
The Ad Wars: Retrospective Measurement and Analysis of
Anti-Adblock Filter Lists

Umar Iqbal
The University of Iowa

Zubair Shafiq
The University of Iowa

Zhiyun Qian
University of California-Riverside

ABSTRACT

The increasing popularity of adblockers has prompted online pub-

lishers to retaliate against adblock users by deploying anti-adblock

scripts, which detect adblock users and bar them from accessing

content unless they disable their adblocker. To circumvent anti-

adblockers, adblockers rely on manually curated anti-adblock filter

lists for removing anti-adblock scripts. Anti-adblock filter lists cur-

rently rely on informal crowdsourced feedback from users to add/re-

move filter list rules. In this paper, we present the first comprehen-

sive study of anti-adblock filter lists to analyze their effectiveness

against anti-adblockers. Specifically, we compare and contrast the

evolution of two popular anti-adblock filter lists. We show that

these filter lists are implemented very differently even though they

currently have a comparable number of filter list rules. We then use

the Internet Archive’s Wayback Machine to conduct a retrospec-

tive coverage analysis of these filter lists on Alexa top-5K websites

over the span of last five years. We find that the coverage of these

filter lists has considerably improved since 2014 and they detect

anti-adblockers on about 9% of Alexa top-5K websites. To improve

filter list coverage and speedup addition of new filter rules, we

also design and implement a machine learning based method to

automatically detect anti-adblock scripts using static JavaScript

code analysis.

CCS CONCEPTS

• Security and privacy→ Browser security;Web application

security;

KEYWORDS

Adblocking, Anti-Adblocking, JavaScript, Machine Learning, Pri-

vacy, Static Code Analysis, The Wayback Machine

ACM Reference Format:

Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospec-

tive Measurement and Analysis of Anti-Adblock Filter Lists. In Proceedings

of IMC ’17, London, United Kingdom, November 1–3, 2017, 13 pages.

https://doi.org/10.1145/3131365.3131387

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC ’17, November 1–3, 2017, London, United Kingdom

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00
https://doi.org/10.1145/3131365.3131387

1 INTRODUCTION

Millions of users around the world use adblockers on desktop and

mobile devices [31]. Users employ adblockers to get rid of intrusive

and malicious ads as well as improve page load performance and

protect their privacy. Since online publishers primarily rely on ads

to monetize their services, they cannot monetize their services if a

user employs an adblocker to remove ads. Online publishers have

lost billions of dollars in advertising revenues due to adblocking

[56]. Online publishers use two strategies to recoup lost advertising

revenues.

First, many online publishers and advertisers have become part

of the acceptable ads program [1], which allows their ads to be

whitelisted if they conform to the acceptable ads guidelines. Small-

and medium-sized publishers can enroll in the acceptable ads pro-

gram for free, however, large publishers need to pay about 30% of

the additional revenue recouped by whitelisting of acceptable ads.

Popular adblockers, such as Adblock Plus, use the acceptable ads

filter list to whitelist acceptable ads. While some stakeholders in the

advertising ecosystem think that the acceptable ads program offers

a reasonable compromise for users and publishers, there are linger-

ing concerns about the acceptable ads criteria and the transparency

of the whitelisting process [66].

Second, many online publishers have started to interrupt adblock

users by employing anti-adblock scripts. These anti-adblock scripts

allow publishers to detect adblock users and respond by showing

notifications that ask users to disable their adblocker altogether,

whitelist the website, or make a donation to support them. Most

publishers rely on third-party anti-adblock scripts provided by

vendors such as PageFair and Outbrain as well as community scripts

provided by the IAB and BlockAdblock.

Adblockers employ anti-adblock filter lists to remove anti-adblock

scripts and notifications by anti-adblockers. Similar to the filter lists

such as EasyList and EasyPrivacy for blocking ads and trackers

respectively, there are several crowdsourced anti-adblock filter lists

that are used by adblockers to circumvent anti-adblokcers. These

anti-adblock filter lists represent the state-of-the-art solution to

anti-adblockers for adblock users, but little is known about the

origin, evolution, and effectiveness of anti-adblock filter lists in

circumventing anti-adblockers.

To fill this gap, in this paper we present the first comprehensive

study of anti-adblock filter lists. We analyze the complete history of

crowdsourced anti-adblock filter lists and conduct a retrospective

measurement study to analyze their coverage over time. We also

develop a lightweight machine learning based approach to auto-

matically detect anti-adblock scripts using static JavaScript code

analysis. Our approach can complement crowdsourcing to speed

up the creation of new filter rules as well as improve the overall

coverage of filter lists.

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

We address three research questions in this paper.

(1) How have the filter rules in anti-adblock filter lists evolved over

time? We analyze two anti-adblock filter lists, Anti-Adblock

Killer List and Combined EasyList (Adblock Warning Re-

moval List + Anti-Adblock sections in EasyList). Our analysis

reveals that they are implemented differently. More specifi-

cally, the Combined EasyList uses a few broadly defined filter

rules and then uses many more exception rules to take care

of false positives. In contrast, the Anti-Adblock Killer List

tends to contain high precision filter rules that target specific

websites. We also find that while the Combined EasyList is

updated almost daily, the Anti-Adblock Killer List is being

updated approximately once every month for the last one

year.

(2) How has the coverage of anti-adblock filter lists evolved over

time? We test different versions of anti-adblock filter lists on

historical snapshots of Alexa top-5K websites archived by

the Wayback Machine to study their coverage. We find that

the Anti-Adblock Killer List triggers on 8.7% websites and

the Combined EasyList only triggers on 0.4% websites cur-

rently. We further test both anti-adblock filter lists on Alexa

top-100K live websites. We find that the Anti-Adblock Killer

List triggers on 5.0% websites and the Combined EasyList

only triggers on 0.2%websites.While the Anti-Adblock Killer

List clearly seems to provide better coverage than the Com-

bined EasyList, it has not been updated by its authors since

November 2016.

(3) How can we improve creation of anti-adblock filter lists? To aid

filter list authors in maintaining anti-adblock filter lists, we

investigate a machine learning based automated approach

to identify anti-adblock scripts. Our method conducts static

analysis of JavaScript code to fingerprint syntactic features of

anti-adblock scripts. The evaluation shows that our method

achieves up to 99.7% detection rate and 3.2% false positive

rate. Our proposed machine learning based automated ap-

proach can aid filter list authors to more quickly update

anti-adblock filter lists as well as improve its coverage.

Our work is motivated by recent studies of different filter lists

[44, 58, 66] that are used by adblockers. Our findings highlight in-

herent limitations of manual curation and informal crowdsouricng

to maintain anti-adblock filter lists. Our work can help filter list

authors to automatically and quickly update anti-adblock filter lists.

Paper Organization. The rest of the paper is organized as follows.

§2 provides a brief background and discussion of related work on

anti-adblocking. §3 discusses the evolution of anti-adblock filter

lists. §4 presents our methodology to crawl historical snapshots of

Alexa top-5K websites from the Wayback Machine and our retro-

spective coverage analysis of anti-adblock filter lists. §5 discusses

our machine learning based approach to automatically detect anti-

adblock scripts using static analysis. Finally, we conclude in §6 with

an outlook to future research directions.

2 BACKGROUND & RELATEDWORK

2.1 Background

Online publishers, advertisers, and data brokers track users across

the Web to serve them personalized content and targeted adver-

tisements. Online tracking is conducted using cookies, beacons,

and fingerprinting [44]. Online tracking has raised serious privacy

and surveillance concerns. Web tracking allows advertisers to infer

sensitive information about users such as their medical and finan-

cial conditions [57]. Nation states can piggyback on web tracking

information to conduct mass surveillance [45]. To combat privacy

and surveillance concerns, one solution is to block trackers and the

other is to block advertisements.

Tracker blockers remove network requests to known tracker do-

mains. Tracker blocking extensions are available for all major web

browsers. Ghostery [22] is one of the most popular tracker blocking

extensions. It is used by more than 2.6 million Google Chrome users

[23] and 1.3 million Mozilla Firefox users [24]. Another popular

tracker blocking extension is the EFF’s Privacy Badger [32], which

is used by more than 532K Google Chrome users [33] and 116K

Mozilla Firefox users [34]. Mainstream browsers such as Apple

Safari and Mozilla Firefox have developed built-in tracking preven-

tion solutions. Apple has recently launched Intelligent Tracking

Prevention [67] in Safari to mitigate excessive tracking. Mozilla

also has a tracking prevention solution [28] in the private browsing

mode of Firefox.

