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Abstract

IP-based blacklist is an effective way to filter spam

emails. However, building and maintaining individual

IP addresses in the blacklist is difficult, as new mali-

cious hosts continuously appear and their IP addresses

may also change over time. To mitigate this problem,

researchers have proposed to replace individual IP ad-

dresses in the blacklist with IP clusters, e.g., BGP clus-

ters. In this paper, we closely examine the accuracy of

IP-cluster-based approaches to understand their effec-

tiveness and fundamental limitations. Based on such

understanding, we propose and implement a new clus-

tering approach that considers both network origin and

DNS information, and incorporate it with SpamAssas-

sin, a popular spam filtering system widely used today.

Applying our approach to a 7-month email trace col-

lected at a large university department, we can reduce

the false negative rate by 50% compared with directly

applying various public IP-based blacklists without in-

creasing the false positive rate. Furthermore, using hon-

eypot email accounts and real user accounts, we show

that our approach can capture 30% - 50% of the spam

emails that slip through SpamAssassin today.

1 Introduction

With over 90% to 97% of all emails being spam [4],

spam filtering remains critical to today’s email sys-

tems. There are two main categories of spam fil-

tering techniques: content-based and blacklist-based.

While content-based filtering is the canonical way, the

blacklist-based approach is receiving much attention re-

cently because it does not always rely on email content

and can be more efficient and less susceptible to eva-

sion. All widely-used blacklists (e.g., Spamhaus, Spam-

cop [9, 8]) today rely on IP addresses to block email

traffic originated from hosts with consistent spamming

behavior.

While IP-based blacklist is simple and lightweight,

compiling and maintaining such lists is challenging—

hosts may change IP addresses over time; more hosts

may be compromised and existing compromised hosts

may be patched. Therefore most IP blacklists today pro-

vide a very limited coverage of all malicious IPs [25].

Rather than constructing blacklists based on individ-

ual IP addresses, previous work has studied building

blacklists based on IP clusters, e.g., clustering using

BGP prefixes [28]. By identifying a range or a cluster

of IP addresses within the same administrative bound-

ary, we are able to construct the reputation for the entire

cluster instead of individual IP addresses. The cluster-

based reputation allows one to infer the reputation of IP

addresses never previously observed.

In this paper, we thoroughly analyze the effectiveness

of IP-cluster-based blacklists for spam detection. In par-

ticular, we explore the following questions:

• Under what scenarios do IP-clusters work? And

how much coverage improvement can we obtain

from IP clusters compared with an individual-IP

based scheme?

• What is the right granularity for IP-clusters and

how to obtain such clusters with accurate cluster

boundaries?

To answer the above questions, we thoroughly

studied three different clustering approaches: BGP-

based, DNS-based, and combined clusters. We select

these clusters because they all reveal the administra-

tive boundaries of IP addresses. BGP clusters are con-

structed from the routing perspective, while DNS clus-

ters are from the Web/email relay perspective. In par-

ticular, we propose to examine the reverse authoritative

name server (rANS) and reverse DNS (rDNS) names for

DNS clusters, because they are configured by the IP ad-

dress owners and cannot be easily modified by spam-

mers. As BGP and DNS clusters can form complex bi-

partite graphs, the combined clusters capture their inter-

sections and thus are more fine-grained.

Based on these observations, we further propose and

implement a combined cluster-based approach that can

be easily incorporated into SpamAssassin, a popular

spam filtering system that uses a combination of content-



and blacklist-based spam filtering techniques. We apply

our approach to both honeypot email accounts and a 7-

month email log that contains more than seven million

emails. Our key findings include:

• As expected, most large BGP prefixes (e.g., /8,/9)

are too coarse-grained for building cluster-based

blacklists. However, we observe 17.7% of mid-size

BGP prefixes (e.g., /15 - /20) are also too coarse-

grained for spam filtering.

• DNS information can augment BGP prefixes. It can

help break 26.3% of the BGP prefixes into smaller

clusters, thereby reducing the false negative rate by

5-10%.

• We have built a system that combines BGP and

DNS information to produce a cluster-based black-

list with a significant advantage over the existing

IP-based blacklists (DNSBL) [9, 8, 7]. It can de-

tect more than 50% of the spam not captured by

the existing IP-based blacklists while maintaining

comparable false positive rates.

• The combined cluster-based blacklist can be eas-

ily integrated into spam filtering systems such as

SpamAssassin. When applied to honeypot email

accounts, the integrated system can capture 30% -

50% spam emails missed by SpamAssassin.

Our work is the first to systematically examine the

accuracy and potential of various IP-cluster based ap-

proaches for spam detection. Our results show that

it is critical to obtain the correct boundaries for IP-

clusters. In practice, it is desirable to combine differ-

ent sources of information, e.g., BGP, DNS to obtain

fine-grained clusters with good coverage on new IP ad-

dresses. Performance-wise, our system currently uses

only tens of millisecond for a single IP lookup without

any optimization and 2.2GB database storage space to

store the information for 2.7 million IP addresses.

The remainder of the paper is structured as follows.

We first review related work in §2. We use two examples

to show the complex relationship between BGP clus-

ter and rANS clusters, followed by the implication on

blacklisting in §3. We then present our data collection

and experimental setup in §4. §5 and §6 elaborate on

our detailed analysis on different clusters and how we

combine them. In §7, we show how cluster-based repu-

tation can be effectively applied in spam mitigation. Fi-

nally, §8 concludes the paper.

2 Related Work

Spam detection has been the subject of active re-

search for years. Numerous techniques have been pro-

posed. Some are content-based (e.g., [19, 27, 20]), and

some newly proposed ones are behavior-based (e.g., [12,

21, 22, 14]). Many focus on detecting individual spam

emails, as opposed to identifying spam-campaigns as a

group (e.g., [30, 31, 11]). Although spam-campaign de-

tection can be highly effective for organizations with ac-

cess to a large amount of spam emails, it is usually chal-

lenging for small organizations with a limited view. As a

result, they usually resort to third-party provided black-

lists such as Spamhaus [9], SpamCop [8], SORBS [7],

and NJABL [13].

In this paper, we focus on improving blacklist-based

spam filtering given its popularity and importance. Most

blacklists today are based on individual IP addresses. In

practice, many IP addresses are bi-modal in their spam-

ming behavior [28]: they have either consistently high

or low spam ratios over time. Thus, various black-

lists [9, 8, 7] are created to block persistent spamming

IP addresses. However, since a majority of spamming

IP addresses appear only once and we continuously ob-

serve previously unseen IP addresses send only a few

emails (either spam or legitimate emails), it is difficult to

predict whether a new IP is good or bad. Consequently,

IP-based blacklists are largely incomplete in terms of

their IP address coverage [25].

To improve the coverage of spamming IPs, previous

studies have proposed to replace individual IP addresses

with clusters [28]. Clusters can capture the administra-

tive/configuration boundaries of IP addresses, so that IPs

within the same cluster are likely subject to similar secu-

rity or network policies [18]. Typically IP clusters can be

constructed using information from BGP [28], AS num-

ber [21], and dynamic IP ranges [29]. In fact, a recent

study [14] claimed that AS number is the most impor-

tant feature in their spam detector. This is followed by

a more detailed study [26] on how to determine whether

a BGP prefix is bad. By considering the reputation for

a cluster of IP addresses instead of those of individual

ones, we can significantly increase the spam-filtering

coverage of unseen IP addresses. Although this sounds

appealing, it relies on the assumption that IP clusters

capture the correct boundaries between good and bad IP

addresses. Given that the granularities of different IP

clusters differ, these existing cluster-based spam filter-

ing approaches often introduce a high false positive rate

that prevents them from being adopted in practice. To

reduce the false positive rate, our clustering techniques

refine the AS number and BGP prefix based clusters

into much more fine-grained ones that more accurately

capture the administrative boundaries, hence making IP-

cluster-based blacklists more practical.

