
A Framework for MIMO-based Packet Header
Obfuscation

Yue Cao∗, Ahmed O. F. Atya∗, Shailendra Singh∗, Zhiyun Qian∗,
Srikanth V. Krishnamurthy∗, Thomas La Porta†, Prashant Krishnamurthy?, Lisa Marvel‡,

∗University of California, Riverside, †Penn State University, ‡US Army Research Laboratory, ?University of Pittsburgh
{ycao009, afath001, singhs, zhiyunq, krish}@cs.ucr.edu, tlp@cse.psu.edu, lisa.m.marvel.civ@mail.mil, prashant@mail.sis.pitt.edu

Eavesdroppers can exploit exposed packet headers towards
attacks that profile clients and their data flows. In this paper,
we propose FOG, a framework for effective header blinding
using MIMO, to thwart eavesdroppers. FOG effectively tracks
header bits as they traverse physical (PHY) layer sub-systems
that perform functions like scrambling and interleaving. It
combines multiple blinding signals for more effective and less
predictable obfuscation, as compared to using a fixed blinding
signal. We implement FOG on the WARP platform and
demonstrate via extensive experiments that it yields better ob-
fuscation than prior schemes that deploy full packet blinding.
It causes a bit error rate (BER) of > 40 % at an eavesdropper
if two blinding streams are sent during header transmissions.
Furthermore, FOG incurs a very small throughput hit of ≈
5 % with one blinding stream (and 9 % with two streams).
Full packet blinding incurs much higher throughput hits (25
% with one stream and 50 % with two streams).

I. INTRODUCTION

Wireless links are susceptible to eavesdropping attacks.
Recent standards like 802.11i and 802.11w propose to use link
layer encryption, but still expose MAC layer addresses of both
APs (access points) and clients. By just capturing the MAC
addresses an attacker can analyze traffic to figure out how
much data is being transferred between the AP and particular
clients. This information can be used to perform various potent
attacks. For instance, user input such as keystrokes to web
applications can be inferred [1]. Jamming attacks can also
target clients that are receiving heavy volumes of traffic [2].

In practice the problem is worse since 802.11w is not used
in most scenarios (e.g., in airports or coffee shops). Thus,
by intercepting control frames (e.g., ACKs), an attacker can
now infer the amount of traffic exchanged with a particular
server (in the wired network) since it can access the source
and destination IP addresses, port numbers etc. One could
conceivably encrypt the entire packet including the MAC layer
header to prevent traffic analysis. However, as we discuss later
this is hard to do in practice.

Use of MIMO to cope with eavesdropping: An alterna-
tive approach for thwarting eavesdroppers, is the use of an
antenna array or MIMO (multiple-input multiple-output) for
obfuscating data streams. As proposed in [3], a subset of
the transmitter’s degrees of freedom can be used to transmit
blinding streams that interfere with a legitimate stream in the
area around the transmission (and thus foil eavesdropping),
except at the intended recipient.

Fundamental challenge and tradeoff: MIMO-based obfus-
cation does not guarantee that an attacker will be unable to
decipher eavesdropped information. This is because while a
blinding signal will effectively disturb the legitimate signals

in most locations, there could be places where it does not. One
way to cope with this is to use a plurality of blinding streams.
However, as the number of blinding streams is increased for
better obfuscation (as in [3]), the achievable throughput on the
MIMO link decreases (since fewer legitimate streams can now
be transmitted). In fact, even the use of a single continuous
blinding stream decreases the throughput by 1

N where, N is
the number of antennas at the sender.

Our observation: Given that most sensitive traffic is sent us-
ing TLS/SSL or in some cases link layer encryption, it makes
sense to use MIMO to blind only the headers (instead of using
a continuous blinding stream as in [3]). This can drastically
reduce the performance penalties that are experienced with
traditional MIMO-based obfuscation (e.g., [3]).

Challenges in realizing header blinding in practice: First,
due to PHY layer functions such as scrambling and in-
terleaving, symbols that correspond to the header bits are
dispersed throughout a packet to be transmitted. Furthermore,
convolution codes (commonly used) jointly encode header and
payload bits. Thus, it is inevitable that symbols associated
with the header are intertwined with some payload bits that
will need to be blinded out as well. Correctly identifying the
symbols to blind out is a challenge that has to be addressed.

Second, the header bits in the multiple streams that are to be
transmitted simultaneously are not aligned. Thus, if the header
bits in any stream are to be blinded, the transmissions of
symbols from one or more of the other streams will need to be
temporarily suspended during that time to allow for a blinding
signal(s) to be transmitted instead. This leads to challenges
relating to scheduling the blinding signals and providing
information about suspensions to legitimate receivers.

Security issues with MIMO-based obfuscation: Recently,
it was shown that if an eavesdropper knows some of the
transmitted bits (e.g., MAC address of the AP), it can filter
received data to extract the blinding signal [4]. Knowing
the blinding signal allows the decoding of the remainder of
the protected information. These attacks are called plaintext
attacks against physical layer security. This is of concern since
broadcast packets (e.g., for association) are sent in the open,
and thus, reveal the AP’s MAC address.

Contributions: In this paper, we build a practical pro-
tocol framework, FOG, for effectively performing header
blinding to protect wireless transmissions from eavesdroppers.
As discussed above, header blinding significantly improves
throughput over traditional full packet blinding. To identify
the header symbols, FOG uses tainting to track the header
bits as they traverse the physical layer system (scrambler,
convolutional coder and interleaver).

Instead of using a fixed stream with a single blinding
signal, FOG schedules different blinding signals at fine-

1763

grained intervals, achieving increased randomness. This makes
it almost impossible for an eavesdropper to find locations
where the combined effects of the blinding signals are inef-
fective. This also dramatically raises the bar against plaintext
attacks against physical layer security; since the blinding
signals change dynamically over small time intervals, it is
computationally hard for an attacker to launch such an attack.

In summary, our contributions are as follows:
• We design FOG for effectively obfuscating wireless packet

streams. FOG applies MIMO-based blinding that can be
used in conjunction with encryption to effectively thwart
eavesdroppers from performing traffic analysis on wireless
links. FOG works with TLS, IPsec, or link layer encryption,
obfuscating any headers transmitted in the open.

• We implement FOG on our WARP radio testbed [5]. We
perform extensive experiments to show that FOG provides
even better obfuscation than traditional full packet blinding
(as in [3]). With two blinding streams, the fraction of
locations where an eavesdropper experiences a 40 % bit
error rate improves from almost 0 % to 100 %. Further,
the throughput hit with FOG is much lower than with full
packet blinding (5 % as compared to 25 % with the latter
with one blinding stream).

II. BACKGROUND

In this section, we describe how blinding (also called
nulling) is achieved with multi-user MIMO (MU-MIMO). We
consider the popular practical low complexity zero-forcing
beamforming (ZFBF) [6]; ZFBF completely removes the
interference among the MU-MIMO transmissions.