Adblocking extensions can remove both advertisements and

trackers. Like tracker blockers, adblocking extensions are also avail-

able for all major web browsers. Two of the popular adblockers are

Adblock Plus and AdBlock. Adblock Plus [4] is used by more than

10 million Google Chrome users [5] and 19 million Mozilla Fire-

fox users [6]. AdBlock [2] is used by more than 10 million Google

Chrome users [3]. Some new web browsers such as Cliqz [13] and

Brave [12] now have built-in adblockers. Google Chrome has also

recently announced that they will block ads [63] on websites that

do not comply with the Better Ads Standards set by the Coalition

for Better Ads [14].

Adblockers have become much more popular than tracker block-

ers because they provide benefits such as removal of intrusive ads,

protection from malware, and improved page load time in addition

to privacy protection against online tracking. A recent survey [31]

showed that 43% users install adblockers to get rid of interruptive

or too many ads, 30% to avoid spread of malware, 16% to boost the

page load time, and 6% to protect their privacy.

Adblockers rely on crowdsourced filter lists to block advertise-

ments and trackers. EasyList [16] is the most widely used filter

list to block advertisements. There are also some language-specific

filter lists to block advertisements such as EasyList Dutch [18], Ea-

syList Germany [18], and EasyList Spanish [18]. EasyPrivacy [18]

is the most widely used filter list to block trackers. Other tracker

blocking filter lists include Fanboy’s Enhanced Tracking List [19],

Disconnect.me [15], Blockzilla [11], and NoTrack Blocklist [30]. Ad-

blockers such as Adblock Plus and AdBlock, as well as web browsers

such as Cliqz and Brave, are subscribed to EasyList. Adblockers typ-

ically allow users to subscribe to different filter lists and incorporate

custom filter rules.

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

Filter list rules are regular expressions that match HTTP requests

and HTML elements. Adblockers block HTTP requests and hide

HTML elements if they match any of the filter rules. Below we

provide a brief overview of the syntax of HTTP request filter rules

and HTML element filter rules [20].

HTTP Request Filter Rules: HTTP request rules match against

URLs in the HTTP request headers. As shown in Code 1, these rules

may be domain specific with a domain anchor (‖) or a domain tag

(domain=). Rule 1 blocks HTTP requests to example1.com. Rule 2

blocks HTTP requests to example1.com to load JavaScript. Rule 3

blocks HTTP requests to example1.com to load JavaScript on ex-

ample2.com. Rule 4 blocks HTTP requests to download example.js

JavaScript on example2.com.

1 ! Ru le 1

2 | | example1 .com

3 ! Rule 2

4 | | e x amp l e 1 . c om$ s c r i p t

5 ! Ru le 3

6 | | e x amp l e1 . c om$s c r i p t , domain=example2.com

7 ! Rule 4

8 / e x amp l e . j s $ s c i p t , domain=example2.com

Code 1: HTTP request filter rules.

HTML Element Filter Rules: HTML element rules match against

HTML elements loaded in a web page and hide the matched ele-

ments. Code 2 shows three examples of HTML element filter rules.

Rule 1 hides the HTML element with ID examplebanner on exam-

ple.com. Rule 2 hides the HTML element with class name example-

banner on example.com. Rule 3 hides the HTML element with ID

examplebanner on any website.

1 ! Ru le 1

2 example .com ### examplebanner

3 ! Ru le 2

4 example .com # # . examplebanner

5 ! Ru le 3

6 ### examplebanner

Code 2: HTML element filter rules.

Exception Rules: Exception rules override filter rules by allow-

ing HTTP requests and HTML elements that match other filter

rules. Exception rules are generally used to protect against false

positives by filter rules that cause site breakage. Code 3 shows two

examples of exception rules. Rule 1 allows HTTP requests to exam-

ple.com to load JavaScript. Rule 2 allows HTML element with ID

examplebanner on example.com.

1 ! Ru le 1

2 @@| | e x amp l e . c om$ s c r i p t

3 ! Ru le 2

4 example .com #@## e lementbanner

Code 3: Exception rules for HTTP requests and HTML

elements.

2.2 Related Work

Online Tracking. Prior research has demonstrated the widespread

nature of online tracking. Krishnamurthy and Wills [51] showed

that top 10 third party trackers had grown from 40% in October

2005 to 70% in September 2008 for 1200 popular websites. In an-

other study, Ihm et al. [49] reported that the popularity of search

engines (google.com or baidu.com) and analytics sites (google-

analytics.com) had increased from 2006 to 2010. Lerner et al. [53]

conducted a retrospective study of online tracking on top-500 web-

sites using the Internet Archive’s Wayback Machine [38]. They

reported that the percentage of websites contacting at least 5 sep-

arate third parties has increased from 5% in early 2000s to 40% in

2016. They also reported that the coverage of top trackers on the

web is increasing rapidly, with top 5 trackers now covering more

than 60% of the top 500 websites as compared to less than 30% ten

years ago. Englehardt and Narayanan [44] showed that a handful

of third parties including Google, Facebook, Twitter, Amazon, and

AdNexus track users across a significant fraction of the Alexa top

one million websites. For example, they reported that Google alone

tracks users across more than 80% of Alexa top one million websites.

Tracker Blocking. Tracker blocking tools have had mixed success

in blocking online trackers. Roesner et al. [64] found that defenses

such as third-party cookie blocking, Do Not Track (DNT), and

popup blocking are not effective in blocking social media widgets

tracking. Englehardt and Narayanan [44] demonstrated that exist-

ing tracker blocking tools like Ghostery, Disconnect, EasyList, and

EasyPrivacy are less effective against obscure trackers. Merzdovnik

et al. [58] found that popular tracker blocking tools have blind

spots against stateless trackers and trackers with smaller footprints.

To improve tracker blockers, Gugelmann et al. [48] proposed an

automated approach that learns properties of advertisements and

analytics services on existing filter lists and identifies new services

to be included in adblockers’ filter lists. Yu et al. [69] proposed an

approach, inspired by k-anonymity, to automatically filter data sent

to trackers that have the potential to uniquely identify a user. Their

approach aims to block third-party tracker requests while avoiding

blanket blocking of 3rd parties based on blacklists. Ikram et al. [50]

proposed a one-class machine learning approach to detect trackers

with high accuracy based on their JavaScript code structure. In

the same spirit as prior research on improving tracker blocking

tools, in this paper we propose a machine learning approach to

detect anti-adblock filter lists. As we discuss later, our approach is

customized to capture syntactic behaviors of anti-adblockers.

Adblocking and Anti-Adblocking. Prior research has focused

on analyzing the prevalence of adblockers. Pujol et al. [61] analyzed

network traces from amajor European ISP and found that 22% of the

most active users used Adblock Plus. Malloy et al. [55] conducted a

measurement study of 2 million users and found that 18% of users in

the U.S. employ adblockers. The increasing popularity of adblockers

has pushed online publishers to retaliate against adblock users.

First, some online publishers have started to manipulate ad deliv-

ery to evade filter lists. For example, publishers can keep changing

third-party domains that serve ads to bypass filter list rules. More

recently, Facebook manipulated HTML element identifiers [42] to

bypass their ads through filter lists. To address this problem, Storey

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

et al. [65] proposed a perceptual adblocking method for visually

identifying and blocking ads based on optical character recogni-

tion and fuzzy image matching techniques. The key idea behind

perceptual adblocking is that ads are distinguishable from organic

content due to government regulations (e.g., FTC [36]) and industry

self-regulations (e.g., AdChoices [41]). The authors [65] reported

that their perceptual adblocking approach is robust to ad delivery

manipulation by online publishers.

Second, some online publishers have started to employ anti-

adblock scripts to detect adblockers. Anti-adblock scripts detect

adblock users and prompt them to disable their adblocker. Adblock-

ers currently rely on manually curated anti-adblock filter lists, e.g.,

Anti-Adblock Killer List, to block anti-adblock scripts. Rafique et

al. [62] manually analyzed top 1,000 free live streaming websites

and reported that 16.3% websites attempted to detect adblockers.

Nithyanand et al. [60] crawled Alexa top-5K websites and manu-

ally analyzed JavaScript snippets to find that 6.7% websites used

anti-adblocking scripts. In our prior work, Mughees et al. [59] used

a machine learning based approach with A/B testing to analyze

changes in page content due to anti-adblockers. We found that only

686 out of Alexa-100K websites visibly react to adblockers. In con-

trast to prior efforts to study anti-adblock deployment, in this paper

we conduct a retrospective measurement study of anti-adblock

filter lists that are currently used by adblockers to circumvent anti-

adblockers. In our prior work [59] we used machine learning to

detect anti-adblockers that visibly react to adblockers, while in this

paper we use machine learning to fingerprint anti-adblock scripts.

Storey et al. [65] proposed stealth (hide adblocking) and active (ac-

tively counter adblock detection) adblocking approaches. For stealth

adblocking, they partially implemented a rootkit-style approach

that intercepts and modifies JavaScript API calls that are used by

publishers to check the presence of ad elements. Their approach is

complementary to our approach. For active adblocking, they imple-

mented a signature-based approach to remove anti-adblock scripts

using manually crafted regular expressions. In contrast, our pro-

posed machine learning based approach can automatically identify

anti-adblock scripts based on their syntactic features.