More specifically, in our study, in addition to previ-

ously used BGP information, we also examine reverse

DNS records as a way to construct IP clusters. This and

other DNS information previously have not been fully

explored for clustering IP addresses. The closest work



uses rDNS information to identify dynamic or dial-up IP

rDNS names (e.g., regular expression) [3, 2] and blocks

the IP addresses with such rDNS naming convention.

They differ from our proposal in that they are using a

set of manually crafted heuristics or rules to identify cer-

tain types of networks(e.g., dial-up user networks) while

our cluster using DNS information is much more general

and can be fully automated.

Note that we do not use forward DNS mappings be-

cause it can be easily modified by spammers, e.g., fast-

flux networks typically employed by scam sites [17, 15],

to evade detection. While the forward mapping between

DNS names and IPs can change very frequently, the re-

verse mapping, which is set up by IP address owners,

usually changes less frequently. It is difficult to cre-

ate large-scale DNS fast-flux techniques on reverse DNS

mapping.

3 Motivating Examples

Previous studies have investigated using BGP prefix

as the network-aware cluster to group the spamming be-

havior [28]. However, the accuracy of the administrative

boundary it captures depends on the granularity of the

BGP prefix information. For instance, a large prefix can

be further assigned into smaller prefixes that may not be

externally observable in public routing data. As a result,

what a prefix captures is often a coarse-grained admin-

istrative domain, and thus may not be detailed enough

to block spams. DNS information, such as rANS and

rDNS names, also reveals the administrative boundary

of IP addresses. It can be more fine-grained than BGP

information for some IPs but more coarse-grained for

other IPs. Next, we show two motivating examples from

real data to illustrate the complex relationship between

these two clustering approaches.

First we study the example in Figure 1, with one pre-

fix and four rANS names. They form a bipartite graph,

where the upper-level nodes represent BGP prefix clus-

ters and the lower-level ones denote rANS clusters. A

line is drawn between a prefix and a rANS whenever

there is an IP (1) belonging to the prefix cluster and (2)

the rANS is responsible for resolving this IP address.

Figure 1 shows that prefix 69.61.0.0/17 has two sets

of rANS names: ns1-2.gunsprohibited.com

and ns1-2.webserverdns.com. Figure 2 illus-

trates the detailed IP range inside the prefix. The IP

ranges with different set of rANS actually have dis-

tinct spamming behavior. The IP addresses under the

rANS ns1-2.gunsprohibited.com send purely

spam, while the IP addresses under the rANS ns1-2.

webserverdns.com send only legitimate emails.

The disjoint behavior of these two sets of addresses is

likely due to different organizations these two groups of

IPs belong to, as manifested by the rANS names. By

assigning IP addresses into two corresponding rANS-

based clusters, we are able to separate the good IP ad-

dresses from bad ones in terms of spamming behavior.

In the previous example, we show that rANS can

help find smaller and more accurate clusters within

a large prefix cluster. Now we show a contrasting

example where prefixes are more fine-grained com-

pared with rANS clusters. Consider a large ISP -

comcast.net (Figure 3) with hundreds of BGP pre-

fixes. All of the prefixes share the same set of rANS,

namely dns101-103.comcast.net. Obviously

the granularity of rANS clusters is too coarse given

many IP prefixes within the same rANS. But the

question is whether it is indeed necessary to decompose

comcast.net into several hundreds of smaller BGP

prefix clusters? Are they better in terms of finding

the boundary between spamming and non-spamming

behavior? In this case, the answer is yes. From our

data, we found the spam ratio for rANS cluster is 0.76

for all three rANS clusters (since they always appear

at the same time), which means that there are both

legitimate emails and spam originating from the IPs

under each rANS cluster. But if we study the BGP

prefix clusters, their spam ratios are either close to 1.0

or well below 0.5. In fact, we found that the legitimate

incoming/outgoing mail servers of comcast.net fall

into two distinct BGP prefix clusters, and other prefixes

are mostly dynamic IP ranges for DSL users. This

information can be obtained by examining the Sender

Policy Framework (SPF) [5] of comcast.net, which

is encoded as a TXT record (a type of DNS record) and

can be queried via normal DNS lookups. The response

of comcast.net looks like the following:

comcast.net. 300 IN TXT "v=spf1

ip4:76.96.28.0/23 ip4:76.96.27.0/24

ip4:76.96.30.0/24 ip4:76.96.59.0/24

ip4:76.96.60.0/23 ip4:76.96.62.0/24

ip4:76.96.68.100 ip4:76.96.68.101

ip4:76.96.68.102 ip4:76.96.68.103

?all"

In the SPF response, “ip4” indicates that the address

range is IPv4. They correspond to the expected IP ranges

for outgoing mail servers for a domain. “?all” indi-

cates for all other IP addresses, their behavior of sending

emails is unspecified. Correlating with the BGP prefix

clusters, all the SPF IP ranges belong to BGP prefixes

76.96.24.0/21 and 76.96.48.0/20 as shown in Figure 3.

These IP ranges differ from those DSL ones in that they

are more likely to send legitimate emails given the SPF

information. Further investigation shows that the aggre-

gated spam ratios of these two prefix clusters are indeed
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Figure 1. More detailed spamming behavior from

DNS data.
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Figure 2. Smaller administrative boundaries in

69.61.0.0/17

very low while most other prefixes send purely spam.

Note we cannot simply whitelist IP addresses in the

SPF records while blacklisting all other ones, because

many ISPs or domains may either not provide SPF data

or the SPF provided is too relaxed (e.g., all the IP

addresses are listed). Also spammers can spoof SPF

records as well, i.e., spammers who own the domains

can set the SPF records such that all their IP addresses

are listed.

In summary, we have illustrated examples where

BGP prefix is either more accurate or less accurate com-

pared to the DNS information for classifying spamming

vs. non-spamming mail server IPs, motivating our work

of combining these two sources of information.

4 Methodology

In this section, we discuss our data-collection

methodology to investigate the properties of various net-

work clusters based on BGP prefix and DNS informa-

tion.

4.1 Data and experimental setup

Data source. The data is collected from the mail

servers of University of Michigan EECS department,

over the time period of 2008.12.7 - 2009.7.9 ranging

over 155 days. It consists of about seven million emails,

of which more than 5.5 million emails are spam emails

(according to SpamAssassin) from 2,737,006 distinct IP

addresses, 52,498 distinct BGP prefixes. Each log en-

try has four pieces of information: timestamp, sender IP,

spam tag, and spam score output by SpamAssassin.

Spam filter - SpamAssassin. Our mail server runs

SpamAssassin [1] as the spam filtering system. It em-

ploys several detectors which include Spamhaus [9]

(IP-based blacklist) and a locally maintained IP-based

blacklist. Every email is labeled as either spam or non-

spam based on its score computed by SpamAssassin.

The score is combined from the result of all detectors.

If the score exceeds a fixed threshold (5.0 in our case),

the corresponding email will be labeled as spam.

Although our mail server is a single vantage point, it

does receive spam from a variety of IP address ranges.

