
The Misuse of Android Unix Domain Sockets and Security
Implications

Yuru Shao†, Jason Ott∗, Yunhan Jack Jia†, Zhiyun Qian∗, Z. Morley Mao†

†University of Michigan, ∗University of California, Riverside
{yurushao, jackjia, zmao}@umich.edu, jott002@ucr.edu, zhiyunq@cs.ucr.edu

ABSTRACT
In this work, we conduct the first systematic study in un-
derstanding the security properties of the usage of Unix do-
main sockets by both Android apps and system daemons
as an IPC (Inter-process Communication) mechanism, espe-
cially for cross-layer communications between the Java and
native layers. We propose a tool called SInspector to ex-
pose potential security vulnerabilities in using Unix domain
sockets through the process of identifying socket addresses,
detecting authentication checks, and performing data flow
analysis. Our in-depth analysis revealed some serious vul-
nerabilities in popular apps and system daemons, such as
root privilege escalation and arbitrary file access. Based
on our findings, we propose countermeasures and improved
practices for utilizing Unix domain sockets on Android.

1. INTRODUCTION
Inter-process communication (IPC) is one of the most fun-

damental features provided by modern operating systems.
IPC makes it possible for different processes to cooperate,
enriching the functionalities an operating system can offer to
end users. In the context of Android, one of the most popu-
lar mobile operating systems to date, to support communica-
tions between different apps and interactions between differ-
ent components of the same app, it provides a set of easy-to-
use, Android-specific IPC mechanisms, primarily including
Intents, Binder, and Messenger [4, 11]. However, Android
IPCs are meanwhile significant attack vectors that can be
leveraged to carry out attacks such as confused deputy and
man-in-the-middle [23, 15, 17, 19].
While Android relies upon a tailored Linux environment,

it still inherits a subset of traditional/native Linux IPCs
(which are distinct from Android IPCs), such as signals,
Netlink sockets, and Unix domain sockets. In fact, they
are heavily utilized by the native layer of the Android run-
time. Exposed Linux IPC channels, if not properly pro-
tected, could be abused by adversaries to exploit vulnerabil-
ities within privileged system daemons and the kernel. Sev-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c⃝ 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978297

eral vulnerabilities (e.g., CVE-2011-1823, CVE-2011-3918,
and CVE-2015-6841) have already been reported. Vendor
customizations make things worse, as they expose additional
Linux IPC channels: CVE-2013-4777 and CVE-2013-5933.
Nevertheless, unlike Android IPCs, the use of Linux IPCs
on Android has not yet been systematically studied.

In addition to the Android system, apps also have access
to the Linux IPCs implemented within Android. Among
them, Unix domain sockets are the only one apps can easily
make use of: signals are not capable of carrying data and
not suitable for bidirectional communications; Netlink sock-
ets are geared for communications across the kernel space
and the user space. The Android software development kit
(SDK) provides developers Java APIs for using Unix do-
main sockets. Meanwhile, Android’s native development
kit (NDK) also provides native APIs for accessing low-level
Linux features, including Unix domain sockets. Unix do-
main sockets are also known as local sockets, a term which
we use interchangeably. They are completely different from
the“local socket” in ScreenMilker [25], which refers to a TCP
socket used for local IPC instead of network communication.

Many developers use Unix domain sockets in their apps,
despite the fact that Google’s best practices encourage them
to use Android IPCs [4]. The reason being Android IPCs are
not suited to support communications between an app’s Java
and native processes/threads. While there are APIs avail-
able in SDK, no such API exists in the native layer [7]. As
a result, developers must resort to using Unix domain sock-
ets to realize cross-layer IPC. Furthermore, some developers
port existing Linux programs and libraries, which already
utilize Unix domain sockets, to the Android platform.

Android IPCs are well documented on the official devel-
oper website, replete with training materials and examples.
This helps educate developers on best practices and secure
implementations. However, there is little documentation
about Unix domain sockets, leaving developers to use them
as they see fit — this may result in vulnerable implemen-
tations. Moreover, using Unix domain sockets securely re-
quires expertise in both Linux’s and Android’s security mod-
els, which developers may not have.