Next, we analyze the evolution of popular anti-adblock filter lists

(§3), measure their historic coverage on popular websites (§4), and

develop machine learning based approach to detect anti-adblock

scripts (§5).

3 ANALYZING ANTI-ADBLOCK FILTER LISTS

We first introduce anti-adblockers and then analyze popular anti-

adblock filter lists.

3.1 How Anti-Adblocking Works?

Anti-adblockers employ baits to detect adblockers. These baits

are designed and inserted in web pages such that adblockers will

attempt to block them. To detect the presence of adblockers, anti-

adblockers check whether these baits are blocked. Anti-adblockers

use HTTP and HTML baits to detect adblockers. Below we discuss

both of them separately.

For HTTP baits, anti-adblockers check whether the bait HTTP

request is blocked by adblockers. Code 4 illustrates the use of HTTP

bait by the anti-adblocker on businessinsider.com, which requests a

bait URL www.npttech.com/advertising.js and checks whether it is

successfully retrieved. Code 4 dynamically creates an HTTP request

bait and calls onLoad event in case of success and onError event in

case of failure. Both events call the setAdblockerCookie function

with a parameter of either true or false. setAdblockerCookie event

sets the value of the cookie __adblocker to either true or false

depending on the input value.

1 var s c r i p t = documen t . c r e a t eE l emen t ("script")

;

2 s c r i p t . s e t A t t r i b u t e ("async" , true) ;

3 s c r i p t . s e t A t t r i b u t e ("src" , "// www.npttech.com

/advertising.js") ;

4 s c r i p t . s e t A t t r i b u t e ("onerror" , "

setAdblockerCookie(true);") ;

5 s c r i p t . s e t A t t r i b u t e ("onload" , "

setAdblockerCookie(false);") ;

6 document .getElementsByTagName ("head") [0] .

appendChi ld (s c r i p t) ;

7

8 var s e tAdb l o cke rCook i e = function (a d b l o c k e r)

{

9 var d = new Date () ;

10 d . s e tT ime (d . g e tT ime () + 60 ∗ 60 ∗ 24 ∗ 30

∗ 1 0 0 0) ;

11 document . cook i e = "__adblocker=" + (

adb l o ck e r ? "true" : "false") + ";

expires=" + d . t oUTCS t r i ng () + ";

path=/" ;

12 }

Code 4: Anti-adblocker JavaScript code for HTTP bait.

For HTML baits, anti-adblockers check if the CSS properties of

the bait HTML element are modified. Code 5 illustrates the use of

HTML bait by a popular third-party anti-adblocker called BlockAd-

Block [10], which creates a div bait and checks whether the bait is

removed. The _creatBait function creates a div element and sets

its CSS properties. The _checkBait function checks whether the

div element’s CSS properties such as offsetHeight, offsetTop,

and offsetWidth are changed.

1 B l o c kAdB l o c k . p r o t o t y p e . _ c r e a t B a i t = function

() {

2 var b a i t = documen t . c r e a t eE l emen t ('div') ;

3 b a i t . s e t A t t r i b u t e ('class ' ,

t h i s . _ o p t i o n s . b a i t C l a s s) ;

4 b a i t . s e t A t t r i b u t e ('style ' ,

t h i s . _ o p t i o n s . b a i t S t y l e) ;

5 t h i s . _ v a r . b a i t =

window.document .body .appendChi ld (b a i t) ;

6 t h i s . _ v a r . b a i t . o f f s e t P a r e n t ;

7 t h i s . _ v a r . b a i t . o f f s e t H e i g h t ;

8 t h i s . _ v a r . b a i t . o f f s e t L e f t ;

9 t h i s . _ v a r . b a i t . o f f s e t T o p ;

10 t h i s . _ v a r . b a i t . o f f s e t W i d t h ;

11 t h i s . _ v a r . b a i t . c l i e n t H e i g h t ;

12 t h i s . _ v a r . b a i t . c l i e n tW i d t h ;

13 if (t h i s . _ o p t i o n s . d e b u g === true) {

14 t h i s . _ l o g ('_creatBait ' , 'Bait has been

created ') ;

15 }

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

16 } ;

17

18 B l o c kAdB l o c k . p r o t o t y p e . _ c h e c kB a i t = function (

l oop) {

19 var d e t e c t e d = f a l s e ;

20 if (w indow .do cumen t . b ody . g e tA t t r i bu t e ('abp

') ! == null

21 | | t h i s . _ v a r . b a i t . o f f s e t P a r e n t === null

22 | | t h i s . _ v a r . b a i t . o f f s e t H e i g h t == 0

23 | | t h i s . _ v a r . b a i t . o f f s e t L e f t == 0

24 | | t h i s . _ v a r . b a i t . o f f s e t T o p == 0

25 | | t h i s . _ v a r . b a i t . o f f s e tW i d t h == 0

26 | | t h i s . _ v a r . b a i t . c l i e n t H e i g h t == 0

27 | | t h i s . _ v a r . b a i t . c l i e n tW i d t h == 0) {

28 d e t e c t e d = t r u e ;

29 }

30 } ;

Code 5: BlockAdBlock JavaScript code for creating and

checking a bait.

3.2 Anti-Adblock Filter Lists

Using the aforementioned techniques, anti-adblockers detect ad-

blockers and prompt users to disable their adblockers if they want to

view page content. To circumvent anti-adblockers, adblockers cur-

rently rely on anti-adblock filter lists. The rules of these filter lists

are designed to handle HTTP requests and HTML elements that are

used by anti-adblockers. For example, the filter list rules may allow

or block HTTP requests and HTML elements to avoid detection by

anti-adblockers. Code 6 shows two examples of anti-adblock rules.

Rule 1 blocks third-party HTTP requests to pagefair.com which

is a well-known anti-adblock vendor. Rule 2 hides the HTML ele-

ment with ID noticeMain which displays an anti-adblock notice

on smashboards.com.

1 ! Ru le 1

2 | | p a g e f a i r . c om ^ $ t h i r d−p a r t y

3 ! Ru le 2

4 smashboards .com ### no t i c eMa in

Code 6: Example anti-adblock filter rules.

Themostwidely used anti-adblock filter lists are: (1) Anti-Adblock

Killer List [8], (2) Adblock Warning Removal List [37], and (3) Ea-

syList [16]. The first two are dedicated to target anti-adblockers,

however, EasyList’s main purpose is to block ads. Several sections in

EasyList specifically contain anti-adblocking filter rules. In this pa-

per, we only analyze anti-adblock sections of EasyList. Anti-Adblock

Killer List started in 2014, Adblock Warning Removal List started

in 2013, and anti-adblock sections in EasyList were created in 2011.

These anti-adblock filter lists rely on informal crowdsourced input

from their users (e.g., via feedback forums) to add new filter rules or

remove/modify old filter rules. These anti-adblock filter lists have

been regularly updated since their creation.

Anti-Adblock Killer. Anti-Adblock Killer List was created by

“reek” in 2014. The list is maintained on GitHub [8] and users submit

feedback by reporting issues on the GitHub page [9]. On average,

the list adds or modifies 6.2 filter rules for every revision. Figure

1(a) visualizes the temporal evolution of different types of filter

20
14

 - 0
6

20
14

 - 0
8

20
14

 - 1
0

20
14

 - 1
2

20
15

 - 0
2

20
15

 - 0
4

20
15

 - 0
6

20
15

 - 0
8

20
15

 - 1
0

20
15

 - 1
2

20
16

 - 0
2

20
16

 - 0
4

20
16

 - 0
6

0

500

1000

1500

2000

N
um

be
r o

f R
ul

es

HTML rules without domain
HTML rules with domain
HTTP rules without domain anchor and tag
HTTP rules with domain anchor
HTTP rules with domain tag
HTTP rules with domain anchor and tag

(a) Anti-Adblock Killer

20
13

 - 1
2

20
14

 - 0
2

20
14

 - 0
4

20
14

 - 0
6

20
14

 - 0
8

20
14

 - 1
0

20
14

 - 1
2

20
15

 - 0
2

20
15

 - 0
4

20
15

 - 0
6

20
15

 - 0
8

20
15

 - 1
0

20
15

 - 1
2

20
16

 - 0
2

20
16

 - 0
4

20
16

 - 0
6

0

50

100

150

200

250

N
um

be
r o

f R
ul

es

HTML rules without domain
HTML rules with domain
HTTP rules without domain anchor and tag
HTTP rules with domain anchor
HTTP rules with domain tag
HTTP rules with domain anchor and tag