Figure 4 shows the CDF of IPs observed by the mail

server. It roughly conforms to the range in previous stud-

ies, e.g., Spamscatter [11] and the work by Ramachan-

dran et al. [21].

Other data. To study the characteristics of clus-

ters, we also leverage the dynamic-IP ranges produced

by UDMap [29] to correlate with the clusters produced

from the university data. This information of dynamic-

IP ranges is of interest because dynamic IPs are more

likely to send spam emails [29]. Further, we use the

Hotmail history correlated with the IP addresses in the

university data set from about the same time period to

enhance the visibility of our dataset.

Experiment setup. At the end of each day, we ex-

tract the mail server log that contains the connecting IP

and SMTP session for each email, and perform the fol-

lowing three DNS queries on the IP addresses we see for

that day:

1) rDNS query on the IP to obtain its rDNS name

(or hostname) and its reverse authoritative name servers

(rANS).

2) Query on reverse domain name’s MX record as

well as the MX record of rANS domain.

3) Queries on three popular IP-based blacklists:

Spamhaus, Spamcop, and Sorbs. The results are used

for comparison with the cluster-based reputation.

We use an example to illustrate this process. Given

an IP address, 141.211.22.134, we first perform the

reverse iterative DNS query to get the rDNS mx1.

umich.edu and the rANS dns.itd.umich.edu

and dns2.itd.umich.edu. We subsequently ex-

tract the reverse domain name. The rDNS name

mx1.umich.edu has the domain name umich.edu.

The rANS dns.itd.umich.edu and dns2.itd.

umich.edu has the domain name itd.umich.edu.

If not already cached, we then perform MX record

query on both domain names umich.edu and itd.

umich.edu to get the MX records: mx1.umich.
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Figure 3. Prefix to DNS bipartite graph for comcast.net to illustrate DNS and BGP prefix relationships.
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Figure 5. CDF of spam scores from SpamAssassin

edu, mx2.umich.edu and mx3.umich.edu. We

finally record the results of querying the IP address

141.211.22.134 for the three blacklists.

4.2 Appearonce IP addresses and new IP
trend

In our data set, we observe that more than 80% of IPs

were active only for one day. Most of these IPs sent only

one to five spam emails, however, collectively they con-

tributed to about 40% of all the spam emails and 2.4% of

all the ham (non-spam) emails received. Further analysis

shows that about 34.6% of these appear-once IPs are dy-

namic IPs. In contrast, only 15.3% of the remaining IPs

are dynamic, suggesting that appear-once IP addresses

are more likely to be dynamic IPs, thus are less likely

legitimate mail servers. Nevertheless, we cannot simply

block them as they might send valid emails as well.

These appear-once IPs span across the entire training

period. To quantify their impact, we compute the num-

ber of new IP addresses observed on a monthly basis.

The result indicates this number keeps increasing each

month starting at 189,994, reaching 603,284 in the last

month. We expect it to continue growing given our small

vantage point until we observe most IPs. Thus, main-

taining a reputation history for individual IP addresses

will not work well, as there will always be new instances

of unseen IPs appearing every day. This result confirms

previous results that about 85% of IP addresses send less

than 10 emails [21].

4.3 Data cleaning

Since we use the spam classification produced by

an imperfect detector – SpamAssassin, we may not

have the ground truth. Figure 5 shows a mostly bi-

modal spam score distribution assigned by SpamAssas-

sin where most of the emails either have a high score

(much higher than 5.0) or a low score (much less than

0). However, we do see a fraction of emails (less than

8%) that fall into the score range of 5(±3), which may

contribute to false positives and false negatives using the

default threshold of 5.

To investigate the false negative behavior, we set up

a honeypot account within our department (advertised

since 2007 on personal Web pages but not used), through

which we found that SpamAssassin has a non-negligible

false negative rate—155 (16%) missed spams out of 965

recent spam emails. The false positive rate of SpamAs-

sassin, however, is very low as reported by previous

work [25].

It is important to reduce the false negatives of Spa-

mAssassin, as those IP addresses sending spam may ap-

pear legitimate and thus cause inaccurate evaluation of

clustering. One source of information we use is IP-based

DNSBLs. Previous studies [16, 23, 21] show that signif-

icantly more spam are detected by combining multiple

blacklists. Further, these studies show that a large frac-

tion of spammer IP addresses will eventually be listed



after some time (e.g., 2 months or so) in blacklists if not

at the time spams from such addresses are received. As

a result, we decided to conduct the data cleaning process

by querying 5 popular blacklists (Spamhaus, Spamcop,

SORBS, NJABL, CBL) approximately 2 months after

we received the emails. Any IP address listed in at least

two of the blacklists will be considered bad and we treat

all the emails they sent as spam.

Another source of information to facilitate our anal-

ysis is obtained from Hotmail servers. IP addresses that

send purely spam to Hotmail server (reported by the

Hotmail spam filter) will be considered as spamming ad-

dresses as well. For IPs that send any legitimate email to

Hotmail server, we conservatively do not consider them

as bad IPs to prevent false positives.

To summarize, we consider a given IP address as bad

or spamming IP if it satisfies any of the following three

conditions.

1. It has a high spam ratio > 90% (reported by Spa-

mAssassin)

2. It is captured by at least two blacklists that are

queried after two months.

3. It never sends legitimate email to Hotmail and all

the emails sent by the IP are classified as spam.

We are able to reduce the false negative rate down to

4.5% in the honeypot account after applying these rules

while introducing 0 false positives in 3 of our personal

accounts. After the data cleaning process, we can char-

acterize the spamming behavior more accurately.

Note that our approach is conservative to obtain fairly

accurate false negative evaluation by ensuring that bad

IPs identified for evaluation are not misclassified. Nev-

ertheless, it is not possible to completely ensure that all

bad IPs are caught in this manner, and those IPs may

appear in the evaluation result as good IPs while clas-

sified as bad IPs due to the its cluster’s reputation, thus

still causing slightly inflated false positives in our eval-

uation.

4.4 Different clusters analyzed

In this study, we measure the characteristics of each

cluster type based on BGP prefix and DNS informa-

tion and then propose ways to integrate them to ob-

tain increased benefit while minimizing the shortcom-

ings of individual approaches. Specifically, the clus-

ters we build include BGP prefix clusters, DNS clusters

(rANS information combined with rDNS name informa-

tion). Since BGP prefix is a well-known technique, we

use it as the baseline for comparison. In the next section,

we explore the relationship between the BGP prefix and

DNS clusters to investigate how to utilize the DNS infor-

mation in combination with the BGP prefix information

to cluster IP addresses for accurate spam detection.

5 Cluster-based Spam Filtering

In this section, we study the effectiveness of cluster-

based blacklists. We first consider BGP prefix clusters

since they are one of the most common ways of cluster-

ing IP addresses. However, as stated before, the accu-

racy of BGP prefix cluster depends on the visibility of

the prefix structure in public routing data. We also study

DNS-based clusters as DNS information may be used to

track the corresponding host administrative boundaries.

We found DNS-based clusters sometimes yield better

prediction accuracy than BGP prefixes, especially in the

cases where they provide more fine-grained boundaries.

Given that these two types of information can comple-

ment each other, we consider combining them to derive

“combined clusters,” which are found to improve spam

detection by more accurately predicting host spamming

behavior.

5.1 BGP prefix clusters

From Route Views [24], a public BGP data source,

we sampled routing table snapshots of 7 distinct days

from March 7th to March 13th 2009. We use the longest

matching prefix of the format “1.2.3.4/16” to represent

IP’s cluster. For those 5000 IP addresses not associated

with any prefix, we resort to whois database [10] to find

their associated prefixes.

