check, it continuously
checks for ad-blockers after periodic intervals. Second, it
uses random ad divs as baits and checks their height or
display properties for detection. Another unique aspect
is that it uses cookies (e.g. forbes_ab) to keep track of
users’ detection status across multiple visits.

4.3.2 Third-Party Anti Ad-Block Scripts

Some publishers rely on third-party anti ad-block ser-
vices. These third-party anti ad-block services not only
enable publishers to detect ad-block users but also pro-
vide different ways to respond. For example, in addition
to quantify ad-block usage, some third-party anti ad-
block services “recoup lost advertising revenue” for pub-
lishers. Below we analyze PageFair, which is a popular
third-party anti ad-block service that enables publish-
ers to detect ad-block usage and display tailored non-
intrusive ads to ad-block users.

Timing. PageFair performs multiple periodic checks
at various stages of the web page load process to de-
tect ad-blockers. This approach is much more sophisti-
cated than most first-party anti ad-blockers and makes
it harder for ad-blockers to evade detection by simply
delaying their activity.

Detection logic. PageFair’s detection logic attempts
to actively trap ad-blockers by injecting different baits
on web pages. In addition, PageFair attempts to check
whether any ad-block plug-in is installed by looking for
various browser resources exposed by ad-blocking ex-
tensions. The use of these methods makes PageFair’s

forbes.com
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1 // DIV bait
2 var b = document . createElement ("DIV");
3 // d = " influads_block "
4 b.id = d;
5 //c=’’
6 b. className = c;
7 //1x1 div
8 b.style.width = "1px";
9 b.style. height = "1px";

10 // div not located in visible frame
11 b.style.top =" -1000 px";
12 b.style.left =" -1000 px";
13 document .body. appendChild (b);
14 // jquery selector of created div
15 c = jQuery ("#" + d);
16 // check if this div is hidden by ad - blocker
17 d = c.is(": hidden ") ? 1 : 0;
18 // removing the created div
19 c. remove ();
20
21 // SCRIPT bait
22 b = document . createElement (" SCRIPT ");
23 //d="295 f89b1"
24 b.id = d;
25 b.type = "text/ javascript ";
26 document . getElementsByTagName ("head")[0]
27 . appendChild (b);
28 //a=" http :// asset. pagefair .com/ adimages / adsense .js"
29 b.src = a

Fig. 14. PageFair uses different baits to detect ad-blockers.

detection logic difficult to evade. We separately discuss
both of these methods below.
• Baiting: Figure 14 shows two different types of baits
used by PageFair. PageFair injects these baits with
words like “ad” in the element name or URL to trigger
ad-blockers. The first example shows an injected div el-
ement whose identifier is set to influads_block and it
is not visible on the page. The second example shows
script bait whose source is set to adsense.js, which is
a common script used by Google AdSense. Note that
several other anti ad-blockers also use script baits to
detect ad-blockers which alleviates the need to check
CSS properties of HTML elements. To identify such anti
ad-blockers, we rerun our experiments described in Sec-
tion 3 and remove all page element removal rules (that
block ads based on the div names etc.) from EasyList
and leave unchanged the remaining rules such as the re-
quest blocking rules (that block specific javascripts from
being downloaded for example). We find that 149 out
of 686 websites can still detect ad-blockers. Thus, anti
ad-blockers on these 149 websites use non-CSS based
approaches to detect ad-block users (likely by detecting
the removal of bait javascripts).
• Extension resources: PageFair also attempts to de-
tect the presence of ad-blockers by accessing ex-
tension resources exposed by various ad-blockers at
chrome-extension://. Figure 15 shows how PageFair
accesses extension resources to identify 8 popular ad-
blockers including AdBlock, Adblock Plus, AdBlock