Motivated by the above facts, we undertake the first sys-
tematic study focusing on the use of Unix domain sockets
on Android. We present SInspector, a tool for automatically
vetting apps and system daemons with the goal of discover-
ing potential misuse of Unix domain sockets. Given a set of
apps, SInspector first identifies ones that use Unix domain
sockets based on API signatures and permissions. SInspec-
tor then filters out apps that use Unix domain sockets se-

http://dx.doi.org/10.1145/2976749.2978297

curely and thus are not vulnerable. We develop several tech-
niques to achieve this, such as socket address analysis and
authentication check detection. For system daemons, SIn-
spector collects runtime information to assist static analysis.
SInspector reports potentially vulnerable apps and system
daemons for manual examination. We also categorize Unix
domain socket usage, any security measures employed by
existing apps and system daemons, and common mistakes
made by developers. From this study, we suggest counter-
measures in regard to OS-level changes and secure Unix do-
main socket IPC for both app and system developers. In
this work, we do not consider network sockets, as local IPC
is not their common usage.
We find that only 26.8% apps and 15% system daemons in

our dataset enforce proper security checks in order to pre-
vent attacks exploiting Unix domain socket channels. All
apps using a particular Unix domain socket namespace are
vulnerable to at least DoS attacks. We uncover a number
of serious vulnerabilities in apps. For example, we are able
to gain root privilege by exploiting a popular root manage-
ment tool, as well as grant/deny any other app’s root ac-
cess, without any user awareness. Moreover, we discover
vulnerabilities with customizations on LG phones and dae-
mons implemented by Qualcomm. These vulnerabilities al-
low us to factory reset the device, toggle the SIM card, and
modify system date and time. Attack demos can be found
on our project website https://sites.google.com/site/

unixdomainsocketstudy.
In summary, we make the following contributions:

• We develop SInspector for analyzing apps and system
daemons to discover potential vulnerabilities they ex-
pose through Unix domain socket channels. We over-
come challenges in identifying socket addresses, detect-
ing authentication checks, and performing data flow
analysis on native code.

• Using SInspector, we perform the first study of Unix
domain sockets on Android, including the categoriza-
tion of usage, existing security measures being en-
forced, and common flaws and security implications.
We analyze 14,644 apps and 60 system daemons, find-
ing that 45 apps, as well as 9 system daemons, have
vulnerabilities, some of which are very serious.

• We conduct an in-depth analysis on vulnerable apps
and daemons that fail to properly protect Unix domain
socket channels, and suggest countermeasures and bet-
ter practices for utilizing Unix domain sockets.

2. BACKGROUND
We provide the necessary background to understand the

security vulnerabilities in how Android Unix domain sockets
are used in apps and system daemons.

2.1 Android Security Model
The Android platform consists of multiple layers. One of

Android’s design goals is to provide a secure platform so that
“[S]ecurity-savvy developers can easily work with and rely on
flexible security controls. Developers less familiar with secu-
rity practices will be protected by safe defaults.” [3] Android
apps are isolated and run in their own process. They com-
municate with peer apps through secure, Android-specific

IPCs (Binder, Intents, etc). These Android IPC mecha-
nisms, as documented by Google, are the preferred IPC
mechanisms as they “allow you to verify the identity of the
application connecting to your IPC and set security policy
for each IPC mechanism.” [4]

However, Unix domain sockets undermine the goals of An-
droid’s security philosophy. They are unable to achieve the
same guarantees as well as the Android IPCs. In particular,
according to our analysis, Android APIs for using Unix do-
main sockets expose unprotected socket channels by default.

2.2 Unix Domain Sockets
A Unix domain socket is a data communications endpoint

for exchanging data between processes executing within the
same host operating system. It supports transmission of a
reliable stream of bytes (SOCK_STREAM, similar to TCP). In
addition, it supports ordered and reliable transmission of
datagrams (SOCK_SEQPACKET), or unordered and unreliable
transmission of datagrams (SOCK_DGRAM, similar to UDP).

Unix domain sockets differ from Internet sockets in that
(1) rather than using an underlying network protocol, all
communication occurs entirely within the operating system
kernel; and (2) servers listen on addresses in Unix domain
socket namespaces, instead of IP addresses with port num-
bers. Traditionally, there are two Unix domain socket ad-
dress namespaces, as shown in Table 1.

Table 1: Unix domain socket namespaces.