Notation: N is the number of transmit antennas at the AP.
M is the number of concurrently served receivers (considered
single antenna for ease of discussion but can be MIMO
equipped). The row vector hm is a 1×N vector, representing
the channel state with respect to user m. Each element of h
corresponds to the complex gain from one transmit antenna
to the user. The matrix H = [h1;h2; ..;hM] is the channel
matrix of dimension M × N . The column vector wm is an
N × 1 beamforming weight vector for user m. Each element
of w corresponds to the complex exponential weighting used
by each antenna during transmission to that user. The matrix
W = [w1, w2...wm] is the weight matrix of dimension N×M .
If A streams are used for blinding, N−A streams are available
for legitimate communications.

Zero Forcing Beam-forming (ZFBF): ZFBF enables a
transmitter (AP) to construct multiple spatial streams and
transmit them to multiple users in parallel. The channel state
information (CSI), hk, is obtained for each user k, using
pilots and a corresponding wk is computed. A composite data
stream (consisting of streams destined for different users) is
then multiplied by W and transmitted using the antenna array.
ZFBF selects weights that cause zero inter-user interference.
In [7], it is shown that the optimal W , satisfying the zero inter-
stream interference condition, is the pseudo-inverse of H , i.e.,
W = H† = H∗(HH∗)−1. The above matrix multiplication
implicitly requires that the maximum number of concurrent
spatial streams M, to be less than or equal to the number of
transmit antennas, N . The CSI from each user (the h vector),
can be fed back via the RTS/CTS in compliance with 802.11ac.

Blinding Process: Blinding signals must be orthogonal to
the intended signals (so that they are not affected) and are
transmitted concurrently with the intended receivers’ signals

by the ZFBF enabled transmitter. Together, the intended and
the blinding streams should not be > N . For the blinding
streams, ĥ vectors that are orthogonal to the intended re-
ceivers’ h vectors are computed. The precoding weight matrix
W is then constructed by considering the blinding streams also
as streams that are to be transmitted. To create the h vectors
for a blinding stream, the Gram-Schmidt orthogonalization
process is used (as in [3]). Let us assume that the first N −A
streams are designated to intended receivers, without loss of
generality. The CSI h1, h2, . . . hN−A, are obtained and a
matrix H̃ is created in the same way as H was created with
traditional ZFBF. Here, we first create an Identity matrix I of
size N×N and truncate it to a matrix Î of size (N−A)×N . Î
is now concatenated with the H̃ matrix to create a preliminary
H matrix. This preliminary H matrix, is passed to the Gram-
Schmidt process and the matrix, Ĥ is constructed, as follows:

ĥk =

hk if k = 1

hk −
k−1∑
j=1

〈hk,ĥj〉
‖ĥj‖2 ĥj if k > 1

where, k is the index of a vector and < hk, ĥj > is the dot
product of hk and ĥj . A corresponding precoding matrix Ŵ
is then computed. The intended streams along with blinding
streams (could be any random stream of bits), are then
weighted using Ŵ and transmitted. Note that the process is
similar for other combinations of legitimate streams (when
they are not the first N −A streams).

III. MOTIVATION

Motivating Study: To understand the extent to which
information is exposed, we perform a measurement study
where we collect WiFi packets in a public coffee shop for 30
minutes using WireShark on Ubuntu 14.10 with Linux 3.16
(our office of research integrity indicated that an IRB was not
required). We capture approximately 1.8 million packets, and
identify more than 1900 destination IP addresses that clients
were communicating with. Our results (details omitted due
to space constraints) indicate that even an unsophisticated
attacker can gather a lot of information since control and
management packets are often transmitted unencrypted (even
if link layer encryption is used for data packets). It has been
previously shown that users can be identified and linked with
confidential information such as their location history using
such management information that is sent in the clear [8].
Further, an attacker, by observing the sequence of packets
within a session, can tease out sensitive information about their
contents. For example, patterns of packet sizes and timings are
sometimes sufficient to identify the keystrokes [1], the web
pages viewed [9], the languages spoken [10], and the apps
used [11] by the user. In the best case, even with link layer
encryption of all unicast packets (including control packets),
the MAC addresses and CCMP (Counter Mode Cipher Block
Chaining Message Authentication Code Protocol) header of
clients are exposed. One could thus analyze the traffic (e.g.,
packet sizes, download patterns) that a client receives.

Encrypting headers is hard: It is hard with current 802.11
standards to fully encrypt the packet headers. In particular,
CCMP encryption uses the AES cipher as its building block.
AES uses counter values which the receiver derives from the
CCMP header to perform decryption. If there are packet losses,
it cannot pre-determine the contents in forthcoming headers

1764

to pre-compute the encrypted header values. Thus, the CCMP
header has to be sent as cleartext. However, this header can
form the basis for side-channel attacks (an example is in [1]).
In addition, sending the CCMP header as cleartext can lead
to what is called a “time memory trade-off pre-computation
attack,” which provides a shortcut for a brute force attack to
get the encryption key (details in [12]). To encrypt the CCMP
header, one needs another CCMP header in cleartext (therefore
a chicken-and-egg problem). Thus, we argue that blinding
headers with MIMO would be an effective countermeasure.

Prior work: In [13], SliFi, a system that tries to overcome
the problem of encrypting everything including headers is
proposed. Each receiver tries to pre-compute the encrypted
headers and store them in a hash table. When packets are re-
ceived, the hash of the header is computed and checked against
table entries. These hash table checks may involve higher layer
operations. While this might not degrade throughput, it could
increase energy drain in wireless clients. We consider FOG to
be an alternative PHY layer solution based on MIMO. Note
that both SliFi and FOG require changes to both the APs and
mobile clients (discussed later for FOG).

IV. SYSTEM MODEL AND ASSUMPTIONS

As in 802.11ac, all broadcast frames or packets are sent
using omnidirectional transmissions [14] to achieve maximum
coverage. We assume a secure authentication scheme as de-
scribed in the IEEE 802.11w standard. After authentication, a
secret key is established between the AP and the client using
methods described in the 802.11w standard [15].

CSI Exchange: The channel sounding process is used to
facilitate the exchange of channel state information (CSI)
between each client and the AP [14]. This process begins when
the AP broadcasts a Null Data Packet (NDP) announcement
frame. A multi-user NDP announcement frame includes multi-
ple client information records, one for each client. Each record
is encrypted using the secret key shared with the associated
specific client. Following this, the AP broadcasts an NDP
frame (see [14] for details). Each client then uses specific
training fields in the NDP frame to compute its CSI matrix. It
then sends the CSI matrix via a “Compressed Beamforming
Action frame” to the AP. This frame is also encrypted using
the secret key that is shared by the client with the AP.

What is protected and what is not: FOG uses 802.11w to
encrypt management frames like NDP. Link layer encryption
could be used (optionally) to protect data frames; in such
cases FOG uses blinding to only protect the MAC and CCMP
headers. If only higher layer encryption (e.g., TLS) is used,
FOG blinds out the relevant higher layer headers as well.