1 var c = {
2 adblock : "chrome - extension :// gighmmpiobklfepjoc
3 namgkkbiglidom /img/ icon24 .png",
4
5 adblock_plus : "chrome - extension :// cfhdojbkjhnkl
6 bpkdaibdccddilifddb /block.html",
7
8 adblock_pro : "chrome - extension :// ocifcklkibdehe
9 kfnmflempfgjhbedch / components /block/block.html",

10
11 adblock_premium : "chrome - extension :// fndlhnanhe
12 doklpdaacidomdnplcjcpj /img/ icon24 .png",
13
14 adblock_super : "chrome - extension :// knebimhccknd
15 higlamoabbnifdkijidd / widgets /block/block.html",
16
17 adguard : "chrome - extension :// bgnkhhnnamicmpeena
18 elnjfhikgbkllg / elemhidehit .png",
19
20 adremover : "chrome - extension :// mcefmojpghnacead
21 nghednjhbmphipkb /img/ icon24 .png",
22
23 ublock : "chrome - extension :// epcnnfbjfcgphgdmggk
24 amkmgojdagdnn /document - blocked .html"
25 }

Fig. 15. PageFair tries to access public extension resources to
detect ad-blockers.

Pro, AdBlock Premium, Adblock Super, Adguard, Ad
Remover, and uBlock. For each type of ad-blocker, it
includes a unique extension identifier, e.g. gighmmpi-
obklfepjocnamgkkbiglidom for AdBlock, and the resource
file path. Note that Chrome generally does not allow
web pages to directly access extension resources un-
less an extension specifies resources as web_accessible_
resources in the manifest file and makes them publicly
accessible. Our investigation showed that some ad-block
extension resources, such as whitelisted pages shown in
Figure 15, are indeed publicly accessible. For example,
Adblock Plus exposes block.html, which allows websites
to get the list of blocked URLs. Thus, ad-blockers are
susceptible to leaking the proof of their presence to anti
ad-blockers.

Response. PageFair provides a whitelist ad service un-
der the acceptable ads manifesto [14]. To understand
PageFair’s service, we installed PageFair scripts on a
test website that uses Google Ads. With ad-blocker, as
expected, we find that Google ads are not served. In-
stead, PageFair shows a replacement ad which is hosted
on PageFair’s domain. It is noteworthy that PageFair’s
domain is whitelisted as part of the acceptable ads pro-
gram. PageFair’s response is reflective of the growing
adoption of acceptable ads by many publishers and ad-
blockers [40].

In addition to third-party anti ad-block services
such as PageFair, several community scripts such as IAB
[26] and BlockAdblock [5] are freely available for pub-
lishers to detect ad-block users. Publishers can serve



Detecting Anti Ad-blockers in the Wild 15

1 function attachOrFire () {
2 var fireNow = false ;
3 var fn;
4
5 // function triggers only when document is loaded

completely
6 if ( document . readyState ) {
7 if ( document . readyState == ’complete ’) {
8 fireNow = true;
9 }

10 }
11
12 fn = function () {
13 if ( _options . useLocalBait ) {
14 beginTest (quickBait , false);
15 } else {
16 log(’ignoreing local bait - download remote ’);
17 fetchRemoteLists ();
18 }
19 }
20 }
21
22 function beginTest (bait , isRemote ) {
23 log(’start beginTest ’);
24 if ( findResult == true) {
25 return ; // found bait
26 }
27 testExecuting = true;
28 // function to create a bait
29 castBait (bait);
30
31 if (! isRemote ) {
32 exeResult .quick = ’testing ’;
33 } else {
34 exeResult . remote = ’testing ’;
35 }
36
37 timerIds .test = setTimeout (
38 function () {
39 // function to test bait
40 reelIn (bait , 1);
41 },
42 5);
43 }

Fig. 16. Key functions in IAB’s anti ad-block script

these scripts from first-party, third-party content deliv-
ery networks, or they can be integrated into third-party
analytics scripts. Below we analyze IAB’s community
anti ad-block script to detect and respond to ad-block
users. Note that this script is available both as an inde-
pendent script and as a Google Analytics wrapper.