5.2 DNS clusters

To utilize DNS information, we consider two ways

for cluster construction.

rANS clusters: The Reverse Authoritative Name

Server Cluster (rANS cluster) groups hosts by their

authoritative name servers. For each incoming IP,

we perform reverse DNS lookup iteratively to iden-

tify its authoritative name servers. Note that a recur-

sive lookup is needed to collect several levels of name

servers, each returned by a different level of author-

ity such as 1.in-addr.arpa., 2.1.in-addr.

arpa. and so on. For instance, take Figure 3 as an ex-

ample, dns101-103.comcast.net is the last level

rANS for IPs in all BGP prefixes. Note that all the three

rANS are associated with all other BGP prefixes, mean-

ing that their granularity is the same. However, there

can be some rANS that are associated with more BGP

prefixes (e.g., our university uses rANS from another

university as backup). Even for IPs without a reverse



hostname, i.e., NXDOMAIN response, we can still ob-

tain additional information of other servers in the DNS

hierarchy. Note we do not use the host name reported

in the HELO message of an SMTP connect because the

hostname can be easily spoofed. An IP address may be

resolved by multiple name servers (e.g., for load balanc-

ing). We only pick the name servers in the lowest level

which represent the most fine-grained administrative do-

main. If there are multiple ones at the lowest level (as is

the case in Figure 3), we pick the one that is associated

with the minimum number of BGP prefixes indicative of

the most fine-grained administrative domain.

Naming cluster: Within an administrative boundary,

hosts play different roles. Usually only a subset of IPs

are used to set up mail servers. It is necessary to sepa-

rate these mail-servers from the remaining ones. The re-

verse DNS-names of IP addresses provide hints on how

to classify them. Within each administrative boundary

identified by a BGP prefix and/or rANS, we identify four

common naming patterns:

1. All rDNS names are in the same domain and share

a similar naming pattern. Table 1 shows one such

example, where all IPs are dynamic IPs with an ag-

gregated spam ratio of 99.6%.
2. All rDNS names are within the same domain, but

with non-uniform naming patterns. For instance, an

enterprise can have several legitimate mail servers

as well as other non-server hosts. To discover the

former, we resort to other sources of information -

MX records, SPF sender IP ranges and naming con-

vention as specified in RFC [6] that recommends

the DNS names of mail servers to begin with key-

word ’smtp’, ’mail’, or ’mx’. The example in Ta-

ble 2 includes a legitimate mail server listed in the

first row, confirmed by MX records of the domain

tvtel.pt. For clustering purposes, these servers are

separated into their own naming clusters.
3. IPs without any rDNS names are mixed together

with IPs with rDNS names. They are separated into

different naming clusters as shown in Table 3.
4. Many domains exist, with each including only a

few IPs. Table 4 shows one such example. Based

on our observation, such cases are usually corre-

lated with spamming behavior. With many do-

mains registered within the same administrative do-

main, it is highly likely that they are owned by

spammers who set up corresponding MX records

or SPF to make them appear as legitimate mail

servers.

Here we normally use the last two tokens as domain

name (e.g., umich.edu from www.umich.edu). How-

ever, if the last code is country code, then we use the

last three tokens as domain name (e.g., www.sjtu.edu.cn

Table 1. Cluster’s naming pattern 1  consistent

naming.

IP address rDNS name Spam Ham

Count Count

190.82.167.51 190-82-167-51.adsl.tie.cl 1 0

190.82.165.55 190-82-165-55.adsl.tie.cl 1 0

190.82.164.20 190-82-164-20.adsl.tie.cl 1 0

190.82.151.205 190-82-151-205.adsl.tie.cl 1 0

190.82.151.169 190-82-151-169.adsl.tie.cl 1 0

190.82.151.158 190-82-151-158.adsl.tie.cl 1 0

... ... ... ...

Table 2. Cluster’s naming pattern 2  mixed w/ le

gitimate mail servers.

IP address rDNS name Spam Ham

Count Count

88.157.32.73 webmail.tvtel.pt 0 1

88.157.237.48 rev-88-157-237-48.tvtel.pt 1 0

88.157.113.191 rev-88-157-113-191.tvtel.pt 1 0

88.157.204.61 rev-88-157-204-61.tvtel.pt 1 0

88.157.218.127 rev-88-157-218-127.tvtel.pt 1 0

88.157.71.28 rev-88-157-71-28.tvtel.pt 2 0

88.157.85.30 rev-88-157-85-30.tvtel.pt 2 0

... ... ... ...

from sjtu.edu.cn). Exception for this is that when

there are only three or even two tokens altogether for

a country-code-ending rDNS name, we will still use

the last two tokens as domain name (e.g., yahoo.cn

from www.yahoo.cn). To fully utilize DNS information,

we construct DNS clusters by converting naming-based

clusters to rANS clusters. For each rANS cluster, we at-

tempt to match any of the four common naming patterns

to further split it into smaller clusters. This enables us to

discern good IPs that may share the same administrative

domain with spamming IPs.

5.3 Cluster granularity

Ideally, we want to identify clusters consisting of

mostly good or bad IPs. Obviously the granularity of the

clusters plays an important role here. The extreme case,

where each cluster consists of a single IP, falls back to

the per-IP based scheme and is no longer useful for pre-

dicting spamming behavior of unseen IPs.

First we cluster the 2,737,006 distinct IP addresses

described previously into 92,449 BGP prefix clusters

and 60,659 rANS clusters, respectively. Thus on av-

erage, BGP prefix clusters are more fine-grained than

rANS clusters. However, it is the distribution instead of

the average that matters. Figure 6 shows the distribution



Table 3. Cluster’s naming pattern 3  (Some) IPs

without rDNS names.

IP address rDNS name Spam Ham

count count

208.53.152.220 mta220.pmxa-net.net 1 0

208.53.152.221 mta221.pmxa-net.net 0 2

208.53.152.219 mta219.pmxa-net.net 0 2

208.53.185.230 N/A 1 0

208.53.185.234 N/A 6 0

208.53.185.228 N/A 8 0

208.53.147.84 N/A 1 1

... ... ... ...

Table 4. Cluster’s naming pattern 4  many do

mains.

IP address rDNS name Spam Ham

count count

89.30.144.62 familyhunterburns.net 1 0

89.30.145.171 myfeedstore.net 1 0

89.30.145.170 myephoto.net 2 0

89.30.144.110 advantageatv.net 2 0

89.30.145.175 mywirelesscentral.net 2 0

89.30.145.173 mymusicchannel.net 1 0

89.30.145.178 newdatasystems.net 2 0

89.30.145.179 nirvanashopping.net 1 0

of the number of BGP prefixes an rANS cluster spans,

and vice versa. About 10% of the BGP prefix clusters

can be further divided into smaller clusters by consid-

ering rANS information. When applying naming clus-

ters to rANS clusters, we obtain 106,356 DNS clusters

which is slightly more than BGP prefix clusters.
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Figure 6. The granularity relationship between

BGP prefix clusters and rANS clusters.