Beacon frames and the association requests are not protected
and can reveal MAC addresses of the AP and clients. Thus,
FOG does not try to hide the identities of the clients that
are connected to an AP. Its primary objective is to deter
eavesdropping attackers from performing traffic analysis at-
tacks to profile the associated clients. Each frame in 802.11ac
(or similar systems) contains known preambles. These are
transmitted without any beamforming to allow devices to
synchronize and identify the beginning of a packet [14]. These
preambles cannot be encrypted or blinded since at this point,
the sender and receiver are yet to synchronize with each other;
FOG does not hide preamble transmissions (they do not yield
receiver specific information to an eavesdropper).

Downlink versus Uplink: FOG hides transmission patterns
to prevent traffic analysis. It is agnostic to whether the

transmissions are on the downlink or uplink, as long as the
transmitter is equipped with MIMO. Today, most commodity
APs are MIMO based. Recent smartphones and smaller client
devices are also 802.11 ac capable (e.g., iPhone6 [16]). If
a client is not MIMO based, it could encrypt everything
(including the MAC header) on the uplink. The AP would
then decrypt all received packets prior to processing. Since
the AP is typically connected to a power outlet, this process
should not adversely impact communications except for slight
increases in delay. This approach however, is infeasible on
the downlink; if the AP encrypts the MAC header, each client
will need to decrypt all received packets or use a system like
SlyFi [13], regardless of whether the packet is meant for it;
this could cause high energy drain.

Interference: We assume that interference effects are han-
dled by (a) use of multiple channels (b) carrier sensing or
scheduling. Thus, in any contention domain, we assume that
only one MIMO transmitter is active at any given time. This
is true of current deployments of 802.11n or 802.11ac.

Impact of mobility: In dynamic (mobile) settings, the
periodicity of CSI exchanges will be high. This problem
however, is inherent to MU-MIMO communications and is
not a limitation of FOG.

V. ATTACKER MODEL

We assume a passive eavesdropper equipped with MIMO.
As the number of antennas at the eavesdropper increases, it is
more likely that it will successfully decode information. How-
ever, in practice, since the distance between any two antennas
has to be of the order of the wavelength used for transmission
[6], the form factor of an eavesdropper’s device will increase
with the number of antennas. To reflect a practical scenario
(and due to limitations with our testbed), in our evaluations, we
limit the number of antennas at the eavesdropper to be no more
than the number of antennas at the transmitter. However, FOG
will still be effective with a reasonable increase in the number
of antennas at the eavesdropper, beyond this. One can cope
with a more potent eavesdropper by increasing the number of
blinding streams sent with legitimate streams.

We assume that the eavesdropper’s mobility is not fast
enough for its position to change within one packet trans-
mission time. The assumption typically holds true since this
transmission time in 802.11ac is of the order of µs.

The eavesdropper knows the protocol in use (802.11n/ac).
With MIMO, it can use selective diversity [6] to reduce
its BER1. It cannot decode the CSI packets since these are
encrypted. When the payload is encrypted, its goal is to decode
the header (TCP, IP and MAC) bits. If link layer encryption
is used, then its goal is to determine the MAC addresses in
the transmitted packets. We assume that the eavesdropper will
use the information obtained to either perform traffic analysis,
spoof MAC or IP addresses etc., and do not explicitly address
its role after these bits are obtained.

The eavesdropper can also try to carry out more sophisti-
cated attacks such as those described in [17] and [4]. It knows
some transmitted bits (e.g., the AP MAC address) and can
then apply a standard filter to try to determine the blinding
signals. The attacker then uses an iteratively adjustable filter
with this knowledge, to extract other information that cannot
be accessed by filtering out the blinding signal. Finally, we

1Our experiments with two signal combining techniques, viz., equal gain
combining [6] and selective diversity [6] showed that the latter did better.

1765

assume that the attacker does not launch attacks to disrupt the
transmissions (e.g., jamming attacks).

VI. OBFUSCATION WITH FOG
In this section, we describe the modules of FOG. FOG takes

advantage of encryption at either the transport, network and/or
link layers and only tries to blind information relating to ex-
posed headers. This in turn drastically reduces the throughput
penalty that is associated with full packet blinding.

Overview: Header blinding can drastically reduce the
throughput penalties associated with full packet blinding (e.g.,
[3]). However, realizing header blinding in practice comes with
challenges. We first provide an overview of these below and
briefly discuss how to overcome them.

At the PHY layer the header size is not known a priori. Only
known is the packet size in bits. The bits from the packet are
first scrambled to eliminate long binary strings of zeros or
ones [6]. Then, Forward Error Correction (FEC) is applied to
generate coded bits. To be robust to bursty errors, the coded
bits are interleaved. The resulting bit stream is then mapped
onto symbols (modulation) and transmitted using OFDM (with
802.11). As evident, the header bits (after the above processes)
get mixed intricately with the payload bits. Thus, we need to
determine the symbols that correspond to the header bits to
perform effective header blinding.

In order to transmit A blinding signals during a header trans-
mission, A legitimate streams (out of the N possible streams)
will have to be temporarily suspended. In FOG, we switch
across the streams that are suspended during the transmission
of different sets of header bits (details later). In other words,
from out of the possible N streams, different combinations
of A streams are chosen (could be chosen randomly or in
accordance to some policy) to be suspended when A blinding
signals are to be transmitted. Correspondingly, the blinding
signals temporally change and we refer to this process simply
as switching (for ease of discussion). Switching significantly
helps in cases where the eavesdropper is at a location where a
specific blinding signal is not effective (a random sequence of
different blinding signals is now used to blind out a packet’s
header). Note that with this process, temporary suspensions of
legitimate streams will need to be indicated to the receivers
for the purposes of synchronization.

In a nutshell, FOG contains (a) a header tracking process
that first estimates the header size and then keeps track of
the header bits at each stage of PHY layer processing prior
to blinding and, (b) a scheduling functional process to switch
between the suspensions of legitimate streams (and invoking
appropriate blinding signals) and indicating these schedules to
the receivers. Fig. 1a depicts these processes and how they can
be integrated into the 802.11ac architecture. In the following
subsections, we describe these processes in detail.

Header tracking: Header tracking consists of four steps;
(1) header estimation, and tracking as the bits traverse the (2)
scrambler (3) the convolution code (e.g., binary convolutional
codes or BCC) encoder and (4) the interleaver.

Header estimation: First, FOG needs to estimate the header
size (the transport, network and MAC header bits combined).
Without interactions between the PHY and upper layers, this
is non-trivial. It requires packet inspection at the PHY layer
which is complicated and violates the layering. Thus, we
conduct an experimental study to estimate the average packet
header size for different application layer protocol packets

(e.g., HTTP(S), FTP). We collect traces using WireShark [18]
at various locations of our campus (again, we were told that
no IRB was needed) and examine ≈ 150,000 packets. We find
that the average size of the header is about 54 bytes in total. We
have some details that could allow for more precise estimations
(e.g., variance; details omitted due to space constraints), but
conservatively, we suggest using a header size of 70 bytes.
This is higher than the header size in all the packets from our
measurement study and results in a slightly higher overhead
but ensures that all header bits are blinded.