(b) Adblock Warning Removal List

20
11

 - 0
5

20
11

 - 0
9

20
12

 - 0
1

20
12

 - 0
5

20
12

 - 0
9

20
13

 - 0
1

20
13

 - 0
5

20
13

 - 0
9

20
14

 - 0
1

20
14

 - 0
5

20
14

 - 0
9

20
15

 - 0
1

20
15

 - 0
5

20
15

 - 0
9

20
16

 - 0
1

20
16

 - 0
5

0

500

1000

1500

N
um

be
r o

f R
ul

es

HTML rules without domain
HTML rules with domain
HTTP rules without domain anchor and tag
HTTP rules with domain anchor
HTTP rules with domain tag
HTTP rules with domain anchor and tag

(c) EasyList

Figure 1: Temporal evolution of anti-adblock filter lists.

rules in the Anti-Adblock Killer List. We observe a steady increase

in number of filter rules. The filter list started with 353 initial filter

rules and it has expanded to 1,811 filter rules by July 2016. The

stair step pattern in the number of filter rules starting November

2015 indicates that the update cycle of the filter list increased to

approximately once a month. For this span, the list adds or modifies

60 filter rules for every revision on average. The most common

types of filter rules are HTTP request rules (with domain anchor

and both domain anchor and tag) and HTML element rules (with

domain). The most recent version of the filter list has 58.5% HTTP

request rules and 41.5% HTML element rules. 31.0% filter rules are

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

HTTP request rules with only domain anchor, 2.1% are HTTP re-

quest rules with only domain tag, 22.0% are HTTP request rules

with both domain anchor and tag, and 3.4% are HTTP request rules

without domain anchor and tag. 40.0% filter rules are HTML ele-

ment rules with domain and 1.5% are HTML element rules without

domain.

AdblockWarning Removal List.AdblockWarning Removal List

was created by the EasyList filter list project [16] in 2013. The list

is maintained by multiple authors and relies on user feedback on

their forum [17]. On average, the list adds or modifies 0.2 filter

rules every day. Figure 1(b) visualizes the temporal evolution of

different types of filter rules in the Adblock Warning Removal

List. In contrast to the Anti-Adblock Killer List, it is noteworthy

that this list contains a larger fraction of HTML filter rules. The

HTML element filter rules hide anti-adblock warning popups that

are displayed when anti-adblockers detect adblockers. The filter list

started in 2013 with 4 filter rules and it has expanded to 167 filter

rules by July 2016. While the filter list initially grows slowly, we

note a significant spike in the number of filter rules in April 2016

after which the rate of addition of new rules increases as well. The

spike observed in April 2016 corresponds to the addition of French

language section in the filter list. The most recent version of the

filter list has 32.3% HTTP request rules and 67.7% HTML element

rules. 24.5% filter rules are HTTP request rules with only domain

anchor, 0.6% are HTTP request rules with only domain tag, 1.2%

are HTTP request rules with both domain anchor and tag, and 6.0%

are HTTP request rules without domain anchor and tag. 49.7% filter

rules are HTML element rules with domain and 18.0% are HTML

element rules without domain.

EasyList. EasyList’s primary purpose is to block ads. All major ad-

blockers are subscribed to EasyList by default. As discussed earlier,

several sections in EasyList specifically contain anti-adblocking

filter rules. EasyList started adding anti-adblock rules in 2011. Our

analysis here focuses only on the anti-adblock sections of EasyList.

On average, the list adds or modifies 0.6 anti-adblock filter rules

every day. Figure 1(c) visualizes the temporal evolution of different

types of anti-adblock filter rules in EasyList. The filter list started

with 67 filter rules in 2011 and it has expanded to 1,317 filter rules

by July 2016. We observe a steady increase in the number of HTTP

request filter rules. It is noteworthy that the filter list contains a

relatively small fraction of HTML element filter rules. The most

recent version of the filter list has 96.3% HTTP request rules and

3.7% HTML element rules. 64.6% filter rules are HTTP request rules

with only domain anchor, 3.6% are HTTP request rules with only

domain tag, 24.6% are HTTP request rules with both domain anchor

and tag, and 3.5% are HTTP request rules without domain anchor

and tag. 3.7% filter rules are HTML element rules with domain. The

filter list does not contain any HTML element rule without domain.

3.3 Comparative Analysis of Anti-Adblock
Lists

Next, we compare and contrast different anti-adblocking filter lists.

To this end, we decide to combine EasyList and Adblock Warning

Removal List because (1) they are both managed by the EasyList

filter list project [16] and (2) they are complementary — Adblock

Alexa Anti-Adblock Combined

Rank Killer List EasyList

1-5K 112 124

5K-10K 49 69

10K-100K 280 312

100K-1M 334 359

>1M 640 530

Table 1: Distribution of domains in filter lists across Alexa

rankings.

Warning Removal List mostly contains HTML element filter rules

and EasyList mostly contains HTTP request filter rules. The most

recent version of the Combined EasyList contains 1,483 rules.

Since a vast majority of filter list rules contain domain informa-

tion, we first compare the number of domains in both filter lists.

Anti-Adblock Killer List and Combined EasyList include 1,415 and

1,394 domains, respectively. To our surprise, these filter lists have

only 282 domains in common. To analyze why the filter lists are tar-

geting different sets of domains, we break down the set of domains

based on the Alexa popularity ranks and their category. Table 1

provides the breakdown of domains in both filter lists based on their

Alexa ranks. While there are some differences, popularity distribu-

tions of domains in both filter lists are fairly similar. For domain

categorization, we use McAfee’s URL categorization service [26]

and manually merge similar categories together. Figure 2 shows

the distribution of domains in both filter lists based on McAfee’s

URL categorization. We plot top 15 categories and group remaining

categories as others. Similar to the distribution of Alexa popularity

ranks, the categorization trend is also similar across both filter lists.

Below, we further investigate the differences in the filter lists by

analyzing whether they are implemented differently.

To analyze whether these filter lists are implemented differently,

we study exception and non-exception conditions in filter rules. We

label the domains as exception or non-exception on the basis of rules

in which they appeared. If the rule is an exception rule, we label

the domain as exception domain. If the rule is a non-exception rule,

we label the domain as non-exception domain. For the Combined

Int
ern

et
Serv

ice
s

Ente
rta

inm
en

t

Blog
s/F

oru
ms

Gam
es

Ille
ga

l S
oft

ware

Bus
ine

ss

Stre
am

ing
/Sha

rin
g

Gen
era

l N
ew

s

Mark
eti

ng
Spo

rts

Pers
on

al
Stor

ag
e

Sha
rew

are

Web
 Ads

Mali
cio

us
 Site

s

Porn
og

rap
hy

Othe
rs

0

2

4

6

8

10

12

N
um

be
r o

f w
eb

si
te

s
(p

er
ce

nt
ag

e) Combined EasyList
Anti-Adblock Killer

Figure 2: Categorization of domains in anti-adblock filter

lists.

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

EasyList, we note a ratio of approximately 4:1 for exception to non-

exception domains. For the Anti-Adblock Killer List, we note a ratio

of approximately 1:1 for exception to non-exception domains.

We next investigate the difference in proportion of exception

and non-exception domains in both filter lists. We surmise that

the Combined EasyList has many exception domains because it

works with a large number of adblock rules in the full EasyList.

For example, rule 1 in Code 7 is an adblocking rule that blocks

every URL that ends with /ads.js? and rule 2 is an exception

rule that overrides rule 1 and allows /ads.js? on numerama.com.

Our analysis revealed that numerama.com was using /numerama.

com/ads.js as a bait HTTP request. More specifically, in Code 8,

we note that canRunAds will be undefined if bait HTTP request

is blocked and adblockStatus will be set to active. Combined

EasyList has many such exception rules. In contrast, we note that

the Anti-Adblock Killer List has a larger fraction of non-exception

filter rules that block anti-adblock scripts on specific domains. Our

results highlight that these anti-adblock filter lists have different

approaches to writing filter rules.

1 ! Ru le 1

2 / a d s . j s ?

3 ! Ru le 2

4 @@| | numerama.com / a d s . j s

Code 7: URL that is blocked on other websites but

allowed on numerama.com.

1 canRunAds = t r u e ;

2 var a d b l o c k S t a t u s = 'inactive ' ;

3 if (window.canRunAds === unde f ined) {

4 a d b l o c k S t a t u s = 'active ' ;

5 }

Code 8: Use of HTTP bait by numerama.com.

We next analyze the implementation of filter rules for 282 over-

lapping domains in the Combined EasyList and Anti-Adblock Killer

List. Domain specific rules are implemented through domain tag

(domain=), domain anchor (‖), and HTML element tag (##). Code 9

shows the filter rule implementation by both filter lists for yocast.tv

using HTML element tag. The Combined EasyList hides HTML

element with ID ra9e on yocast.tv. Whereas the Anti-Adblock

Killer List hides HTML element with ID notice on yocast.tv. Code

10 shows the filter rule implementation by both filter lists for

pagefair.com using domain anchor. The Combined EasyList blocks

all HTTP requests from pagefair.com by its general adblocking

rules and focuses on specific websites in its anti-adblocking rules.