5.4 Spamming behavior

We examine the distribution of spam ratio for each

cluster type over the 7-month duration as shown in Fig-

ure 7. The figure shows how diverse the spamming
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Figure 7. CDF of spam ratio for different clusters.
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Figure 8. Clustering false positive and false nega

tive rate.

behavior is within the same cluster (How likely that

some IPs send spam while others send legitimate emails

within the same cluster) and how they differ between

different types of clusters. We can see that in the fig-

ure, the spam ratio distribution of BGP prefix clusters

is closer to that of IP than of DNS clusters. BGP pre-

fix and IP-based clusters both have about 0.4% of cases

with 0 spam ratio. The curve shapes for BGP prefix clus-

ters and DNS clusters are similar, but their initial values

differ by more than 9%. In particular, more than 17%

DNS clusters have spam ratio of 0. This suggests that

BGP prefix clusters can effectively identify clusters with

spamming IP addresses while DNS is useful for uncov-

ering legitimate servers. This is explained by the obser-

vation shown later in §5.6 that BGP prefix cluster more

closely reflects dynamic IP ranges where a significant

amount of spam comes from [29].

Next, we study the effectiveness of using cluster’s

spamming behavior to classify good and bad IPs. The

idea is that we define a threshold of spam ratio for de-

ciding whether a particular cluster is good or bad. If

the spam ratio exceeds the threshold, we consider any

IP address within the cluster as bad IP. We pick one day

as testing and the remaining earlier days of data as train-

ing data, changing the testing data over 30 days from

Jun 10th to Jul 9th, 2009. We plot the graph by adjust-

ing the threshold from 0.8 to 1.0 at the granularity of



0.01, averaging across different testing days in Figure 8.

We can observe that DNS clusters have higher accura-

cies compared with BGP prefix clusters since they can

further divide an administrative domain into potentially

good IPs and bad ones based on the naming pattern.

5.5 Cluster persistence

Behavior of clusters clearly is more persistent than

that of individual IPs due to longer history. Most IPs

appear only for a day or two, but 80% of the clusters

appear in at least 8 days out of the 7-month duration

of our study. The cluster behavior also shows consis-

tency as the average standard deviation of spam ratio

across all clusters over the 7-month duration is as low

as 0.09 (consistent with the result by Venkataraman et

al. [28]). This suggests that whenever a cluster is iden-

tified as good or bad, it remains so for a relatively long

time period. Cluster-based analysis is therefore more ef-

fective for spam filtering compared to purely IP-based

approaches. In Figure 9, we show an example of how

different IPs appear across time in one of the largest pre-

fix, which belongs to a large ISP in India. Interestingly,

in this case, all IPs are sending purely spam from this

prefix, showing persistent spamming behavior within a

cluster.
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Figure 9. Different IP addresses appeared across

different days for one of the largest prefix
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Figure 10. Training time vs. FP and FN

Table 5. Correlation of dynamic IPs with spam

Dynamic IP Static IP

No. of Spam 1,199,468 (22.1%) 4,235,613 (77.9%)

No. of legitimate email 12,258 (0.5%) 2,327,932 (99.5%)

In Figure 10, with the spam ratio threshold set to

0.98, we can see that the false positive and false nega-

tive rate of both BGP prefix clusters and DNS clusters

decrease with increased training time. The result fur-

ther suggests that with sufficient training time, we can

classify new IPs based on their cluster history with high

accuracy. Longer training time leads to more stable re-

sults which in turn supports persistent spamming behav-

ior of clusters. Note that we do not observe clusters com-

pletely disappear during our study, i.e., all IP addresses

within a cluster stop sending emails at some point, de-

spite a possible conjecture that spamming botnets may

create dynamic time-based behavior of the clusters (e.g.,

rDNS names changed and thus old clusters based on

DNS information may become obsolete). We plan to

investigate this further, as our clustering approach opens

new potential opportunities for detecting botnets.

5.6 Correlation with dynamic IPs

Given that past studies have shown that spam of-

ten originates from dynamic IPs, we correlate the clus-

ter data with dynamic IP ranges based on UDMap [29]

which is the latest known, accurate source for such data.

The dynamic IP ranges are gathered by analyzing the

Hotmail user login traces [29]. We found that out of

the 2,737,006 IP addresses, 786,460 are identified as

dynamic with each IP assigned to a unique dynamic

IP range ID. Surprisingly, we observe that dynamic IPs

only contribute to 22.1% of the total spam as shown in

Table 5. This deviates from the finding in UDMap [29]

that shows dynamic IPs contribute to 42.2% of the total

spam. Two possible reasons can explain this difference:

(1) Our vantage point captures different spamming be-

havior from what was seen in Hotmail. (2) Spammers

are shifting to using static IP addresses for sending spam

to improve spam delivery, possibly because of the more

prevalent blocking of direct connection to port 25 from

dynamic IPs and the inclusion of dynamic IP ranges by

many popular blacklists [9, 7].

We exclude prefixes containing at least one static IP

address based on UDMap classification results, thus ob-

taining 4325 BGP prefixes that contain purely dynamic

IPs. In contrast, there are only 254 rANS clusters con-

taining purely dynamic IP addresses. Further, by cor-

relating them with the dynamic IP range ID produced

by UDMap (each dynamic IP range is assigned a unique

ID), we found that these BGP prefixes covers 9785 dy-



namic IP range ID (7% of all the ranges) while rANS

only covers 406 dynamic IP ranges (0.5%). Further

analysis reveals that out of these 4317 BGP prefixes,

64% of the BGP prefixes match exactly with one dy-

namic IP range. 34% of them strictly contains more

than one dynamic IP range. The remaining 2% BGP pre-

fixes are either a strict subset of one dynamic IP range

or overlap with more than one dynamic IP range (Those

dynamic IP ranges are also covered by other BGP pre-

fixes).

This indicates that BGP prefix clusters correlate bet-

ter with dynamic IP addresses than rANS clusters, and

it can be explained by the coarse-grained properties of

most rANS clusters. For instance, in the previous ex-

ample illustrated in Figure 3, some of the BGP prefixes

belong to DSL IP ranges, while many others are Com-

cast legitimate mail servers. In this case, all Comcast

IPs fall into the same set of rANS clusters but belong to

distinct BGP prefix clusters.

5.7 Choice of cluster type

To study which cluster performs the best and when,

we need to define the metric for good clusters. The

natural metric would be whether IPs within a clus-

ter share the same spamming behavior (sending mostly

spam or mostly legitimate emails). The cluster granu-

larity clearly plays an important role in determining its

accuracy. We study each type of clusters separately.

The accuracy of BGP prefix clusters, as previously

discussed, depends on the visibility of BGP routing ta-

ble. Sometimes, a larger prefix may be reallocated into

smaller ranges not externally observable. As a result, we

conjecture that larger BGP prefixes may not accurately

discern spamming behavior.

From Figure 8, by setting the threshold of spam ratio

to 0.95, we are able to obtain a relatively low false posi-

tive rate. We then study the false negative distribution by

varying BGP prefix sizes. Figure 13 illustrates the aver-

age false negative count per cluster for each BGP prefix

size, indicating that /8 and /9 BGP prefix have the worst

false negative performance, and smaller prefixes such as

/20 - /24 have quite low false negative count per cluster.

This result validates our conjecture. We can conclude

that fine-grained BGP clusters are needed to accurately

capture spamming behavior.

rANS clusters, as discussed in §5.3, are in general

more coarse-grained than BGP prefixes. In fact, based

on our reverse DNS query results, we found that

the largest rANS clusters observed are those close

to root name servers, e.g., tinnie.arin.net,

ns.lacnic.net, ns-sec.ripe.net, and

ns-pri.ripe.net. Some countries such as Korea

also contribute to this. We found that most of the

IPs in Korea do not have a hostname and they all

share the same set of reverse name servers such as

e.g., a.dns.kr and b.dns.kr. Although poorly

maintained DNS information usually implies spamming

behavior, i.e., large rANS clusters all have spam ratios

greater than 90%, they may still include legitimate mail

servers. Also, poorly maintained DNS information

occur in different networks. We found that IP addresses

under these rANS do not cluster well because they

may belong to different BGP prefixes, thus crossing

different administrative boundaries. Especially for

rANS clusters close to root name servers, sometimes

they are associated with up to several thousand BGP

prefixes.