Next, we describe how we track the header during scram-
bling, FEC and interleaving. We illustrate how the header bits
are tracked during the scrambling process. The process for
encoding (e.g., using BCC) is similar. We do not describe the
descrambling or decoding processes since header tracking is
irrelevant to the receiver (more details are found in [6]).

Scrambler Mapping: The scrambler randomizes the bits in
a packet, in order to decrease the probability that long binary
strings of 1s or 0s exist [6]. The initial seed of the scrambler
is 7 bits long and is included in the PHY layer header (and is
thus known to the receiver). The function used for scrambling
is also known to the both the transmitter and the receiver. The
receiver uses the seed value to descramble and retrieve the
original sequence of bits. To track the header bits, we taint
the output bits of the scrambler if they are header related bits
(note that prior to being input to the scrambler, the header
bits are at the beginning of the packet). We create an array
of indices that record the locations of the header bits, after
scrambling. For instance, if there are L header bits, we create
an array of length L. Each element of this array points to the
location of a unique header bit in the scrambled packet. The
memory overhead for maintaining this array for an average
size header (54 bytes, i.e. L = 54× 8 = 432 bits) is equal to
432 × the size of an integer, which is around 1.6 KB.

To illustrate, consider an example with 802.11ac [19]. Here,
scramble operations are implemented using shift registers as
shown in Fig. 1b. There is a generator polynomial S(x) =
x7 + x4 + x0, known to both the transmitter and receiver. In
Fig. 1b, x1, x2, ..., x7 refer to the contents of the register. x0
corresponds to a bit from the input stream. The initial shift
register contents are specified by a 7-bit scrambler seed in
physical layer header [19]. Then, the sum bit S(x) = x7 +
x4 + x0, where the “+” symbol indicates an XOR operation.
This sum bit is the first bit of the output sequence. The contents
of the shift register are now shifted up by a stage as follows:
x6 → x7, x5 → x6, ..., x1 → x2. The new sum bit S(x) is
placed in the shift register in place of x1. The procedure is
repeated with the next bit of the input stream (a new x0).

To taint the header bits, we mark all the output bits that are
generated by using even a single header bit. Thus, for each bit
of a L bit header, we mark (taint) a sequence of L + 7 bits
in the output sequence since the output sum bit S(x) depends
on the seven previous bits.

BCC Mapping: The next step is to track the header bits
after FEC. We assume the use of BCC for ease of discussion
(tracking with other FEC codes will be similar). In 802.11ac,
BCC also uses the shift registers to generate the output bits
(Fig. 1c). These registers are initialized with zeros. Each
input bit (x0) generates two output bits using two generator
polynomials. For example for a rate 1/2 code, the generator
polynomials are S1(x) = x6 + x5 + x3 + x2 + x0 and
S2(x) = x6 + x3 + x2 + x1 + x0. The scrambler output is

1766

S
c
ra

m
b

le
r

M
a
p

H
e
a
d

e
r

E
s
ti
m

a
ti
o

n

S
tr

e
a
m

 S
e
le

c
ti
o

n

C
h

u
n

k
 W

e
ig

h
ti
n

g

S
y
m

b
o

l
fo

rm
a
ti
o

n

B
C

C
 M

a
p

In
te

rl
e
a
v
in

g
 M

a
p

SchedulingHeader Tracking
S

c
ra

m
b

le
r

B
C

C
 e

n
c
o

d
e
r

B
C

C
 I
n

te
rl
e
a
v
e
r

P
H

Y
 P

a
d

d
in

g

M
A

C
 L

a
y
e
r

P
a
c
k
e
t

M
o

d
u

la
ti
o

n

IF
T

A
n

a
lo

g
 &

 R
F

O
F

D
M

(a)

x
5

x
4

x
3

x
2

x
1

x
6

x
7

+ +

S(x)
Scrambled Output

Input Bit

x0

(b)

x
5

x
4

x
3

x
2

x
1

x
6

+
+

Output Coded Bit

Input Bit

x0

S1(x)

S2(x)

Output Coded Bit

(c)
Fig. 1: (a) Modified 802.11n/ac Architecture. (b) Data scrambler in 802.11ac (c) Convolutional encoder with code rate =1/2

the input to the encoder. These polynomials operate on the
contents of the shift register (higher order bits) and a single
input bit (the lowest order bit). For illustration, let us assume
that the first input bit is 1. Then, two output bits are generated.
The first polynomial yields S1(x) = x6+x5+x3+x2+x0 = 1
and the second yields S2(x) = x6 +x3 +x2 +x1 +x0 = 1. In
other words, for the first input (scrambled) bit, 1, we get two
output coded bits 11. After first bit is processed it is inserted
into the shift register and the original contents are shifted; thus,
the new contents are 000001. The outputs corresponding to the
header bits which were tainted during scrambler mapping are
identified and tainted. The tainted output coded bits, include
those for which the original header bits are either inputs or
part of the shift register.

Interleaver Mapping: The interleaver shuffles the input bits
to distribute errors uniformly across the packet; bursty errors
are thus eliminated. It consists of an array of R rows and C
columns. The input fills the array one row at a time and the
output is a read out of the array, one column at a time. The
parameters R and C are known to the transmitter, the receiver
and the eavesdropper. Since the input header bits are tainted,
it is easy to track them at the output of the interleaver.

Scheduling: As discussed, when blinding the header bits
in a specific stream, some of the other legitimate streams will
need to be suspended ; the scheduling process determines these
suspensions. For ease of discussion, assume that the traffic is
saturated (if not additional blinding streams can be transmitted
to improve the level of obfuscation). Given this, the transmitter
(with N antennas) seeks to simultaneously send N packets to
receivers. Towards realizing the scheduling process, the output
bits of the interleaver (for each packet) are divided into chunks
of bits. Each chunk, c, has a size of Lc bits. Now there are N
streams of chunks, where a chunk may or may not contain the
header bits. If a chunk on any of the streams contains a header
bit(s), then we choose to suspend one or more of the other
streams (depending on the level of protection needed) and
instead transmit signals associated with the blinding streams.
After the streams (both legitimate and blinding) are chosen, the
transceiver system generates the ZFBF weights as described
in Section II. The data chunks to be transmitted (including
those for blinding) are weighted by the ZFBF beamformer and
then OFDM symbols are formed by combining the weighted
chunks. In the following, we describe the above steps in detail.

Step 1: Stream Selection: The stream selection step deter-
mines on a per slot basis, which stream(s) are to be suspended
in order to instead send blinding streams (each slot carries a
chunk per stream). A queue per stream is created and the
indices of all the chunks associated with that stream, that are
to be blinded, are recorded. As per a chosen policy, a stream is
selected for the subsequent suspension, and a blinding stream
is instead generated and sent. In our implementation, we select

the stream for suspension randomly as per a uniform distribu-
tion. In the long term, this policy ensures fairness between
stream suspensions. Given the relatively small number of
header bits compared to the packet length, the delays incurred
due to stream suspensions and the consequential postponing
of chunk transmissions is very small.