Namespace
Has socket

file
Security enforcement

SELinux File permission

FILESYSTEM YES YES YES
ABSTRACT NO YES N/A

FILESYSTEM. An address in this namespace is asso-
ciated with a file on the filesystem. When the server binds
to an address (pathname), a socket file is automatically cre-
ated. Socket file permissions are enforced through Linux’s
discretionary access control (DAC) system. The server must
have privilege to create the file with the given pathname,
otherwise binding fails. Other processes who want to com-
municate with the server must have read/write privileges for
the socket file. By setting permissions of the socket file prop-
erly, the server can prevent unauthorized connections. The
Android framework introduces a new namespace called RE-
SERVED, which is in essence a sub-namespace of FILESYS-
TEM. Socket files are located under a particular directory,
/dev/socket/, reserved for system use.

ABSTRACT. This namespace is completely indepen-
dent of the filesystem. No file permissions can be applied
to sockets under this namespace. In native code, an AB-
STRACT socket address is distinguished from a FILESYS-
TEM socket by setting sun_path[0] to a null byte ‘\0’.

The Android framework provides APIs for using Unix do-
main sockets from both Java code and native code. These
APIs use ABSTRACT as the default namespace, unless de-
velopers explicitly specify a preferred namespace. All Unix
domain socket addresses are publicly accessible from file
/proc/net/unix/. SELinux supports fine-grained access
control for both FILESYSTEM and ABSTRACT sockets,
so does SEAndroid. Compared to FILESYSTEM sockets,
ABSTRACT sockets are less secure as DAC does not ap-
ply. However, they are more reliable; communication over a

https://sites.google.com/site/unixdomainsocketstudy
https://sites.google.com/site/unixdomainsocketstudy

Table 2: Types of attacks malware can carry out by exploiting Unix domain sockets.

Role Prerequisite(s) Attacks

Malicous Server
1) Start running ahead of the real server
2) Client has no/weak authentication of server

Data Leakage/Injection, DoS

Malicous Client Server has no/weak authentication of client Privilege Escalation, Data Leakage/Injection, DoS

FILESYSTEM socket could be interrupted if the socket file
is somehow deleted.

2.3 Threat Model and Assumptions
Unix domain sockets are designed for local communica-

tions only, which means the client and server processes must
be on the same host OS. Therefore, they are inaccessible for
remote network-based attackers. Our threat model assumes
a malicious app that attempts to exploit exposed Unix do-
main socket channels is installed on the user device. This is
realistic since calling Unix domain socket APIs only requires
the INTERNET permission, which is so commonly used [2] that
the attacker can easily repackage malicious payloads into
popular apps and redistribute them. The attacker may also
build a standalone exploit app which evades anti-malware
products due to its perceived low privilege.
We summarize attacks malware can launch in Table 2. It

is able to impersonate either a client or a server to talk to the
reciprocal host. A rogue Unix domain socket server could
obtain sensitive data from clients or feed clients fake data
to impact client functionality. A mock Unix domain socket
client could access server data or leverage the server as a
confused deputy [24]. In general, we classify a Unix domain
socket as vulnerable if the server accepts valid commands
through its socket channel without performing any authen-
tication or similarly a client connects to a server without
properly authenticating the server. This allows a nefarious
user to retrieve sensitive information or access otherwise re-
stricted resources through the Unix domain socket server/-
client it communicates with. Moreover, an ABSTRACT ad-
dress can only be bound to by one thread/process. Apps us-
ing ABSTRACT namespace are vulnerable to DoS because
their addresses could be occupied by the malware.

3. DESIGN AND IMPLEMENTATION
The goal of SInspector is to examine the use of Unix do-

main socket in apps and system daemons, and identify those
that are most likely vulnerable for validation. In this section,
we describe our design and implementation of SInspector.
An ideal solution is to analyze all program paths in a pro-

gram starting from the point of accepting a Unix domain
socket connection, and then identify whether critical func-
tions (end points) can be invoked without encountering any
security checks. However, it is not practical for us to define
a comprehensive list of end points and use dependencies be-
tween entry and end points to reason whether an app is vul-
nerable. First of all, apps may contain native libraries/exe-
cutables, in which they make system calls to implement cer-
tain functionality, but there is no mapping between Android
permissions and Linux system calls. It is imprecise to iden-
tify app behaviors based on system calls they make. Second,
in our threat model, the malware runs on the same device
as the vulnerable app/system daemon to be exploited, thus
any data leaked from the target app/system daemon can
possibly be a building block for more sophisticated attacks.