The use of Naming cluster is only applicable for a

known administrative boundary since the observation of

naming patterns are drawn from within an administrative

boundary. Although 1/3 of the IP addresses do not have

rDNS name, they are mixed with IP addresses that have

rDNS name and can be considered as as a type of pattern

as mentioned in Table 3. As a result, we exploit naming

pattern that can be a good indicator to split an existing

cluster into finer-grained ones that may exhibit different

spamming behavior.

In conclusion, neither BGP prefix cluster nor rANS

cluster is perfect. However, they complement each

other in terms of capturing the administrative bound-

aries. This leads to the idea of combining them along

with naming clusters to more accurately separate good

IP addresses from bad ones.

6 Combined clusters

In previous examples, we show that more fine-

grained clustering can usually lead to more accurate

identification of administrative boundaries and effec-

tively separate good IP addresses from bad ones in terms

of spamming behavior. In this section, we discuss in

more detail how we can combine different types of clus-

ter information. The idea is to first combine BGP pre-

fix clusters with rANS clusters to identify more accurate

administrative boundaries. We subsequently apply nam-

ing based clustering within each administrative bound-

ary to perform further separation. We show that com-

bined clusters are indeed qualitatively better than apply-

ing isolated clustering method individually.

Overall, the clustering process has two phases as

shown in Figure 11. The first training phase generates

a bipartite graph based on the BGP prefix and rANS in-

formation for each IP address (as described in §3). This

is followed by the cluster assigning phase which takes

the bipartite graph and assigns new IP addresses to in-

termediate clusters according to a clustering assignment

algorithm. Intermediate clusters combine BGP prefix

and rANS information. The naming clustering process
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Figure 11. Combined cluster construction using

prefix and DNS information.
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Figure 12. Assigning an IP address into its

corresponding administrative boundary in prefix

208.110.64.0/19.

then performs naming pattern matching within each in-

termediate cluster to obtain the final combined cluster.

The intuition here is that naming pattern works better

when we already capture a good administrative bound-

ary which can be obtained by combining BGP prefix and

rANS information.

6.1 Combined cluster assignment

Since BGP prefix is generally finer-grained, we start

with a BGP prefix cluster and refine it into smaller clus-

ters by considering rANS information. The cluster as-

signment algorithm takes an IP address as an input,

looks up the corresponding BGP-prefix cluster using the

longest prefix matching and finds one or more corre-

sponding rANS clusters.

Recall from Figures 3 and 1, we construct a bipar-

tite graph based on BGP prefix clusters and rANS clus-

ters by drawing an edge between a BGP prefix cluster

and an rANS cluster whenever at least one IP address

within the BGP prefix cluster also belongs to the rANS

cluster. The degree of the rANS cluster in the bipartite

graph represents its granularity: an rANS cluster with

a smaller degree indicates a more fine-grained adminis-

trative boundary due to less sharing across prefixes. For

instance, some rANS might be third party rANS shared

by dramatically different administrative domains. Using
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Figure 13. False negative count per cluster sorted

by BGP size (in mask length)
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Figure 14. Number of clusters for different cluster

types sorted by BGP prefix size (in mask length).

such rANS will inaccurately treat distinct administrative

domains as a single domain.

Since we know that coarse-grained administrative

boundaries produced by rANS clusters may not work

well for classifying spamming behavior, we find the

minimum-degree rANS cluster for a given IP address

to increase cluster granularity. After identifying such a

minimum-degree rANS cluster, we form a fine-grained

cluster by including other IPs sharing the same rANS

cluster within the BGP prefix cluster. The resulting clus-

ter can be illustrated in Figure 12. In this example,

we first find the minimum-degree rANS for IP address

208.110.79.226 (dns.cameron.net in this case) and

then assign it into cluster 1 where all IP addresses (in-

cluding 208.110.79.226) within cluster 1 has the same

minimum-degree rANS and they also belong to the same

BGP prefix 208.110.64.0/19.

Note that from the above cluster assignment, BGP

prefix clusters may be divided into smaller clusters, or

they may be already sufficiently fine-grained without re-

quiring further splitting. After we combine BGP pre-

fixes with rANS clusters, we effectively find a more ac-

curate administrative boundary in which the naming pat-

terns can be applied to obtain the final combined cluster.

Table 6 shows the result of assigning all 2,737,006 IP ad-

dresses into these clusters. These IP addresses fall into



Table 6. Distribution of 2,737,006 IP addresses on different types of cluster assignment.

Type of cluster assignment Number of IP addresses Number of clusters

BGP prefix cluster 1,160,491 68,161

Combined cluster split from BGP prefix cluster 1,576,515 101,050

68,161 BGP prefix clusters and 101,050 combined clus-

ters. It shows that a significant portion of the total IP ad-

dresses (42.2%) falls into combined clusters split from

BGP prefix cluster. Previously, §5.3 shows about 10%

BGP prefix cluster can potentially be split into smaller

clusters considering rANS information. But here we

found that about 26.3% of the original BGP prefixes

can be further split into smaller clusters by considering

rANS and naming pattern. Further, we found that larger

BGP prefixes such as /8 and /9 will almost always be

split into smaller clusters. 19.6% of even smaller BGP

prefixes such as /15 - /20 can also be further split.

6.2 Cluster granularity

In Figure 14 we plot the number of BGP prefix clus-

ters sorted by size in mask length and compare with the

result of further breaking them into more fine-grained

clusters. We found that the number of the clusters that

range from /24 to /16 increase significantly. However,

for BGP prefixes with size of /8 - /15, although the ab-

solute increase in the number of clusters is small, the

ratio of increase is significantly larger. This confirms

our previous observation that larger BGP prefixes are

too coarse-grained and do not represent accurate admin-

istrative boundaries. Overall, most BGP prefix clusters,

regardless of their sizes, can be split into smaller clus-

ters. We discuss the implication on inferred spamming

behavior next.
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Figure 15. CDF of spam ratio for three different

clusters.
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Figure 16. False positive and false negative rate for

spam ratio threshold from 0.8  0.1 with granularity

of 0.01

6.3 Spamming behavior

As shown in Figure 15, combined clusters have sim-

ilar behavior to that of BGP prefix clusters in terms of

identifying clusters containing either mostly good IPs or

mostly bad IPs, suggesting that the accuracy property

is preserved from BGP prefixes. Furthermore, in Fig-

ure 16, it clearly shows that combined clusters have the

best false negative and false positive result at all spam

ratio threshold from 0.8 to 1.0 with granularity of 0.01.

Using combined clusters, we can reduce the false neg-

ative rate by about 6% - 10% compared to using BGP-

prefix clusters, without increasing the false positive rate.

The result is expected because finer-grained clusters bet-

ter capture the boundaries between good and bad IPs as

discussed before.
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Figure 17. False negative count comparison for

different clusters sorted by BGP prefix size.

We now analyze the false negative breakdown by
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Figure 18. False negative rate comparison for dif

ferent clusters sorted by BGP prefix size.
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Figure 19. False positive rate comparison for dif

ferent clusters sorted by BGP prefix size.