To allow the receiver to determine which slots have blinded
transmissions, the streams are indexed and the indices of
streams are transmitted to the receiver, using ZFBF, prior to
the actual data transmission. With knowledge of the suspsen-
sions, the receiver can easily reconstruct the packet from the
data received. Transmitting information with regards to the
suspended streams constitutes a significant part of the (small)
overhead with our approach (this information is represented
using a bitmap as described in Section VII).

Fig. 2 depicts an example for how blinding signals are
scheduled along with chunks that contain header related bits
for a transmitter with N = 3, and A = 1. In the example, as
shown in Fig. 2 (a) three chunks with header related bits are
to be scheduled on stream one, and two chunks with header
bits are to be scheduled on streams two and three. As shown
in Fig. 2 (b) the first stream is suspended first; its chunk is
postponed and the bits from a blinding stream are instead
transmitted (shaded chunk). All the following data chunks for
S1 are delayed by one slot as a consequence. The process is
easy to follow in sub figures (c), (d) and (e).

Choice of chunk size: The chunk size defines the required
precision for blinding decisions. If Lc = 1, then a decision
on whether to blind or not is made with respect to each bit.
This results in the minimum blinding time and overhead (only
the chosen header bits are blinded). However, the legitimate
receivers will need to know of suspensions at the “bit level”.
In addition, switching across modes (legitimate transmission
versus blinding) and the computation of ZFBF weights will
need to be done every bit and this can be prohibitive. As
the chunk size increases, the granularity of blinding becomes
coarser (more non-header bits are blinded) and thus, the
throughput penalty increases. However, the complexity of
the information made known to receivers (which chunks are
suspended) and the switching overhead decreases (due to fewer
chunks per packet). In the other extreme case, when the chunk
size is equal to the packet size, the scheme reduces to full
packet blinding. The switching overhead is minimized, and
there is no need to inform receivers about any suspensions;
however, the throughput penalty is the highest.

Step 2: Chunk Weighting: Weighting is part of the blinding
process as described in Section II. The weight matrix, W
is recomputed each time the AP (transmitter) receives CSI
feedback from the receivers. For a N antenna transmitter, there
can be a number of different combinations of data and blinding
streams according to which transmissions could be performed

1767

1

chunk1

S1 ...

1

1 2 3

2

2

chunk2 chunk3 chunk4

...

...

...

...

...S3

S2

3

(a)

1

chunk1

S1 ...

1

1 2 3

2

2

chunk2 chunk3 chunk4

...

...

...

...

...S3

S2

(b)

1

chunk1

S1 ...

1

1 2 3

2

2

chunk2 chunk3 chunk4

...

...

...

...

...S3

S2

(c)
1

chunk1

S1 ...

1

1 2 3

2

2

chunk2 chunk3 chunk4

...

...

...

...

...S3

S2

(d)

1

chunk1

S1 ...

1

1 2 3

2

2

chunk2 chunk3 chunk4

...

...

...

...

...S3

S2

(e)
Fig. 2: An example for scheduling blinding streams during header bit transmissions. The transmitter has 3 antennas. One blinding stream is
used. The scheduling sequence is from (a) to (e). (a) shows the original layout of the chunks with the header bits. In the first slot stream S1
is chosen for suspension and thus, the transmission of its chunks are postponed by a slot (see (b)); instead a blinding signal is sent (see (c)).
In the next slot (see (d)), stream S3 is chosen for suspension, the corresponding chunks are postponed and a blinding signal is transmitted
instead. Finally, stream S2 is chosen for suspension (see (e)).

28-28 0

W
0 W

0
W

0
W

0

W
i

W
i+1

W
i+2

W
i+3

W
i+4

W
i+5

Pilot SubCarriers DC SubCarrier Data Subcarriers

Stream 1

Stream 2

Stream 3

Stream 4

Chunk Size = 8 Bits

W
0

Fig. 3: Symbol formation : Chunks of fixed sizes are mapped onto
modulation symbols (e.g., BPSK), weighted differently, and then
mapped onto OFDM subcarriers.

(as described in Step 1). For each chunk, W depends on the
selected data streams and the blinding streams.

The number of different weight matrices to be computed
prior to a packet transmission depends on the total number of
streams (N) and the number of desired blinding streams (A).
For example, with N = 3 and A = 1, four weight matrices
are needed. These are (i) W0: no streams used for blinding;
(ii) W1: stream one is replaced with a blinding stream (iii)
W2: stream two is replaced with a blinding stream and (iv)
W3: stream three is replaced with a blinding stream. Each
data chunk is weighted based on the blinding decision. For
the example in Fig. 2, chunks from streams 2 and 3 are being
transmitted in the first slot; stream 1 is replaced with a blinding
stream. Thus, the weight matrix W1 is applied to the data
during this slot. Similarly, it is easy to see that W3 will be the
weight matrix that is to be used for the chunks to be sent in the
subsequent slot. Since different weight matrices are used for
different parts of the packet, it becomes much more difficult
for an eavesdropper to (a) recover the entire packet at a static
location and (b) launch the so called “plaintext attacks against
PHY layer security,” wherein an attacker tries to recover a
single fixed blinding signal that is used for the entire packet
duration using known plaintext [4] (discussed later).

Step 3: Symbol formation: After the interleaving stage,
multiple data chunks are combined to form OFDM symbols.
This symbol formation is based on the 802.11ac standard. We
provide a brief description here of how the division of each
packet into chunks and the application of different weights for
each chunk period, influences this process. We assume that
the total number of OFDM subcarriers available is equal to
56 and only 52 of those subcarriers are used for data (as in
802.11ac [14]). Four subcarriers are used for pilot tones; these
are typically used to correct frequency offsets, synchronization
etc. The rest are used for guard carriers.

The mapping of the chunks to OFDM symbol data is shown
in Fig. 3. The bits from each chunk scheduled in a slot,
are mapped onto symbols in a modulation constellation (e.g.,
BPSK has two symbols, QPSK has four). The appropriate

weights are then applied on the modulation symbols. To
illustrate, let us consider the example shown in Fig. 3, where
the chunk size is equal to 8 bits and BPSK modulation is
in use. With this modulation, each subcarrier carries one bit.
Then, an OFDM symbol (52 subcarriers) can accommodate
6 chunks. In this example, we have 4 data streams and for
each data steam the modulation symbols are determined and
mapped on to the subcarriers. For each slot (or the chunks
scheduled in that slot) the appropriate weight matrix W is
applied. In the figure, we see that for each slot, a different
weight matrix is used and thus, the set of signals transmitted
are different (different desired streams are suspended).