However, it unknown to us which end points are potentially
related to data leakage. More importantly, an incomplete
list of end points would result in significant false negatives.

Therefore, to evaluate which apps/system daemons are
vulnerable, we choose to conservatively filter out apps and
system daemons that are definitely not vulnerable (denoted
by Snv) — the others are considered to be potentially vul-
nerable (denoted by Spv) — instead of directly identifying
vulnerable apps. We have Spv = S−Snv, where S represents
the whole set of apps/system daemons.

3.1 Our Approach
Due to different characteristics of apps and system dae-

mons, we adopt different techniques to analyze them. Fig-
ure 1 shows the modules and overall analysis steps of SIn-
spector. Each step rules out a subset of apps/system dae-
mons that are not vulnerable.

3.1.1 App Analysis
Given a set of apps, SInspector first employs API-based

Filter to filter out those not using Unix domain sockets
or having insufficient permission to use Unix domain sock-
ets. Then, Address Analyzer finds out Unix domain socket
address(es) each app uses, and discards apps whose ad-
dresses are under protection. They are not vulnerable be-
cause proper socket file permissions are able to prevent unau-
thorized accesses to a filesystem-based Unix domain socket
channel. Next, the apps left are further examined by Au-
thentication Detector. It detects and categorizes authenti-
cation mechanisms apps implement. Those adopting strong
checks are considered to be not vulnerable. After that,
Reachability Analyzer checks whether the vulnerable code
that uses Unix domain socket will be executed or not at
runtime. If not, that code is not reachable and will never be
triggered, thus the app is not vulnerable. It ends up with a
relatively small set of apps that are potentially vulnerable.
Manual efforts are finally required to confirm the existence
of vulnerabilities.

API-based Filter. This module filters out apps that
are not in our analysis scope. For each app, it checks (1)
Android permissions the app declares, (2) Java APIs the
app calls, and (3) Linux system calls if the app has native
code. Since using Unix domain sockets requires the IN-

TERNET permission, apps without this permission are surely
not vulnerable, neither are apps that do not invoke related
APIs or system calls. APIs called through Java reflection
are currently not considered, because (1) all socket APIs are
available in Android SDK, unlike some private or hidden
APIs which can only be called via Java reflection; and (2)
Unix domain sockets just require a common, non-dangerous
permission and therefore apps have little intention to hide
the relevant logic.

Address Analyzer. This module identifies socket ad-
dresses each app uses and determines if their corresponding
Unix domain socket channels are protected. Dalvik byte

System
Daemon

AppApp

System
Daemon

App-layer
Analyzer

Native-layer
Analyzer

Connection
Tester

Reachability
Analyzer

App-layer
Detector

Native-layer
Detector Manual

Analysis

Native
code

Potentially
vulnerable
daemons

Potentially
vulnerable

apps

System
Daemons

API-based
Filter

Socket Usage
Collector

Apps

Address Analyzer Authentication
Detector

DEX
code

Figure 1: Overview of our approach to identifying potentially vulnerable apps and system daemons.

code and native code are analyzed by Address Analyzer’s
two submodules, App-layer Analyzer and Native-layer An-
alyzer, respectively.
Being aware of Unix domain socket address(es) an app

connects to and/or listens on has two benefits. First, we
can leverage addresses to determine if both client logic and
server logic present in the same app. Usually it is much
easier to craft server exploits by replaying client behaviors,
and vice versa. Second, different apps may use common
libraries that utilize Unix domain sockets to implement cer-
tain functionality. We can take advantage of addresses to
better group apps according to the libraries they use, be-
cause of the fact that apps using the same library typically
have the same Unix socket address (or address structure).
This is more reliable than identifying libraries merely based
on package names and class names, as package names and
class names could be easily obfuscated by tools like Pro-
Guard [9]. Though code similarity comparison techniques
are also capable of recognizing libraries used across different
apps, they are usually heavyweight.
Besides identifying addresses, Address Analyzer also eval-