BGP prefix size. Figure 17 shows that most false nega-

tives are distributed in /15 - /20 where there is the most

increase in terms of the number of clusters. Combined

clusters consistently have fewer false negatives com-

pared to BGP prefix clusters for each prefix size. Ex-

amining false negative rate across prefixes of different

sizes, we show in Figure 18 that larger BGP prefixes

clearly have higher false negative rate. As discussed

before, a large BGP prefix can be further divided into

smaller ones for different organizations not externally

visible. As a result, we show that by combining DNS

information, we are able to significantly reduce the false

negative rate for such large clusters.

However, as we can see, for /8 BGP prefixes, the false

negative rate is still around 50% using combined clus-

ters. A closer look reveals that it is caused by a large /8

BGP prefix belonging to MIT, which originated a non-

negligible fraction of spam. These addresses also con-

tribute to many legitimate emails. In this case, this clus-

ter is considered to be a “good” cluster with all its spam

treated as false negatives. In fact, most of the spam is

contributed by a few IP addresses which appear to be

legitimate mail servers. We suspect that these spam is

due to mail forwarding, and plan to confirm it. Note that
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Figure 20. False negative count comparison for

different clusters sorted by the number of active

hosts within each cluster.

IP-based blacklists will not block these legitimate server

IPs either.

We find that combined clusters can also reduce false

positive rates. As we can see in Figure 19, the false pos-

itive rate at each BGP prefix size is reduced except for /9

prefixes. The reason is that originally all /9 BGP prefixes

are considered to be good clusters (close to 100% false

negative rate). But in fact, by splitting /9 BGP prefixes

into smaller combined clusters, we can separate good IP

addresses from bad ones that are originally mixed to-

gether in /9 BGP prefix clusters. It can greatly reduce

the false negative rate, but with a slight increase in false

positive rate.

We further examine the false negative breakdown by

the number of active hosts within each cluster in Fig-

ure 20. The X-axis shows the size of each cluster binned

by 30. For example, the first bar shows the false nega-

tive count for clusters with host population ranging from

1 to 29. First of all, we observe that most of the false

negatives are contributed by small clusters due to the

lack of sufficient history (i.e., sample size is too small).

Even a very small number of misclassified spam emails

by spam filters would significantly bias the spam ratio

for the entire cluster. With more history, the spam ra-

tio of the clusters becomes more stable, as evidenced by

fewer false negatives for clusters of larger sizes in the

same figure. Consistent with earlier observations, com-

bined clusters can further reduce false negatives incurred

by BGP prefix clusters. However, the reduction is lim-

ited for clusters of smaller host populations. This is also

due to the lack of sufficient history for BGP-prefix clus-

ters, making it more difficult to further split prefixes into

smaller combined clusters.

6.4 Detection coverage

Previously, we have discussed using clusters to as-

sign reputation for unseen IPs. Since new IP addresses
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Figure 21. Training time vs. miss rate

appear daily, it is important to quantify the improved de-

tection coverage of IPs by using clusters compared with

IP-based approaches. Similar to Figure 10, we fixed one

day for testing and varied the training length.

For Figure 21, we define the metricmiss rate to be the

number of emails whose sender IPs do not fall into any

existing cluster divided by the total number of emails.

For IP-based reputation, it is defined as the number of

emails from unseen IPs divided by the total number of

emails. We exclude IPs from our university network to

avoid any bias caused by the data collection location.

Obviously, the miss rate decreases with more training

data. In particular, the miss rate for individual IPs is as

high as 60% even with 12 weeks of training. However,

clusters help reduce the miss rate to well below 20%, es-

pecially for combined clusters with a miss rate of only

about 0.6% with 12 weeks of training – two orders of

magnitude difference compared with the miss rate of IP-

based reputation. Combined clusters also have a smaller

miss rate than both BGP prefix clusters and DNS clus-

ters. This is explained by falling back to DNS and BGP

prefix cluster to obtain history information whenever a

new IP falls into a combined cluster with a lack of his-

tory. Further analysis reveals that combined clusters ac-

tually can help assign reputation for more than 93% of

the unseen IP addresses.

7 Spam detection using cluster-based rep-

utation

As discussed before, building IP-based blacklists can

be very challenging. In previous section, we have shown

how to build a fine-grained cluster that can outperform

existing clusters. In this section, we evaluate the classi-

fication result of our clusters in terms of the false posi-

tive and false negative rate against existing popular IP-

based blacklists. We also integrate the cluster reputa-

tion with SpamAssassin to examine the amount of ad-

ditional spam detected and evaluate the number of new

false positives introduced. Note that our approach can

work well even with only our local vantage point, which

makes it easier to deploy. The performance in terms

of the lookup time and storage space of our system is

quite low. The average lookup time per IP is about

60ms which is sufficiently low to be practical. The stor-

age space required for storing information about the 2.7

million IP addresses (including the DNS information) is

about 2.2GB on disk which can easily run on any mod-

ern commodity hardware.

7.1 Comparison between clusterbased and IP
based blacklists (DNSBL)

As previously described, we build the cluster-based

blacklist purely based on the aggregated spam ratio of

clusters. As demonstrated in Figure 8 with varying

threshold values, there exist trade-offs between false

positives and false negatives.

Note that we did not utilize any local IP-based reputa-

tion history to help further reduce false positives, thus it

is likely that our detector will have a higher false positive

rate. However, in order to compare against the IP-based

blacklist, we do consider the local history information

to reduce the false positive at the cost of some increase

in false negative rate. If an IP address falls into a brand

new cluster for which we have no history, we resort to

content-based spam filters to decide whether it is a spam.

Once we have seen enough history for the cluster, we can

make use of cluster reputation for future spam detection.

We empirically set the spam ratio threshold to

0.97, 0.98 and 0.99 respectively to compare with each

DNSBL averaged over 30 different days randomly se-

lected from June to July 2009. The training data be-

gins from the first day of our data collection to the day

before the testing day. The DNSBL we choose are

Spamhaus [9], Spamcop [8] and SORBS [7]. Table 8

illustrates the result of using DNSBL alone compared

with using only our cluster, and using the combined ap-

proach. It shows that our standalone cluster-based detec-

tor already outperforms each individual DNSBL except

SORBS which has a slightly better false positive rate but

a much worse false negative rate.

With BGP cluster alone, to maintain the same level

of false positive rate, the false negative rate will increase

to more than 20% as shown in Figure 16. Further, by in-

corporating cluster-based detection, we can detect more

than half of the spam missed by these blacklists while

maintaining comparable false positive rate. In fact, af-

ter combining our cluster-based detector with Spamcop,

it produces a detector that has significant improvement

(both false positive and false negative) over Spamhaus

alone. To understand the false negative improvement,

we investigate scenarios where a blacklist misses bad IPs

that were caught by our cluster-based detector. One rea-



Table 7. Results of integrating clusterbased reputation with SpamAssassin

Spam Honeypot account Personal account 1 Personal account 2 Personal account 3

Ratio Score Spam Ham FN Spam Ham FN Spam Ham FN Spam Ham FN

threshold assigned 1025 0 144 3750 14143 521 1340 12231 89 11 1550 1

FNR Matched FPI FNR Matched FPI FNR Matched FPI FNR Matched FPI

0.7 1 46 96 0 185 356 4 40 67 5 0 0 0

0.7 2 63 96 0 194 356 4 42 67 6 0 0 0

0.7 3 79 96 0 199 356 5 43 67 8 0 0 0

0.8 1 45 90 0 175 335 3 37 63 4 0 0 0

0.8 2 62 90 0 179 335 3 39 63 6 0 0 0

0.8 3 75 90 0 183 335 3 42 63 6 0 0 0

0.9 1 44 88 0 171 317 0 34 59 1 0 0 0

0.9 2 61 88 0 175 317 1 38 59 1 0 0 0

0.9 3 74 88 0 180 317 1 40 59 1 0 0 0

Table 8. Comparison with existing IPbased blacklists (DNSBL).