For some chunk sizes, it may not be possible to fill an
OFDM symbol with an integral number of chunks; in that
case we use filler bits. In our case, the chunk size is equal to
8 bits; then with BPSK, the remaining 4 bits (from the 52 bits)
are called filler bits and are randomly generated. The filler bits
are discarded after decoding at the receiver.

After mapping, the weighted and modulated symbols from
each stream are converted to time domain symbols via FFT
and the resulting symbols are transmitted jointly.

Effects at receivers and eavesdroppers: Since the blinding
streams are orthogonal to the legitimate receivers’ streams,
these receivers are unaffected. The received symbols are first
mapped onto coded bits and deinterleaved. The decoding of
the coded bits is done using the Viterbi algorithm [20], which
progressively derive the sequence of raw bits given the coded
bits (details can be found in [20]). While the Viterbi algorithm
is very effective in correcting isolated errors, it cannot correct
long bursty errors. The blinding signals essentially construct a
burst of errors at the eavesdropper i.e., the input to the Viterbi
decoder first consists of the long sequence of corrupted header
bits; thus, the decoding will fail.

One could ask if it is possible to reverse engineer the de-
coding and scrambling by knowing the shift register structures
(recall header tracking) and retrieve the header bits. To see why
this is impossible let us examine what happens with the shift
register corresponding to the scrambler. Similar arguments
hold with regards to the BCC encoder, but they are a bit
more involved due to the more complex structure of the shift
register; we omit a discussion due to space limitations. Assume
that initially the scrambler holds the seed values S1 to S7

and that these are known to the eavesdropper. The input bit
sequence is denoted by I1, I2 and so on. It is easy to verify
that the first four output bits are Oi = S7−i+1+S4−i+1+Ii for
i ≤ 4. Since these Oi values are either erased or corrupted, the
attacker has to guess them. This means that he has to guess the
values of Ii and for each of these there are two possible values.

1768

For 4 < i < 8 it is easy to verify that Oi = S7−i+1+Oi−4+Ii.
Since these are again blinded, and because the eavesdropper
does not know Oi−4, he has to again guess the values of Ii.
One can follow through the expressions for i ≥ 8, and it is
easy to see that the attacker can at best only guess the value of
a blinded bit. Thus, the number of possible combinations that
have to be considered to infer the header bits will be O(2H).
If H = 400 bits, this corresponds to ≈ 2400 combinations!

Robustness to plaintext attacks against PHY layer se-
curity: Plaintext attacks against PHY layer security [4] try
to reduce the effectiveness of a blinding signal. The attack
depends on some part of the header being known. The attacker
constructs a filter that estimates the weighting matrix W .
Traditionally since a fixed blinding stream is generated, an
attacker can slowly adjust the coefficients of a filter to estimate
W and decode with less than a 10% bit error rate [4].

Unlike previous schemes, FOG varies the blinding signal
depending on which stream is suspended as discussed earlier.
Let the transmitter possess N antennas. For simplicity, assume
that only one data stream is suspended and a blinding stream
inserted in its place. The total number of weights used will
then be N+1 (N possibilities for the cases where each specific
stream is suspended and one for the case where none are
suspended). Assume that the attacker knows that the header
bits are being blinded and only one blinding stream is used.
However, for each header bit, it is unware of which weighting
matrix Wj is used, where ∈ {1, 2, . . . , N} (assuming that W0

is used in the case without blinding). If the attacker is able to
determine the weights using a known field (e.g., the AP’s MAC
address), it will still have to consider all possible combinations
of these weights for the remainder of the header. If there are
H such header bits, each bit can be encoded with any of the
N weights, and thus, there are NH possibilities to consider.
For a 50 byte header, if the transmitter has 4 antennas, this
corresponds to 4400 possibilities (exponentially large). The
process becomes more difficult if the attacker is unaware of
how many streams are used for blinding. For example, if the
transmitter hops randomly between 1 and 2 blinding streams,
the likelihood of decoding will further decrease.

VII. TESTBED AND IMPLEMENTATION

Testbed: Our experiments are on our WARPlab testbed
[5] with Versions 1 and 3 (V1 and V3) WARP boards. We
implement the transmitter and the eavesdropper on the V1
boards since they can be used for MIMO communications with
four antennas. We use the V3 boards for the receiver nodes
(single antenna). The transceivers were at fixed locations but
the eavesdropper was moved to different locations.

Topology: The default topology consists of one transmitter,
four receivers and one eavesdropper. We form a 6×5 grid (60
in. × 50 in.); the transmitter is placed in the middle of the grid
and the receivers at the corners. The eavesdropper is placed
at 25 different locations at grid intersections. The packet sizes
we use, are 240 and 1514 bytes unless otherwise stated. Note
that the maximum distance between the transmitter and the
receivers is governed by the hardware/power limitations of
WARP boards. With higher powers, larger distances can be
covered and our results will apply.

Implementation: The blinding schemes are implemented as
a thin sublayer within the physical layer. Our implementation
consists of three modules; (i) the header tracking module, (ii)
the scheduling module and (iii) the communication module.

The first two modules are described in Section VI. The com-
munication module (COMM) is responsible for exchanging the
CSI information between the transmitter and receivers and for
performing transmissions. We implement the explicit feedback
scheme used for beamforming as described in the 802.11ac
standard [19]. First, the transmitter periodically broadcasts
a request for the CSI. Then, the COMM module at each
receiver encrypts and transmits the CSI; the transmitter and
each receiver share an a priori loaded secret key and use
AES for encryption [21]. At the transmitter, the CSIs are
received and decrypted by COMM. The H and W matrices
are constructed based on this CSI.

We also implement the scrambler, the BCC encoder and
interleaver from the IEEE 802.11ac specification [19]. After
scheduling, COMM constructs the PHY frame. A bitmap spec-
ifying which transmissions are suspended during the blinding
process, is included after the service bits (Scrambler Seed,
Reserved bit and CRC), in the frame. The bitmap represents
each chunk in the packet by a bit; an entry of ‘0’ indicates a
suspension, and ‘1,’ otherwise. The bitmap is also encrypted
using AES. Note that the Cyclic Redundancy Check (CRC)
is calculated over the modified payload which contains this
bitmap. If the bitmap is corrupted, the packet is retransmitted.

VIII. EVALUATIONS

We extensively evaluate FOG experimentally. For compari-
son we also implement a baseline case where the entire packet
is blinded (full packet blinding) with a single fixed blinding
signal as in [3].

Notation: We refer to blinding the entire packet as PB (for
Full ”Packet Blinding”). If A blinding streams are used we
refer to it by PBA; e.g., PB2 denotes full packet blinding
with two blinding streams (A = 2). Similarly the notation
FA refers to FOG with A blinding streams used for header
protection (e.g., F2 refers to the case where two blinding
streams are used to protect header bits). The case without
blinding is denoted by ZFBF.