Timing. IAB’s script makes multiple attempts to
detect ad-blockers until the maximum_loop limit is
reached. Instead of waiting for an arbitrary time, as
shown in Figure 16, the script waits for the page to
finish loading and then sets the fireNow flag to begin
testing.

Detection logic. IAB’s script injects realistic baits to
detect ad-blockers. As shown in Figure 16, the script
includes an option to specify an external ad-block filter
list. If an external ad-block filter list is specified, the
script parses the list and then creates baits based on the
rules in the list. Otherwise, the default baits are used.

The script checks different CSS properties of these baits
to detect ad-block users.

Response. The script allows publishers to implement
custom responses to ad-block detection. For example,
publishers can show custom notifications, set cookies to
track ad-block users, or load ads from alternate servers.

5 Concluding Remarks
We presented a machine learning based approach to
study anti ad-blockers in the wild. Our main observa-
tion is that at least 686 websites in the Alexa top-100K
currently deploy anti ad-blockers at their home page to
detect ad-block users and respond with visible notifica-
tions. The notifications ask users to either disable ad-
blockers, consider donation, or pay a subscription fee.
Almost a quarter of these notifications cannot be dis-
missed unless users disable ad-blockers or pay up. Such
attempts to undermine ad-blockers could harm their
utility.

The arms race between ad-blockers and anti ad-
blockers is rapidly escalating. To counter anti ad-
blockers, ad-blockers have started to use filter lists to
remove anti ad-block scripts and ad-block detection
warnings. EasyList [6], which is used by ad-blockers
to block ads, now contains rules that specifically tar-
get anti ad-blockers. There are also some dedicated fil-
ter lists to counter anti ad-blockers. Adblock Warning
Removal List [3] mostly contains page element removal
rules to remove warning messages. Anti-Adblock Killer
list [4] mostly contains web request blocking rules to
remove anti ad-block scripts. The rules in these crowd-
sourced lists are tailored to specific anti ad-blockers.
Since anti ad-blockers continuously adjust their behav-
ior, these rules need to be constantly updated to keep
up with the changes. We envision the cat-and-mouse
game between ad-blockers and anti ad-blockers to con-
tinue in future. We expect our findings and analysis to
spur future research along this direction.

Acknowledgements
We thank our shepherd, Vern Paxson, and the anony-
mous reviewers for their valuable feedback that consid-
erably improved the paper. This work is supported in
part by a grant from the Data Transparency Lab.



Detecting Anti Ad-blockers in the Wild 16

References
[1] 2015 Adblocking Report. The PageFair Team. https://blog.

pagefair.com/2015/ad-blocking-report.
[2] AdBlock Plus. https://adblockplus.org.
[3] Adblock Warning Removal List. https://easylist-downloads.

adblockplus.org/antiadblockfilters.txt.
[4] Anti-Adblock Killer List. https://github.com/reek/anti-

adblock-killer/blob/master/anti-adblock-killer-filters.txt.
[5] BlockAdBlock. https://github.com/sitexw/BlockAdBlock.
[6] EasyList. https://easylist-downloads.adblockplus.org/

easylist.txt.
[7] EasyPrivacy. https://easylist-downloads.adblockplus.org/

easyprivacy.txt.
[8] Esprima Javascript Parser. http://esprima.org.
[9] Ghostery. https://www.ghostery.com.
[10] Other Supplementary Filter Lists and EasyList Variants.

https://easylist.to/pages/other-supplementary-filter-lists-
and-easylist-variants.html.

[11] Selenium WebDriver. http://www.seleniumhq.org/projects/
webdriver.

[12] V8 JavaScript Engine. https://code.google.com/p/v8/.
[13] W3C DOM4. W3C Recommendation 19 November 2015.

http://www.w3.org/TR/dom/#mutationobserver.
[14] Allowing acceptable ads in adblock plus. https://

adblockplus.org/acceptable-ads, Nov 2015.
[15] IAB Internet Advertising Revenue Report. http://www.

iab.com/wp-content/uploads/2015/05/IAB_Internet_
Advertising_Revenue_FY_2014.pdf, April 2015.