uates whether the socket channel on an address is secure or
not. As we have mentioned in §2, when using FILESYS-
TEM addresses, Unix domain socket servers are able to re-
strict client accesses by setting proper file permissions for
socket files they listen on. A socket file satisfying the fol-
lowing conditions has proper permissions, and therefore the
app using it is considered not vulnerable. First, it is located
in the app’s private data directory, i.e., /data/data/app.
pkg.name/. By default socket files created under this direc-
tory can only be accessed by the app itself. Second, there
is no other operation altering the socket file’s permissions
to publicly accessible. The app, as the socket file’s owner,
has the privilege to change its permissions to whatever it
wants. All file operations that possibly change the socket
file’s permissions need to be examined.
Authentication Detector. The OS allows both the

client and the server to get their peers’ identity informa-
tion (i.e., peer credentials) once a Unix domain socket con-
nection is established. This module detects and categorizes
authentication checks built on peer credentials. It also con-
sists of two submodules for processing non-native and native
code separately. Peer credentials are only available for Unix
domain sockets. In our threat model, they are absolutely re-
liable because they are guaranteed by the kernel and there-
fore cannot be spoofed or altered by any non-root process
in the user space. In Java code, apps call Android SDK
API LocalSocket.getPeerCredentails() to get a socket

peer’s credentials, containing three fields: PID, UID, and
GID. While in native code, the system call getsockopt is
used to obtain the same information. Based on UID, GID
and PID, servers and clients can implement various types of
peer authentication mechanisms. Authentication Detector
keeps track of the propagation of peer credentials in code,
detects checks built upon the credentials, and categorizes
them according to the particular credential they depend on.
Peer authentication checks derived from UID and GID are
considered to be strong, as UID and GID are assigned by the
OS and cannot be spoofed. However, authentications based
on PID are relatively weak. Further analysis is unnecessary
for apps employing strong checks.

Reachability Analyzer. The presence of Unix domain
socket APIs in code does not necessarily mean the app ac-
tually uses Unix domain sockets at runtime. It is possible
that the app just imports a library that offers functional-
ity implemented with Unix domain sockets, but that part of
code is never executed. To filter out such apps, Reachability
Analyzer collects all possible entry points of an app, from
which it builds an inter-component control flow graph. If
Unix domain socket code cannot be reached from either of
the entry points, we believe the code will not be reached at
runtime, thus the app is considered not vulnerable.

3.1.2 System Daemon Analysis
Several obstacles make pure static analysis of system dae-

mons infeasible. First, given a factory image that contains
all system files, it is difficult to extract all required data
from it due to the fact that vendors develop their own file
formats and there is no universal tool to unpack factory im-
ages. Second, different from apps, system daemons’ Unix
domain socket channels are usually enforced with specific
SEAndroid policies made by Google or vendors. In this case,
evaluating the security of a Unix domain socket channel be-
comes more complicated, especially for the FILESYSTEM
namespace, because it is determined by both SEAndroid and
socket file permissions.

However, system daemons are suitable for dynamic anal-
ysis without worrying about potential code coverage is-
sues. They start automatically, serve as Unix domain socket
servers waiting for client connections, and provide no user
interface. It is reasonable to assume that their server log-
ics are always running instead of being started on demand.
Therefore, instead of employing API-based Filter and Ad-
dress Analyzer, SInspector collects runtime information to
find out system daemons using Unix domain socket with
Socket Usage Collector, then test all socket channels dae-

mons expose with Connection Tester, to see which ones are
accessible for an unprivileged app. The native layer Authen-
tication Detector is reused for detecting and categorizing
checks inside system daemons.
Socket Usage Collector. It is impossible for us to ex-

ploit vulnerable client logics implemented inside system dae-
mons. One prerequisite of attacking client is being able to
start running before the real server. In our threat model,
however, the third-party app with only INTERNET permission
can never run ahead of a system daemon, which is started by
the init process even before the Android runtime is initial-
ized. Socket Usage Collector gathers runtime information of
each Unix domain socket, including address, the process that
listens on the address, protocol type (DGRAM, STREM, or
SEQAPCKET), and corresponding system daemon.
Connection Tester. According to socket channel infor-

mation collected, Connection Tester attempts to connect to
them one by one, acting like a client running as a third-
party app with INTERNET permission. If a socket channel
is enforced by either file permissions or SEAndroid policies,
connection will be denied because of insufficient privilege.
A system daemon is not vulnerable if all its socket channels
are well protected.