Blacklist name FN FP Threshold Our FN Our FP Comb FN Comb FP

Spamhaus 11.54% 0.31% 0.97 8.6% 0.27% 5.32% 0.33%

Spamcop 22.32% 0.18% 0.98 11.5% 0.18% 6.56% 0.22%

SORBS 63.06% 0.10% 0.99 15.3% 0.17% 11.34% 0.20%

son is that these IPs are less frequently used by spam-

mers, thus less likely observed by spam traps to be

blacklisted. Indeed, we found that more than 75% of

such IPs fall into smaller clusters (with active host size

smaller than 15) which are potentially less likely abused

by spammers given a limited number of likely compro-

mised IPs. And yet since most IPs in the cluster send

spam, the aggregated spam ratio of those clusters are

high enough to identify newly appearing spammer IPs

within the cluster.

7.2 Integration with SpamAssassin

The cluster reputation history collected can be used

as a feature to predict future spam. We attempt to in-

tegrate it with SpamAssassin to quantify how many of

its false negatives we can reduce by using cluster-based

reputation history. As we have previously shown in Fig-

ure 5, about 4% of emails fall into the score range from

two to five given the threshold of 5 which may contribute

to false negatives. To obtain the ground truth of whether

a particular email is spam, we would need to examine

the email content. Due to privacy concerns, we can only

examine several of our own personal accounts with per-

mission. We also use a honeypot account with all its

emails considered as spam along with the personal ac-

counts to estimate the overall improvement from cluster-

based reputation. SpamAssassin generates a false nega-

tive rate of 16% for the honeypot email account.

We study how much of SpamAssassin’s false nega-

tives can be reduced as well as how much false positives

may be introduced by incorporating the cluster-based

reputation scheme. We assign scores for IP addresses

that fall within bad clusters with varying parameters and

evaluate the accuracy as shown in Table 7. FNR stands

for False Negative Reduced. FPI denotes False Posi-

tive Introduced. Matched indicates how many IP ad-

dresses fall into existing clusters built over 7-month of

training data. The number of matched IPs serves as an

upper bound for emails that can be classified as spam by

the cluster-based scheme. Spam ratio threshold is the

threshold for determining whether the cluster is consid-

ered bad, and additional score is added for an incoming

email. Score assigned is the score to be added to the

original score assigned by SpamAssassin.

Since we are not blocking emails directly based on

cluster reputation, we relax the spam ratio threshold to

be 0.7, 0.8 and 0.9 respectively with the score assigned

to be 1, 2 and 3 respectively. We can see that for the hon-

eypot account, we are able to detect about 50% of the

missed spam by SpamAssassin when we set the thresh-

old of spam ratio to 0.9 and the score assigned to 3. This

is despite the fact that we only have the history for 60%

of clusters that the spammer’s IP addresses fall into. For

other personal accounts, we observe similar false nega-

tive reduction with a fairly small amount of false posi-

tives introduced. In fact, if we use the spam ratio thresh-

old of 0.9 and assigned score of 3, we only incur at most

one false positive instance for all accounts which trans-

lates into only 0.0036% false positive rate. Upon in-

spection, the particular false positive email is a paper

invitation sent from China (the conference was held in

China) whose IP address falls into a cluster from which

almost all of IP addresses sent purely spam to us. Inter-



estingly, this IP has no reverse DNS name and is listed

on SORBS blacklist which indicates that either the same

machine is compromised at some point or the IP resides

in a dynamic IP range (although we have checked that

this IP is not identified as dynamic IP by UDMap).

On the other hand, with BGP cluster applied directly

to the same account with spam ratio of 0.9 and assigned

score of 3, although we can still reduce a similar num-

ber of false negatives, we observe 7 false positives intro-

duced, clearly indicating the downside of its inaccurate

administrative boundary. For personal account 3, we do

not observe any false positives for any threshold experi-

mented. However, we cannot reduce any false negatives

either due to the fact there is only one false negative in-

stance out of 11 spam emails by SpamAssassin and the

IP address of this spam happens to fall within a cluster

for which we do not have any history.

8 Concluding remarks

In conclusion, we have studied the characteristics of

different types of network clusters and investigated how

to combine them into a uniform one. We compare the

performance of a combined clustering approach inte-

grating both DNS and prefix information with previ-

ously proposed BGP prefix clusters and existing widely

used IP-based blacklist (DNSBL) to demonstrate im-

proved spam detection accuracy. We also integrate our

proposed cluster-based reputation into SpamAssassin to

catch 30-50% of the spam that are missed by SpamAs-

sassin at the cost of very small false positive increase.

Our technique is designed to be robust to potential eva-

sion attempts due to the inherent stable properties of the

network information used. Another advantage is that

our system can work well in a single vantage point, thus

can be easily deployed locally without requiring multi-

ple vantage points (presumably much harder to obtain).

We argue that our cluster scheme is robust against

various attacks. The most likely strategies of spam-

mers would be to cause us to construct either too coarse-

grained clusters where good and bad IPs are mixed or

mislead us to construct too fine-grained clusters, which

in the extreme become IP-based blacklists. We consider

next how likely spammers can succeed in such endeav-

ors.

BGP prefix information cannot be easily controlled

by spammers unless they perform prefix hijacking at-

tacks or own a fairly large prefix, both of which are un-

likely due to high cost or overhead. DNS information is

more amenable to modification, if spammers own an IP

range and thus control its reverse DNS mapping. Spam-

mers can construct rDNS names in a way that is most

beneficial to them, e.g., by setting rANS to be the same

as that of their neighboring good IP ranges. To be truly

effective, such neighboring IP ranges must belong to the

same prefix as spammers’ IP ranges. Furthermore, they

need to make sure the rANS can resolve reverse DNS re-

quests for them. They can also construct their rANS in a

way that every single IP has a different rANS. This will

cause our clustering algorithm to falsely cluster each IP

into a separate cluster. However, this attack would again

require spammers to own IP address ranges, and such

rANS naming pattern itself would be an indication of

malicious activities because constructing rANS in such

a fashion is highly unusual.

IP-based blacklist captures the individual IP’s his-

tory, which includes a sudden behavioral change of an

IP address (e.g., legitimate mail servers become com-

promised to send many spam). It is more difficult for

the cluster-based approach to drastically modify a clus-

ter’s behavior as it must observe behavioral change for

many IP addresses in the cluster. Note that by tracking

history over a sufficiently long period of time, our ap-

proach can dynamically adapt to the behavioral changes

in spamming. However, we expect the case where legit-

imate mail servers become compromised for spamming

to be relatively rare (compared to DSL users get com-

promised and abused for spamming). In our data-set, as

previously shown in §5.5, we did not observe much sig-

nificant history changes for clusters. Another point to

note is that our clustering approach attempts to capture

regions of the Internet that “should” not have legitimate

servers with high probability (e.g.,DSL clusters). In that

sense, any sending host is potentially bad. The detailed

analysis on the behavioral change of clusters is out of

the scope of this paper and we plan to pursue as future

work.
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