Whereas the Anti-Adblock Killer List blocks all HTTP requests

from pagefair.com on any domain. Overall, we note that both filter

lists often have different rules to circumvent anti-adblockers even

for the same set of domains.

1 ! Combined E a s y L i s t

2 y o c a s t . t v ### r a9e

3 ! Anti−Adblock K i l l e r l i s t

4 y o c a s t . t v ### n o t i c e

Code 9: Implementation of yocast.tv for the Combined

EasyList and Anti-Adblock Killer List.

1 ! Combined E a s y L i s t

2 | | p a g e f a i r . c om / s t a t i c / a d b l o c k _ d e t e c t i o n / j s /

d .m in . j s $doma in=ma jo r l e aguegaming . com

3 ! Anti−Adblock K i l l e r l i s t

4 | | p a g e f a i r . c om ^ $ t h i r d−p a r t y

Code 10: Implementation of pagefair.com for the

Combined EasyList and Anti-Adblock Killer List.

Finally, we investigate which of these anti-adblock filter lists is

more prompt in adding new filter rules. To this end, we compare

and contrast the addition time of 282 overlapping domains in both

filter lists. We find that 185 domains appear first in the Combined

EasyList, 92 domains appear first in the Anti-Adblock Killer List,

and 5 domains appear on the same day on both filter lists. Figure

3 plots the distribution of overlapping domains in terms of the

difference in days when they appear in each list. These results

seem to indicate that the Combined EasyList is more prompt in

adding new rules. The difference can be explained in part because

the Combined EasyList is used by default in many popular anti-

adblockers, thus we expect it to get more user feedback from its

much larger user base than that for the Anti-Adblock Killer List.

We also note as a caveat that we should expect many domains to

appear in the Combined EasyList before the Anti-Adblock Killer

List because the Combined EasyList started more than two years

before the Anti-Adblock Killer List.

-10
80 -90

0
-72

0
-54

0
-36

0
-18

0 0
18

0
36

0
54

0
72

0
90

0
10

80

Time difference (days)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 3: Distribution of time difference (number of days) be-

tween the Combined EasyList and Anti-Adblock Killer List

for addition of rules that target overlapping domains.

We have identified several key differences in the filter rule imple-

mentation across two popular anti-adblock filter lists. However, our

comparative analysis of filter lists provides an incomplete picture

of their behavior. First, the behavior of individual filter rules is

dependent on other rules in the filter list. Second, the effectiveness

of these filter lists is dependent on complex and often dynamic

website behavior. Therefore, to fully understand and compare the

behavior of the Combined EasyList and Anti-Adblock Killer List,

we need to run them on actual websites and see how different filter

rules are triggered.

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

4 ANALYZING FILTER LIST COVERAGE
USING THEWAYBACK MACHINE

We now conduct a retrospective study to analyze how anti-adblock

filter lists trigger on popular websites. Our goal is to study the

evolution of anti-adblock prevalence. To collect historical snapshots

of popular websites, we rely on the Internet Archive’s Wayback

Machine [38] which has archived historic snapshots of 279 billion

web pages since 1996 [40].

We crawl Alexa top-5K websites for the last five years from the

Wayback Machine and check for the presence of anti-adblockers

using the Combined EasyList and Anti-Adblock Killer List. Figure

4 provides an overview of our measurement methodology. We first

identify domains that are not archived by theWaybackMachine.We

then request theWayback Availability JSON API to collect the URLs

for the monthly archives of websites. We remove outdated URLs for

which the Wayback Machine does not have a snapshot close to our

requested date. We automatically crawl the remaining URLs and

store their request/responses in the HTTP Archive (or HAR) format.

We then remove partial HAR files and use the remaining to match

against anti-adblock filter lists. Below we explain our methodology

in more detail.

4.1 Crawling the Wayback Machine

The Wayback Machine archives snapshots of popular websites

several times everyday. While popular websites frequently change

their content, they much less frequently change their codebase and

dependance on third-party scripts such as anti-adblocking scripts.

This allows us to reduce the data set that we need to crawl. We

decide to only crawl one snapshot per month for a website. We

attempt to crawl a total of approximately 300K URLs from the

Wayback Machine. A serial crawler implementation would take

several months to completely crawl all URLs. To speed up crawling,

we parallelize crawlers using 10 independent browser instances.

For each of the Alexa top-5K domains, we first check whether

the domain is archived by the Wayback Machine. The Wayback

Machine may decide to not archive a domain due to that domain’s

robots.txt exclusion policy, at the request of the domain’s admin-

istrator, or for undefined reasons.1 The Wayback Machine does

not archive 153 domains because of their robots.txt exclusion pol-

icy, 26 domains because of domain’s administrator request, and 54

domains because of undefined reasons.

For the remaining domains, we request the Wayback Availability

JSON API [39] to collect the URLs for the monthly archives of the

domains’ homepages. TheWayback Availability JSON API returns a

URL that is closest to the requested date. If a website is not archived

by the Wayback Machine, an empty JSON response is returned

by the Wayback Availability JSON API. If a URL is returned we

check its timestamp and discard URLs for which the time difference

between the requested date and the actual date of URL is more than

6 months.

We open the remaining URLs in a fully functional web browser

using Selenium WebDriver [35] and collect all HTTP requests and

responses. We configure a profile of Mozilla Firefox [27] browser

with Firebug [21] and NetExport [29] plugins. For each website we

1The Internet Archive project recently announced [47] a policy change to ignore
robots.txt directives.

Top 5K Alexa domains

List of Wayback URLs with timestamp

Request Wayback
Machine JSON API

Remove not archived
domains

Mozilla Firefox
(Firebug + NetExport)

Data Repository

Automated Selenium WebDriver

Request to crawled
Wayback URLs

Store requests/
responses and
HTML content

Remove outdated URLs

Filter list matching

Remove partial
snapshots

Figure 4: Overview of our measurement methodology to

crawl historical snapshots from the Wayback Machine and

match against anti-adblock filter lists.

visit, we store all HTTP requests/responses in a HAR file [25] and

the page content in a HTML file. We get multiple HAR files for

some websites that keep on refreshing. For such websites, we take

a union of all HTTP requests in HAR files. We get incomplete HAR

files for websites that are not completely archived by the Wayback

Machine. We discard the partial HAR files, whose size is less than

10% of the average size of HAR files over a year.

Figure 5 shows the timeseries of number of missing monthly

snapshots by the Wayback Machine. We note that the number of

missing snapshots has decreased from 1,524 in August 2011 to 984

in July 2016. Outdated URLs account for the highest proportion of

missing snapshots. The number of outdated URLs has decreased

from 1,239 in August 2011 to 532 in July 2016. However, the number

of not archived URLs has increased from 262 in August 2011 to

374 in July 2016. Our analysis of not archived URLs shows that

it is generally due to HTTP 3XX redirects. For 3XX redirects, the

Wayback Availability JSON API returns an empty JSON object.

The number of partial snapshots has also increased from 23 in

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

20
11

 - 0
8

20
11

 - 1
2

20
12

 - 0
4

20
12

 - 0
8

20
12

 - 1
2

20
13

 - 0
4

20
13

 - 0
8

20
13

 - 1
2

20
14

 - 0
4

20
14

 - 0
8

20
14

 - 1
2

20
15

 - 0
4

20
15

 - 0
8

20
15

 - 1
2

20
16

 - 0
4

0

500

1000

1500

N
um

be
r o

f w
eb

si
te

s

Partial snapshots
Not archived URLs
Outdated URLs

Figure 5: Number of websites over time excluded from anal-

ysis.

August 2011 to 78 in July 2016. Our analysis of partial snapshots

shows that it is due to anti-abuse policies implemented by websites

against bots. Some domains show an error page if they detect the

Wayback Machine’s crawling bots. For correctly archived websites,

we verified that the Wayback Machine serves the same snapshots

to a normal user (using a regular browser) and our crawlers. To

this end, we manually analyzed a sample of randomly selected 20

URLs and did not find any difference in content served to a normal

user and our crawler. Our analysis corroborates the findings of

Lerner et al. [53] that the Wayback Machine archives most websites

reliably. It is noteworthy that we miss location specific content

because we rely on the content archived by the Wayback Machine.

The archived content is specific to the location of the Wayback

Machine’s servers.

4.2 Anti-Adblock Detection on the Wayback
Machine

After crawling the historic data of Alexa top-5K domains, we check

for the presence of anti-adblockers using the Anti-Adblock Killer

List and Combined EasyList. We use the historic versions of these fil-

ter lists at that point in time because it will portray the retrospective

effectiveness of these filter lists. For detection with HTTP request

filter rules, we extract the HTTP requests from the HAR files and

see whether they trigger HTTP rules in the filter lists. For detection

with HTML element filter rules, we open the stored HTML page in

a web browser with adblocker enabled and see whether it triggers

HTML rules in the filter lists.