[16] 2016 Mobile Adblocking Report. The PageFair Team. https:
//blog.pagefair.com/2015/ad-blocking-report, 2016.

[17] S. Afroz and R. Greenstadt. Phishzoo: Detecting phishing
websites by looking at them. In 2011 IEEE Fifth Interna-
tional Conference on Semantic Computing, 2011.

[18] M. Anderson. Sites that block adblockers seem to be suf-
fering. https://thestack.com/world/2016/04/21/sites-that-
block-adblockers-seem-to-be-suffering/, 2016.

[19] J. Barr. Checking in on Wired’s Ad-Blocking Experiment,
Including an Ad-Free Version. http://adage.com/article/
media/checking-wired-magazine-s-ad-blocking-experiment/
303795/, 2016.

[20] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. ZOZZLE:
Fast and Precise In-Browser JavaScript Malware Detection.
In USENIX Security Symposium, 2011.

[21] M. Dunlop, S. Groat, and D. Shelly. Goldphish: Using im-
ages for content-based phishing analysis. In 2010 Fifth Inter-
national Conference on Internet Monitoring and Protection,
2010.

[22] S. Englehardt and A. Narayanan. Online tracking: A 1-
million-site measurement and analysis. In ACM Conference
on Computer and Communications Security (CCS). ACM,
2016.

[23] D. G. Goldstein, R. P. McAfee, and S. Suri. The Cost of
Annoying Ads. In WWW, 2013.

[24] D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An Au-
tomated Approach for Complementing Ad Blockers’ Black-
lists. Privacy Enhancing Technologies (PETS), 2015(2):282–
298, 2015.

[25] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy
in online advertising. In NSDI, 2011.

[26] IAB. Ad Block Detection Code Access Request. https:
//www.iab.com/ad-block-detection-code-access-request/,
2016.

[27] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and
G. Vigna. Revolver: An Automated Approach to the Detec-
tion of Evasive Web-based Malware. In USENIX Security
Symposium, 2013.

[28] L. Kelion. Apple brings ad-blocker extensions to Safari on
iPhones. http://www.bbc.com/news/technology-34173732,
September 2015.

[29] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. In-
ternet Jones and the Raiders of the Lost Trackers: An Ar-
chaeological Study of Web Tracking from 1996 to 2016. In
Proceedings of USENIX Security, 2016.

[30] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing
Your Enemy: Understanding and Detecting Malicious Web
Advertising. In ACM CCS, 2012.

[31] M. Malloy, M. McNamara, A. Cahn, and P. Barford. Ad
blockers: Global prevalence and impact. In ACM Internet
Measurement Conference (IMC), 2016.

[32] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and
M. Baldi. The Online Tracking Horde: A View from Passive
Measurements. In Traffic Monitoring and Analysis. 2015.

[33] T. Mitchell. Machine Learning. Mc-Graw-Hill, 1997.
[34] M. L. Morgan Marquis-Boire, Glenn Greenwald. NSA’s

Google for the World’s Private Communications. https:
//theintercept.com/2015/07/01/nsas-google-worlds-private-
communications/.

[35] J. Newman. Yahoo Mail begins blocking users with ad block
enabled. http://www.pcworld.com/article/3006981/data-
center-cloud/yahoo-mail-begins-blocking-users-with-ad-
block-enabled.html.

[36] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez,
M. Falahrastegar, J. E. Powles, E. D. Cristofaro, H. Had-
dadi, and S. J. Murdoch. Ad-Blocking and Counter Block-
ing: A Slice of the Arms Race. In 6th USENIX Workshop
on Free and Open Communications on the Internet (FOCI),
2016.