The effect of blinding on the eavesdropper: First we
perform experiments to determine the effectiveness of blinding
on eavesdropping. We use PB; FOG is not used. N = 4
and A is varied. When A = 0, no blinding streams are
transmitted i.e., four legitimate data streams are sent. Fig. 4
plots the percentage of positions where the eavesdropper (with
4 antennas) perceives a bit error rate (BER) of less than
or equal to 0.1, with respect to decoding one or more data
streams. Here (and henceforth), we assume conservatively,
that an eavesdropper can somehow recover (either by using
additional antennas compared to what is shown in the results
or by a brute force search) a packet with this BER (of 0.1);
in reality, a much more stringent requirement on BER (lower)
will be necessary for successful recovery.

Without blinding, the eavesdropper can decode at least
one data stream in approximately 72% of the locations. This
percentage goes down to 5% when three blinding streams are
used. This dramatic improvement is due to the increase in
power allocated to the blinding streams, which significantly
hurts the eavesdropper in decoding the legitimate data. Fig.
5 shows the fraction of locations where the eavesdropper can
decode with a probability lower than a certain threshold (spec-
ified on the x-axis) in the absence of any blinding streams.
We see that the probability of the eavesdropper decoding a
data stream, increases significantly if the eavesdropper uses

1769

0 1 2 3
0

20

40

60

80

100

Number of streams used for Blinding

%
 o

f
d

e
c

o
d

a
b

le
 p

o
s

it
io

n
s

One decodable stream

Two decodable streams

Three decodable streams

Fig. 4: The effect of varying
the number of streams used
for blinding on security.

Probability of decoding (x)
0 0.2 0.4 0.6 0.8 1F

ra
c

ti
o

n
 o

f
lo

c
a

ti
o

n
s

 w
h

e
re

 P
r.

 <
 x

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 1 Antenna
 2 Antennas
 3 Antennas
 4 Antennas

Fig. 5: Variation in prob.
of decoding by eavesdropper
equipped with one or more
antennas.

Bit Error Rate (x)
0 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti

o
n

 o
f

lo
c

a
ti

o
n

s
 (

B
E

R
 <

 x
)

0

0.2

0.4

0.6

0.8

1
ZFBF PB1 F1 PB2 F2

Fig. 6: Bit error rate as
perceived by the eavesdrop-
per for different blinding
schemes.

Fig. 7: Packet error rate
as precevied by the eaves-
dropper for different blinding
schemes.

multiple antennas for reception. By using four antennas, the
percentage of the locations where the eavesdropper can decode
more than 80% of the time, increases from 40% to 55%, on
average as compared to the case where it has a single antenna.
This is because the probability that the received signal is either
distorted or destroyed completely on all antennas is much
lower than it being so on a single antenna.

Efficacy of FOG: Next, we evaluate FOG in terms of
both bit and packet error rates (BER and PER) seen at
the eavesdropper with 4 antennas. Note that if a packet is
correctly decoded (CRC passes), only the header bits are
exposed (payload is encrypted). Fig. 6 shows the fraction of
eavesdropper locations where the BER observed was less than
what is shown on the abscissa (CDF). Without any blinding,
in 50% of the locations the BER at the eavesdropper is ≤ 1%.
By using one or two streams for PB, this BER increases to
10% and 30%, respectively, in 40 % of the locations (even
with convolutional coding). This is because the decodability
at the eavesdropper is hurt by the blinding signal(s).

Interestingly, we observe in Fig. 6 that FOG provides better
obfuscation than PB. This is due to different blinding signals
being used during the transmission of different parts of the
header, for obfuscation. Thus, at an eavesdropper location
where a single (static) blinding stream is ineffective, this
combination of blinding signals provides effective obfuscation
(causes higher BERs). In some cases, FOG with one blinding
stream, even outperforms the PB with two streams! For exam-
ple, with F1,almost all locations considered experience a BER
of 40 % or higher; however with PB2, the BER experienced
is 10 % in approximately 18 % of the considered locations.

In Fig. 7, we plot the fraction of locations where, the
ability of the eavesdropper to recover packets (1-PER) is
greater than the probability of decodability shown on the x-
axis (complementary CDF). We see that without blinding, the
probability of recovery is significant in over 30 % of the
locations. With F2, the probability of recovering packets is
0 % in 100 % of the locations (all the points are at the origin
in the figure). With F1, the probability of recovery is less than
10 % in over 90 % of the locations. This again, showcases the
effectiveness of FOG.

Eavesdropper’s ability to decode headers: Next, we run
a micro benchmark where, the attacker collects all retrievable
packets (decodable or corrupted). We compare a sample set of
fields in these packets with ground truth. If there is a match,
we assume that the attacker has access to that field. The results
shown in Fig. 8, show that without blinding, the eavesdropper
can retrieve many of the header fields in 30 to 35 % of the
considered locations. With blinding, the eavesdropper can only
retrieve a particular header field in at most 8% of the locations.

Version Header After Convolution Number of % of pkts
blinded bits blinded

F1 432 bits 876 coded bits 936 coded bits 3.86%
F2 432 bits 876 coded bits 952 coded bits 3.93%

TABLE I: Number of bits blinded using FOG

As in earlier results, increasing the number of blinding streams
protects better and FOG is more effective than PB.

Throughput performance: Next, we quantify the perfor-
mance of FOG in terms of the degradation in the average
achieved saturation throughput and compare it with that of
PB. Fig. 9 plots the degradation in throughput with one
blinding stream. With FOG, we use chunk sizes of 8 bits in
these experiments. As one might expect, there is a drastic
reduction in the throughput degradation with FOG. PB1
essentially decreases the number of legitimate streams by 1
(from 4) and thus, the throughput hit is about 25 %. With
FOG, we see that the throughput hit drops to 5 % or less.

The throughput penalties with FOG can be divided into two
parts as shown in Fig. 9. Specifically, there is a throughput hit
because of blinding of the chunks that contain header bits
(and some non-header bits as collateral); this is referred to
as blinding overhead. In addition, there is the overhead of
adding information with regards to when a stream is suspended
in order for the transmitter to send a blinding signal. This
overhead contributes to an overall throughput degradation
(longer packets) and is referred to as tracking overhead.

Effect of chunk size on throughput: In Fig. 10, we
show the effect of varying the chunk size on the throughput
degradation. As discussed above, there is a throughput degra-
dation due to (a) blinding, and (b) the additional overhead of
suspension tracking (tracking overhead). As the chunk size
in bits decreases, the tracking overhead increases. This is
because there are more chunks and one needs to indicate to
the receivers which chunks are being suspended. However,
the blinding overhead itself decreases. As the chunk size
increases we see the opposite effect; the blinding overhead
increases since we are blinding larger chunks (and thus, more
unnecessary bits) but the tracking overhead decreases. A chunk
size of 8 bits seems to be the optimal and that is what we are
using as the default setting in our implementation.