To detect the presence of anti-adblockers with HTTP request

filter rules, we extract HTTP request URLs from the HAR files

crawled from the Wayback Machine. To archive a website, the

Wayback Machine replaces all live URLs with its own reference

by prepending http://web.archive.org to the URL. To run HTTP

request filter rules against these URLs, we truncate the Wayback

Machine references. Note that we do not truncate Wayback escape

[52, 53] URLs because they are not archived with the Wayback

Machine reference. We use adblockparser [7] to match all URLs

of a website against HTTP request filter rules. We label a website

as anti-adblocking if any of its URLs is matched against any of the

HTTP request filter rules. Figure 6(a) shows the number of anti-

adblocking websites in Alexa top-5K websites that are detected by

20
11

-08

20
11

-12

20
12

-04

20
12

-08

20
12

-12

20
13

-04

20
13

-08

20
13

-12

20
14

-04

20
14

-08

20
14

-12

20
15

-04

20
15

-08

20
15

-12

20
16

-04
0

50

100

150

200

250

300

350

N
um

be
r o

f W
eb

si
te

s

Combined EasyList
Anti-Adblock Killer

(a) Number of websites that trigger HTTP rules

20
11

-08

20
11

-12

20
12

-04

20
12

-08

20
12

-12

20
13

-04

20
13

-08

20
13

-12

20
14

-04

20
14

-08

20
14

-12

20
15

-04

20
15

-08

20
15

-12

20
16

-04
0

2

4

6

8

N
um

be
r o

f W
eb

si
te

s

Combined EasyList
Anti-Adblock Killer

(b) Number of websites that trigger HTML rules

Figure 6: Temporal evolution of websites that trigger HTTP

and HTML filter rules of the Anti-Adblock Killer List and

Combined EasyList.

HTTP request filter rules in Anti-Adblock Killer List and Combined

EasyList. For the Anti-Adblock Killer List, the number of matched

websites has increased from 0 in April 2014 to 331 in July 2016.

For the Combined EasyList, the number of matched websites has

increased from 0 in August 2011 to 16 in July 2016. In contrast to our

comparative analysis of these filter lists in §3, it is noteworthy that

the number of matched websites for the Anti-Adblock Killer List

is much higher than that for the Combined EasyList. Our analysis

of matched URLs also reveals that a vast majority of websites use

third party scripts for anti-adblocking. More specifically, more than

98% of matched websites for the Anti-Adblock Killer List use scripts

from third party anti-adblocking vendors such as Optimizel, Histats,

PageFair, and Blockadblock.

To detect the presence of anti-adblockers with HTML element

filter rules, we open the HTML webpage crawled from theWayback

Machine in a fully functional web browser and analyze whether

it triggers any HTML element filter rules in the filter lists. We

configure a profile of Mozilla Firefox browser with Adblock Plus

enabled and subscribe to the Anti-Adblock Killer List and Combined

EasyList. For each crawled HTML webpage, we open the webpage

in the browser and wait 180 seconds for it to load completely and

for HTML element filter rules to trigger. After that, we analyze

the Adblock Plus logs and extract the triggered HTML element

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

-10
80

-90
0

-72
0

-54
0

-36
0

-18
0 0 18

0
36

0
54

0
72

0
90

0
10

80

Time difference (days)

0

0.2

0.4

0.6

0.8

1

C
D

F

Combined EasyList
Anti-Adblock Killer

Figure 7: Distribution of time difference (number of days)

between the day an anti-adblocker was added to a website

and the day it was detected by Combined EasyList and Anti-

Adblock Killer List.

filter rules for the crawled HTML webpages. Figure 6(b) shows

the number of anti-adblocking websites in Alexa top-5K websites

that are detected by HTML element filter rules in the Anti-Adblock

Killer List and the Combined EasyList. We note that the number of

matching HTML element rules is much less than that with HTTP

request filter rules. For the Anti-Adblock Killer List, the number of

matched websites remains between 0 and 5 from April 2014 to July

2016. For the Combined EasyList, the number of matched websites

remains between 0 and 4 from August 2011 to July 2016.

Next, we compare the speed of the Anti-Adblock Killer List

and the Combined EasyList in adding a new filter rule for an anti-

adblocker after its addition. Figure 7 plots the distribution of time

difference in terms of number of days when an anti-adblocker was

added to a website and when a filter rule was added to detect it.

The results indicate that the Combined EasyList is more prompt

than the Anti-Adblock Killer List in adding new filter rules for anti-

adblockers that are added to a website. In the Combined EasyList,

filter rules are defined for 82% anti-adblockers within 100 days of

their addition to a website. However, in the Anti-Adblock Killer

List, filter rules are defined for only 32% anti-adblockers within

100 days of their addition to a website. It is noteworthy that for a

fraction of anti-adblockers filter rules are present on the Combined

EasyList and Anti-Adblock Killer List even before they are added to

a website. This can happen when the filter list uses generic rules to

block third-party anti-adblockers. In the Combined EasyList, filter

rules are present for 42% anti-adblockers before their addition to a

website. In the Anti-Adblock Killer List, filter rules are present for

23% anti-adblockers before their addition to a website.

4.3 Anti-Adblock Detection on the Live Web

After retrospectively analyzing the coverage of anti-adblock filter

lists using the Wayback Machine, we next study their coverage on

the live Web in April 2017. We crawl Alexa top-100K websites and

check for the presence of anti-adblockers using the Anti-Adblock

Killer List and Combined EasyList. For detection on liveWeb, we use

the most recent version of filter lists. Overall, our results on the live

Web corroborate the findings of our retrospective analysis using the

WaybackMachine. For example, we observe that the coverage of the

Anti-Adblock Killer List is much more than that of the Combined

EasyList. For the Anti-Adblock Killer List, the number of websites

that trigger HTTP request filter rules is 4,931 out of 99,396. For

the Combined EasyList, the number of websites that trigger HTTP

request filter rules is 182 out of 99,396. Furthermore, we find that the

number of websites that trigger HTML element filter rules is much

smaller. Specifically, the number of websites that trigger HTML

element filter rules is 11 for the Anti-Adblock Killer List and 15

for the Combined EasyList. We again note that a vast majority of

websites use third party anti-adblock scripts. For the Anti-Adblock

Killer List, 97% of the matched websites use anti-adblocking scripts

from third party vendors.

5 DETECTING ANTI-ADBLOCK SCRIPTS

Since anti-adblock filter lists are currently manually maintained,

it is challenging for their authors to keep them up-to-date. The

two popular anti-adblock filter lists are implemented differently

and have varying coverage and update frequency. For example, the

anti-adblock filter list with better coverage tends to be updated less

frequently. We note that it is challenging for anti-adblock filter lists

to keep pace with anti-adblockers that quickly evolve in response

to adblockers [59]. Therefore, to help anti-adblock filter list authors,

we next investigate a machine learning based automated approach

to detect anti-adblock scripts.

Online publishers use JavaScript to implement client side anti-

adblocking logic. We plan to fingerprint anti-adblocking JavaScript

behavior by doing static code analysis. The basic idea is to extract

syntactic features from anti-adblocking JavaScript code and build a

light weight machine learning classifier. Our approach is inspired

by prior machine learning based JavaScript analysis approaches to

detect malware [43] and trackers [50].

Figure 8 shows the workflow of our proposed approach. We first

unpack JavaScript files using the Chrome V8 engine. We construct

Abstract Syntax Trees (ASTs) of the parsed scripts and then extract

different syntactic features. We use supervised machine learning

to train a classifier (AdaBoost + SVM) for distinguishing between

anti-adblocking and non anti-adblocking scripts. Below we discuss

different steps of our static JavaScript code analysis approach to

detect anti-adblockers.

UnpackingDynamic JavaScript.The dynamic nature of JavaScript

makes it challenging to do static analysis. For example, JavaScript

code is often packed using eval() function. Such code unpacks

itself right before it is executed. To cate for dynamically generated

code, we use Chrome V8 engine to unpack eval() function by

intercepting calls to the script.parsed function. script.parsed

function is invoked every time eval() is evaluated or new code is

added with <iframe> or <script> tags.

Gathering Labeled Data. In order to train a machine learning

classifier, we need labeled examples of anti-adblocking and non anti-

adblocking scripts. We utilize more than one million JavaScript snip-

pets that were collected as part of our retrospective measurement

study of Alexa top-5K websites using the Wayback Machine. Our

anti-adblock data set consists of JavaScript snippets that matched

HTTP request filter rules of crowdsourced anti-adblock filter lists.

We use 372 of these anti-adblocking scripts as positive examples.