[37] E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed Users:
Ads and Ad-Block Usage in the Wild. In ACM Internet
Measurement Conference (IMC), 2015.

[38] M. Z. Rafique, T. Van Goethem, W. Joosen, C. Huygens,
and N. Nikiforakis. It’s free for a reason: Exploring the
ecosystem of free live streaming services. In Proceedings of
the 23rd Network and Distributed System Security Sympo-
sium (NDSS), 2016.

[39] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-Party Tracking on the Web. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

[40] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel.
Measuring the impact and perception of acceptable adver-
tisements. In ACM Internet Measurement Conference (IMC),
2015.

[41] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel,
and G. Vigna. The Dark Alleys of Madison Avenue: Un-
derstanding Malicious Advertisements. In ACM Internet
Measurement Conference (IMC), 2014.

https://blog.pagefair.com/2015/ad-blocking-report
https://blog.pagefair.com/2015/ad-blocking-report
https://adblockplus.org
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer-filters.txt
https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer-filters.txt
https://github.com/sitexw/BlockAdBlock
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist-downloads.adblockplus.org/easyprivacy.txt
https://easylist-downloads.adblockplus.org/easyprivacy.txt
http://esprima.org
https://www.ghostery.com
https://easylist.to/pages/other-supplementary-filter-lists-and-easylist-variants.html
https://easylist.to/pages/other-supplementary-filter-lists-and-easylist-variants.html
http://www.seleniumhq.org/projects/webdriver
http://www.seleniumhq.org/projects/webdriver
https://code.google.com/p/v8/
https://adblockplus.org/acceptable-ads
https://adblockplus.org/acceptable-ads
http://www.iab.com/wp-content/uploads/2015/05/IAB_Internet_Advertising_Revenue_FY_2014.pdf
http://www.iab.com/wp-content/uploads/2015/05/IAB_Internet_Advertising_Revenue_FY_2014.pdf
http://www.iab.com/wp-content/uploads/2015/05/IAB_Internet_Advertising_Revenue_FY_2014.pdf
https://blog.pagefair.com/2015/ad-blocking-report
https://blog.pagefair.com/2015/ad-blocking-report
https://thestack.com/world/2016/04/21/sites-that-block-adblockers-seem-to-be-suffering/
https://thestack.com/world/2016/04/21/sites-that-block-adblockers-seem-to-be-suffering/
http://adage.com/article/media/checking-wired-magazine-s-ad-blocking-experiment/303795/
http://adage.com/article/media/checking-wired-magazine-s-ad-blocking-experiment/303795/
http://adage.com/article/media/checking-wired-magazine-s-ad-blocking-experiment/303795/
https://www.iab.com/ad-block-detection-code-access-request/
https://www.iab.com/ad-block-detection-code-access-request/
http://www.bbc.com/news/technology-34173732
 https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
 https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
 https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
http://www.pcworld.com/article/3006981/data-center-cloud/yahoo-mail-begins-blocking-users-with-ad-block-enabled.html
http://www.pcworld.com/article/3006981/data-center-cloud/yahoo-mail-begins-blocking-users-with-ad-block-enabled.html
http://www.pcworld.com/article/3006981/data-center-cloud/yahoo-mail-begins-blocking-users-with-ad-block-enabled.html

	Detecting Anti Ad-blockers in the Wild
	1 Introduction
	2 Background & Related Work
	2.1 Background
	2.2 Related Work

	3 Detecting Anti Ad-blockers
	3.1 Overview
	3.2 Methodology
	3.3 Feature Analysis
	3.4 Classifier Evaluation
	3.5 In the Wild Evaluation

	4 Analyzing Anti Ad-block Scripts
	4.1 Collecting Anti Ad-block JavaScript Snippets
	4.2 Clustering
	4.3 Analysis and Discussions
	4.3.1 First-Party Anti Ad-Block Scripts
	4.3.2 Third-Party Anti Ad-Block Scripts


	5 Concluding Remarks