Table I captures the number of “extra” bits that are blinded
with FOG with a header of size 432 bits (packet size is
1514 bytes). After convolution coding the number of bits get
doubled (coded bits ≈ twice the original bits). The reported
results only consider the extra bits that are blinded from
one data stream (other streams may also be blinded as a
consequence of this, but we consider that as collateral i.e., an
additional benefit). We see that the overall “fraction” of the
packet that is blinded is less than (3.86% in the F1 case) with
FOG. In the case of two blinding streams, a slight increase

1770

Client MAC Client IP Client Port SEQ ACK
0

5

10

15

20

25

30

35

%
 o

f
P

o
s
it

io
n

s

F2 PB2 F1 PB1 ZFBF

Fig. 8: Probability of decoding of
specific header fields with different
blinding schemes.

PB1 F1 PB2 F2

Th
ro

ug
hp

ut
 D

eg
ra

da
tio

n
(%

)

0

5

10

15

20

25

30

35

40

45

50

Blinding Overhead
Tracking Overhead

Fig. 9: Overheads with PB and
FOG.

Chunk Size (bits)
2 4 8 16 64 128

Th
ro

ug
hp

ut
 D

eg
ra

da
tio

n
(%

)

0

5

10

15
Blinding Overhead
Tracking Overhead

Fig. 10: Overheads with different
chunk sizes in FOG (one blinding
stream is used).

in the number of coded bits is observed. This is because,
with two blinding streams, the likelihood of a stream being
suspended increases. This reduces the possiblity that chunks
from different streams have common header bits (recall Fig. 2).
Thus, there is a slight increase in the number of slots that carry
blinding signals and thus, a slight increase in overhead.

IX. RELATED WORK
Physical layer blinding attacks: In [17] and [4], a PHY

layer passive attack that resembles known plaintext attacks in
cryptography is identified. The attacker guesses part of the
data transmitted by a sender (e.g., MAC header bits). Then,
iteratively, it filters the received data and compares the known
parts of the original data with the derived data (filter output)
until the difference between the filter output and the expected
original data is minimized. The work in [22] improves this
attack capability via techniques to minimize the amount of
the data required for the attack to be successful. However, the
proposed attacks implicitly assume that the header information
is transmitted at the beginning of the packet and known to the
attacker. However, 802.11n/ac’s scrambling and interleaving
processes distribute the header bits across the entire packet.
More importantly, these attacks implicitly assume that a single
blinding signal is used by the transmitter (as in traditional full
packet blinding). Since a combination of blinding signals are
used in FOG, these attacks are much harder if not impossible.

Friendly Jamming: With friendly jamming (e.g., [23],
[24]), the idea is to generate jamming signals and control the
decodability of these signals by sharing secret keys between
the legitimate transmitter and receiver. The jamming signal is
not decodable by any other receiver (eavesdropper) without the
key. Friendly jamming, typically carried out by other nodes,
increases the interference and thus, could reduce the overall
network capacity. Furthermore, it requires coordination across
nodes. MIMO based blinding does not have these issues.

X. CONCLUSIONS

In this paper, we design and implement FOG, a practical
framework for obfuscation of packet headers transmitted in
the open in wireless streams, using MIMO. FOG tracks
header bits as they traverse an intricate PHY layer consisting
of scrambling, application of FEC and interleaving. FOG
provides protection against attacks that try to decipher a fixed
blinding signal (as traditionally used). We show that FOG
provides enhanced obfuscation of wireless streams compared
to state of the art approaches that use MIMO to blind out entire
streams; at the same time, it consumes much lower overhead.
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official

ACKNOWLEDGEMENT
Research was sponsored by the Army Research Laboratory

and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views

policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. The
work is also supported by National Science Foundation under
Grant #1464410.

REFERENCES

[1] C. Shuo, W. Rui, W. Xiaofeng, and Z. Kehuan, “Side-channel leaks
in web applications: a reality today, a challenge tomorrow,” in IEEE
Symposium on Security and Privacy, 2010.

[2] A. Proano and L. Lazos, “Selective jamming attacks in wireless net-
works,” in IEEE ICC, 2010.

[3] N. Anand, S.-J. Lee, and E. Knightly, “Strobe: Actively securing wireless
communications using zero-forcing beamforming,” in INFOCOM, 2012.

[4] M. Schulz, A. Loch, and M. Hollick, “Practical known-plaintext attacks
against physical layer security in wireless MIMO systems,” in NDSS,
2014.

[5] “Rice University WARP Project,” http://warp.rice.edu.
[6] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.

NY, USA: Cambridge University Press, 2005.
[7] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast

scheduling using zero-forcing beamforming,” IEEE JSAC, 2006.
[8] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall,

“802.11 user fingerprinting,” in MobiCom, 2007.
[9] Q. Sun, D. Simon, Y.-M. Wang, W. Russell, V. Padmanabhan, and

L. Qiu, “Statistical identification of encrypted web browsing traffic,”
in IEEE Symposium on Security and Privacy, 2002.

[10] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language
identification of encrypted VoIP traffic: Alejandra y roberto or alice and
bob?” in USENIX Security Symposium, 2007.

[11] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” J. Mach. Learn. Res.,
2006.

[12] M. Junaid, M. Mufti, and M. U. Ilyas, “Vulnerabilities of IEEE 802.11i
Wireless LAN CCMP Protocol,” Enformatika, vol. 11, p. 228, Feb 2006.

[13] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and D. Wether-
all, “Improving wireless privacy with an identifier-free link layer proto-
col,” in ACM MobiSys, 2008.

[14] M. Gast, 802.11Ac: A Survival Guide. O’Reilly Media, Inc., 2013.
[15] C. V. Wright, F. Monrose, and G. M. Masson, “802.11w - part 11:

Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications amendment 4: Protected management frames,” IEEE Stan-
dard for Information technology, 2009.

[16] “Iphone 6 specification,” https://www.apple.com/iphone-6/.
[17] N. O. Tippenhauer, L. Malisa, A. Ranganathan, and S. Capkun, “On

limitations of friendly jamming for confidentiality,” in IEEE Symposium
on Secuirty and Privacy, 2013.

[18] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal
Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Syngress Publishing, 2006.

[19] E. Perahia and R. Stacey, Next Generation Wireless LANs: 802.11 n and
802.11 ac. Cambridge university press, 2013.

[20] J. Forney, G.D., “The Viterbi algorithm,” Proc. of the IEEE, 1973.
[21] “Advanced Encryption Standard (AES) (RFC 3826),” http://www.ietf.

org/rfc/rfc3826.txt.
[22] Y. Zheng, M. Schulz, W. Lou, T. Hou, and M. Hollick, “Highly efficient

known-plaintext attacks against orthogonal blinding based physical layer
security,” IEEE Wireless Communications Letters, 2015.

[23] W. Shen, P. Ning, X. He, and H. Dai, “Ally friendly jamming: How
to jam your enemy and maintain your own wireless connectivity at the
same time,” in IEEE Symposium on Security and Privacy, 2013.

[24] H. Rahbari and M. Krunz, “Friendly cryptojam: A mechanism for
securing physical-layer attributes,” in ACM WiSec, 2014.

1771