To collect negative examples, we use the remaining scripts that

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

JS file Unpacked
JS file AST Construction

Feature extraction and
filtering AdaBoost + SVM

Anti-adblocking JS

Non anti-adblocking JS

Figure 8: Overview of anti-adblock script detection approach.

the filter lists did not identify as anti-adblockers. We aim for a

class imbalance of approximately 10:1 (negative:positive) in our

labeled data. We manually verify a randomly selected 10% sample

of ground truth for positive examples. We find that a vast majority

of the scripts are served from known anti-adblocking vendors such

as Optimizely and Blockadblock.

Feature Extraction. To extract features, we map the parsed scripts

to ASTs, which are syntactic representations of JavaScript code in

a tree format. After constructing the ASTs, we extract features ac-

cording to the hierarchical tree structure. We define a feature as

a combination of context and text. Context is the place where the

feature appears, such as loop, try statement, catch statement, if con-

dition, switch condition, etc. Text is code that appears in the context.

We extract three types of feature sets based on different selection

criterion of text. For the first type (all), we consider all text elements

including JavaScript keywords, JavaScript Web API keywords, iden-

tifiers, and literals. For the second type (literal), we consider text

elements only from literals, i.e., we remove JavaScript keywords,

JavaScript Web API keywords, and identifiers. These features are

very general because they do not contain identifiers and keyword

specific text in JavaScript code. For the third type (keyword), we

consider text elements only from native JavaScript keywords and

JavaScript Web API keywords, i.e., we remove identifiers and lit-

erals. As we do not consider text elements from identifiers and

literals, keyword features are not impacted by the randomization

of identifiers and literals. However, these features are susceptible to

polymorphism. These three feature sets provide us varying levels

of generalization. We expect more general features to be robust

to minor implementation changes, however they may lose some

useful information due to generalization.

Table 2 shows some extracted features and their types for Code 5.

Literal features capture textual properties of JavaScript code such

Features Types

MemberExpression:BlockAdBlock all

MemberExpression:_creatBait all

MemberExpression:_checkBait all

Literal:abp all, literal

Literal:0 all, literal

Literal:hidden all, literal

Identifier:clientHeight all, keyword

Identifier:clientWidth all, keyword

Identifier:offsetHeight all, keyword

Identifier:offsetWidth all, keyword

Table 2: Some features extracted from BlockAdBlock

JavaScript.

as abp and 0 in Table 2.Keyword features capture syntactic proper-

ties of JavaScript code such as clientHeight and clientWidth in

Table 2. In contrast, all features can contain text such as _checkBait

and _creatBait that represents names of variables, functions, etc.

Feature Selection. For these three types of feature sets, we extract

a total of 1,714,827, 1,211,029, and 16,620 distinct features. Note that

each feature is binary, i.e., its value is 1 or 0 depending on whether

the feature is present/absent in a script. We construct a vector space

to map scripts. Scripts with similar features are placed close to each

other as compared to scripts with dissimilar features. We construct

such a vector space by defining the mapping function as:

ϕ : x → (ϕs (x))s ∈S

ϕs (x) =

{
1 if x contains the feature s

0 otherwise

Wemap each scriptx to a vector spacewith themapping function
ϕ. The mapping function ϕ assign 1 for a feature s that is present
in script x and 0 otherwise, and S is the set of all possible features.
Each instance of anti-adblocking and non anti-adblocking class is

mapped with a mapping function ϕ(x).
After constructing our feature space, we remove irrelevant fea-

tures. First, we remove features that do not vary much. To this end,

we compute variance of each feature and remove it if its variance

is less than 0.01. After applying this filter we are left with 68,510,

32,226, and 6,171 features for three types of feature sets. Second,

we also remove duplicate features. After applying this filters we

are left with 33,832, 12,974, and 5,785 features for three types of

feature sets. Third, since we still have a large number of features,

we want to select important features that strongly correlate with

either positive or negative class. We further filter the remaining

features using chi-square correlation [68].

χ2 =
N × (AD −CB)2

(A +C) × (B + D) × (A + B) × (C + D)

Where N is the total number of scripts. A is the number of posi-

tive samples where the binary feature is present. B is the number
of negative scripts where the binary feature is present. C is the

number of positive samples where the binary feature is absent. D is

the number of negative samples where the binary feature is absent.

Based on chi-square values, we rank features in the order of their

importance. We select top 10K, 5K, 1K, and 100 features from three

types of feature sets for further analysis.

Classifier Training. We decide to use AdaBoost, a boosting al-

gorithm, due to the imbalance of anti-adblockers in the wild. Ad-

aBoost [46] is an ensemble classifier that aims to create a strong

meta-classifier frommultiple weak classifiers. Models are built from

IMC ’17, November 1–3, 2017, London, United Kingdom Iqbal et al.

the training data, each subsequent model attempts to correct the

errors from the previous model. AdaBoost is expressed as:

f (x) = siдn(ΣT
t=1αtht (x))

Here x is the input vector,ht (x) is the component classifier, andαt is
the weight of each classifier. The distribution of weights is uniform

at the start. At each cycle t , weight distribution is updated according
to the result of component classifierht (x). Training samples that are
misclassified get higher weights. This process continues forT cycles

and the results are combined at the end. Component classifiers

with lower training errors get higher weights. We use SVM as the

component classifier for AdaBoost. AdaBoost with SVM using RBF

(Radial Basis Function) as its kernel tends to perform better for

imbalanced classification problems [54].

Results & Evaluation.Next we evaluate the effectiveness of classi-

fier using our labeled set of anti-adblocking and non anti-adblocking

scripts. To check the classifier performance we do 10-fold cross val-

idation. We use 9-folds as training samples and the remaining fold

as testing sample and repeat this process 10 times. We report results

in the form of True Positive (TP) rate and False Positive (FP) rate.

TP rate is the fraction of correctly classified anti-adblock scripts. FP

rate is the fraction of incorrectly classified non anti-adblock scripts.

Table 3 lists the classification results for different feature sets. We

include SVM without AdaBoost for baseline comparison. The TP

rate is above 99.2% for all configurations. The FP rate varies from

3.2% to 9.1% for different configurations. We achieve the highest TP

Classifier # TP rate FP rate

Features (%) (%)

Feature set: all

AdaBoost + SVM 10K 99.6 3.9

AdaBoost + SVM 1K 99.2 8.9

AdaBoost + SVM 100 99.2 8.9

SVM 10K 99.2 8.6

SVM 1K 99.2 8.9

SVM 100 99.2 8.4

Feature set: literal

AdaBoost + SVM 10K 99.6 3.9

AdaBoost + SVM 1K 99.2 9.1

AdaBoost + SVM 100 99.2 8.9

SVM 10K 99.2 8.4

SVM 1K 99.2 8.9

SVM 100 99.2 8.6

Feature set: keyword

AdaBoost + SVM 5K 99.6 3.7

AdaBoost + SVM 1K 99.7 3.2

AdaBoost + SVM 100 99.2 8.9

SVM 5K 99.2 8.4

SVM 1K 99.2 8.4

SVM 100 99.2 8.6

Table 3: Accuracy of our machine learning based approach

in detecting anti-adblocking scripts.

rate of 99.7% and the lowest FP rate of 3.2% for AdaBoost + SVM

classifier using top-1K features from the keyword feature set.

We further test our model on anti-adblocking scripts detected

on Alexa top 100K live websites (§4.3). Out of 5,070 detected anti-

adblockingwebsites, we extract 2,701 unique anti-adblocking scripts.

We exclude the scripts in Alexa top 5K websites because they are

used to train our model. We classify the 2,701 extracted scripts

with the AdaBoost + SVM classification model with top-1K features

configuration. We achieve a TP rate of 92.5%.

Our machine learning approach can be used in an offline or an

online manner by adblockers. In the offline scenario, filter list au-

thors can periodically crawl popular websites and run our trained

model to identify new anti-adblock scripts. This will substantially

reduce the manual labor required by filter list authors in main-

taining filter lists as they only have to analyze the scripts detected

by our model. The manual analysis of anti-adblocking scripts by

filter list authors will help in reducing false positives that cause

site breakage. In the online scenario, our trained machine learning

model can be directly shipped in adblockers which would scan all

scripts to detect and remove anti-adblock scripts on the fly.

6 CONCLUSION

In this paper, we presented a retrospective measurement study of

anti-adblocking. We reported that anti-adblocking has significantly

increased over the last few years. Our analysis of anti-adblock filter

lists revealed limitations of manually curated filter lists. We note

that two popular anti-adblock filter lists are not only implemented

differently, they have different coverages and update frequency. We

also presented a machine learning based approach to automatically

identify anti-adblock scripts. Our proposed approach can be used

to augment the manual efforts filter list in an offline manner or

incorporated in adblockers for online detection.

The tussle playing out between online publishers and adblockers

is set to have a major impact on the Internet. Adblockers are chang-

ing the status quo of ad-driven monetization of online content and

services. We believe that the large-scale retrospective analysis of

anti-adblocking provided by our work is important to inform future

discussions surrounding adblocking, both technical and economic.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Matteo Varvello, and the

anonymous reviewers for their useful feedback on this paper. This

work is supported in part by the National Science Foundation under

grant numbers 1715152 and 1719147, and by a seed grant from the

Data Transparency Lab (DTL).

REFERENCES
[1] Acceptable ads program. https://adblockplus.org/acceptable-ads.
[2] AdBlock. https://getadblock.com/.
[3] AdBlock, Chrome web store. https://chrome.google.com/webstore/detail/

adblock/gighmmpiobklfepjocnamgkkbiglidom?hl=en-US.
[4] Adblock Plus. https://adblockplus.org/.
[5] Adblock Plus, Chrome web store. https://chrome.google.com/webstore/detail/

adblock-plus/cfhdojbkjhnklbpkdaibdccddilifddb.
[6] Adblock Plus, Mozilla Firefox add-on. https://addons.mozilla.org/en-US/firefox/

addon/adblock-plus/.
[7] Adblock rules list parser. https://github.com/shawa/adblockparser.
[8] Anti-Adblock Killer. https://github.com/reek/anti-adblock-killer.
[9] Anti-Adblock Killer List Forum. https://github.com/reek/anti-adblock-killer/

issues.

The Ad Wars IMC ’17, November 1–3, 2017, London, United Kingdom

[10] BlockAdBlock. https://github.com/sitexw/BlockAdBlock/blob/master/
blockadblock.js.

[11] Blockzilla. https://zpacman.github.io/Blockzilla/.
[12] Brave Browser. https://brave.com/.
[13] Cliqz Browser. https://cliqz.com/us/.
[14] Coalition for Better Ads. https://www.betterads.org/.
[15] Disconnect.me filter list. https://disconnect.me/.
[16] EasyList. https://easylist.to/.
[17] EasyList Forum. https://forums.lanik.us.
[18] EasyList variants. https://easylist.to/pages/

other-supplementary-filter-lists-and-easylist-variants.html.
[19] Fanboy’s Enhanced Tracking List. https://fanboy.co.nz/.
[20] Filter lists syntax. https://adblockplus.org/en/filter-cheatsheet.
[21] Firebug. http://getfirebug.com/.
[22] Ghostery. https://www.ghostery.com/.
[23] Ghostery, Chrome web store. https://chrome.google.com/webstore/detail/

ghostery/mlomiejdfkolichcflejclcbmpeaniij?hl=en-US.
[24] Ghostery, Mozilla Firefox add-on. https://addons.mozilla.org/en-US/firefox/

addon/ghostery/.
[25] HAR File. https://en.wikipedia.org/wiki/.har.
[26] McAfee’s URL categorization service. https://www.trustedsource.org/.
[27] Mozilla Firefox. https://www.mozilla.org/en-US/firefox/.
[28] Mozilla Firefox tracker blocking. https://testpilot.firefox.com/experiments/

tracking-protection.
[29] NetExport. https://getfirebug.com/wiki/index.php/Firebug_Extensions.
[30] NoTrack Blocklist. https://github.com/quidsup/notrack.
[31] PageFair, 2017 Global Adblock Report. https://pagefair.com/downloads/2017/01/

PageFair-2017-Adblock-Report.pdf.
[32] Privacy Badger. https://www.eff.org/privacybadger.
[33] Privacy Badger, Chrome web store. https://chrome.google.com/webstore/detail/

privacy-badger/pkehgijcmpdhfbdbbnkijodmdjhbjlgp?hl=en-US.
[34] Privacy Badger, Mozilla Firefox add-on. https://addons.mozilla.org/en-US/firefox/

addon/privacy-badger17/.
[35] Selenium. http://docs.seleniumhq.org/.
[36] Truth In Advertising, Federal Trade Commission. https://www.ftc.gov/

news-events/media-resources/truth-advertising/.
[37] Warning removal list. https://easylist-downloads.adblockplus.org/

antiadblockfilters.txt.
[38] Wayback Machine. https://archive.org/web/.
[39] Wayback Machine API. https://archive.org/help/wayback_api.php.
[40] Wayback Machine Archive Details. https://archive.org/about/.
[41] YourAdChoices. http://youradchoices.com/.
[42] A. Bosworth. A New Way to Control the Ads You See on Facebook,

and an Update on Ad Blocking. https://newsroom.fb.com/news/2016/08/
a-new-way-to-control-the-ads-you-see-on-facebook-and-an-update-on-ad-blocking/,
2016.

[43] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. ZOZZLE: Fast and Precise
In-Browser JavaScript Malware Detection. In USENIX Security Symposium, 2011.

[44] S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site Measurement
and Analysis. In ACM Conference on Computer and Communications Security
(CCS), 2016.

[45] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan,
and E. W. Felten. Cookies That Give You Away:The Surveillance Implications of
Web Tracking . InWorld Wide Web (WWW) Conference, 2015.

[46] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Journal of Computer and System
Sciences, 1997.

[47] M. Graham. robots.txt meant for search engines don’t work
well for web archives. https://blog.archive.org/2017/04/17/
robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/,
2017.

[48] D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An Automated Approach
for Complementing Ad Blockers’ Blacklists. In Privacy Enhancing Technologies
Symposium (PETS), 2015.

[49] S. Ihm and V. S. Pai. Towards Understanding Modern Web Traffic. In ACM
Internet Measurement Conference (IMC), 2011.

[50] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishnamurthy. To-
wards Seamless Tracking-FreeWeb:Improved Detection of Trackers via One-class
Learning . In Privacy Enhancing Technologies Symposium (PETS), 2017.

[51] B. Krishnamurthy and C. E. Wills. Privacy Diffusion on the Web: A Longitudinal
Perspective. InWorld Wide Web (WWW) Conference, 2009.

[52] A. Lerner, T. Kohno, and F. Roesner. Rewriting History: Changing the Archived
Web from the Present. In ACM Conference on Computer and Communications
Security (CCS), 2017.

[53] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet Jones and the Raiders
of the Lost Trackers: An Archaeological Study of Web Tracking from 1996 to
2016. In USENIX Security Symposium, 2016.

[54] X. Li, L. Wang, and E. Sung. AdaBoost with SVM-based component classifiers.
In Engineering Applications of Artificial Intelligence, 2007.

[55] M.Malloy,M.McNamara, A. Cahn, and P. Barford. Ad Blockers: Global Prevalence
and Impact. In ACM Internet Measurement Conference (IMC), 2016.

[56] J. Marshall. The Rise of the Anti-Ad Blockers. https://www.wsj.com/articles/
the-rise-of-the-anti-ad-blockers-1465805039, 2016.

[57] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and Technology.
In IEEE Symposium on Security and Privacy, 2012.

[58] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl. Block Me If You Can: A Large-Scale Study of Tracker-Blocking
Tools. In IEEE European Symposium on Security and Privacy, 2017.

[59] M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting Anti Ad-blockers in the Wild .
In Privacy Enhancing Technologies Symposium (PETS), 2017.

[60] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar,
J. E. Powles, E. D. Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and
Counter-Blocking: A Slice of the Arms Race. In USENIX Workshop on Free and
Open Communications on the Internet, 2016.

[61] E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed Users: Ads and Ad-Block Usage
in the Wild. In ACM Internet Measurement Conference (IMC), 2015.

[62] M. Z. Rafique, T. V. Goethem, W. Joosen, C. Huygens, and N. Nikiforakis. It’s
Free for a Reason: Exploring the Ecosystem of Free Live Streaming Services. In
Network and Distributed System Security Symposium (NDSS), 2016.

[63] S. Ramaswamy. Building a better web for everyone. https://www.blog.google/
topics/journalism-news/building-better-web-everyone/, 2017.

[64] F. Roesner, T. Kohno, and D. Wetherall. Detecting and Defending Against Third-
Party Tracking on the Web . In USENIX Symposium on Networked Systems Design
and Implementation (NDSI), 2012.

[65] G. Storey, D. Reisman, J. Mayer, and A. Narayanan. The Future of Ad Blocking:
An Analytical Framework and New Techniques. In arXiv:1705.08568, 2017.

[66] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDanie. Measuring the Impact
and Perception of Acceptable Advertisements. In ACM Internet Measurement
Conference (IMC), 2015.

[67] J. Wilander. Apple Safari Intelligent Tracking Prevention. https://webkit.org/
blog/7675/intelligent-tracking-prevention, 2017.

[68] Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text
Categorization. In International Conference on Machine Learning, 1997.

[69] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol. Tracking the Trackers. InWorld Wide
Web (WWW) Conference, 2016.