3.1.3 Manual Analysis
For apps and system daemons that are most likely to be

vulnerable, manual reverse engineering efforts are required
to investigate the existence of vulnerabilities. Various tools
are helpful for statically and dynamically reversing apps,
e.g., JEB [8], the Xposed framework [12], and IDA Pro.
The effort needed for validating vulnerable code is supposed
to be minimal, although writing workable exploits may take
longer. Message formats (or called protocols) apps and sys-
tem daemons use could be quite ad-hoc. Reverse engineering
efforts largely depend on the complexity of implementation.
In order to reduce human efforts, we could integrate proto-
col reversing techniques proposed in prior work [16, 18, 26]
into SInspector in the future.

3.2 Implementation
We implement SInspector based on two cutting-edge tools,

Amandroid [31] and IDA Pro. Both of them offer great
extensibility and are friendly to plugin development. We
take advantage of Amandroid to build inter-procedural con-
trol flow graph (ICFG), inter-procedural data flow graph
(IDFG), and data dependence graph (DDG) from apps’ non-
native part for performing app-layer analysis, and leverage
IDA Pro’s disassembler and control flow analysis to build
data flow analysis on native code, including apps’ ELF li-
braries/executables and system daemons. SInspector only
supports 32-bit ARM binaries for now, considering that the
majority of Android devices are equipped with 32-bit ARM
architecture processors.
Analyzing Apps. API-based Filter extracts Android-

Manifest.xml, decodes it, and looks for the INTERNET per-
mission. App code written in Java is compiled into one
or more DEX files, in which all invoked APIs are visible.
Native binaries are in ELF format. IDA Pro is able to
identify direct system calls represented as constant relative
addresses embedded in the instructions. However, it does
not resolve indirect call targets that are stored in registers.
More specifically, binaries can use the SVC instruction to do
system calls, by specifying a system call number in regis-

ter R7 and then executing SVC 0. We extract the mapping
between system call numbers and system call names from
arch/arm/include/asm/unistd.h found in Android kernel
3.14, and identify all indirect system calls by inspecting R7’s
values before each SVC 0 instruction.

The app-layer of Address Analyzer and Authentication
Detector are implemented on top of Amandroid. The server
logic and the client logic are analyzed separately. We first
locate the method in which Unix domain socket server/-
client is initialized, and create a customized entry point
to it, then invoke Amandroid to build ICFG, IDFG and
DDG from the entry point. In Java code, Unix domain
socket address is represented by the LocalSocketAddress

class, whose constructors accept an address string as the
first parameter. We look at construction sites of Local-

SocketAddress objects. In some cases, constant strings are
used. In other cases where an address is built from pack-
age name, random integer, etc., we track its construction of
procedure by querying dependencies on DDG. Such an ex-
ample is shown in Figure 2, in which we need to apply data
flow analysis to extract the address as [“com.qihoo.socket”+
System.currentT imeMillis()%65535]. This allows us to
group apps that share the same socket address or have the
same address construction procedure.

public static String getAddr() {
 return String.format("com.qihoo.socket%x",
 Long.valueOf(System.currentTimeMillis() & 65535));
}

protected void b(…) {
 …
 String addr = getAddr();
 this.serverSock = new LocalServerSocket(addr);
 …
}

Figure 2: A dynamically constructed socket address case.

The app-layer Authentication Detector finds paths
on ICFG from LocalServerSocket.accept() (for server)
and LocalSocket.connect() (for client) to LocalSocket.

getInputStream() or LocalSocket.getOutputStream(). If
we find that LocalSocket.getPeerCredentials() is called
along the paths, and there is control dependency be-
tween either getInputStream()/getOutputStream() and
getPeerCredentials(), authentication happens. In order
to categorize authentication checks, we look at which fields
(UID, GID or PID) are retrieved. We also define methods in
Context and PackageManager that take UID, GID, or PID
as sinks, and run taint analysis to track propagation paths.
As mentioned in §3.1, checks relying on UID and GID are
considered strong, while others are weak.

The native-layer Address Analyzer leverages intra-
procedural control flow graph (CFG) generated by IDA Pro.
Each basic block consists of a series of ARM assembly code
disassembled by IDA Pro’s state-of-the-art disassembling en-
gine. We perform intra-procedural data flow analysis on the
CFG, following the classical static analysis approach [28].
Computing data flow at the assembly level is complicated,
since we have to take into consideration both registers and
the function stack. Unfortunately there does not exist any
robust tools that can perform data flow analysis on ARM
binaries. ARM is a load-store architecture, and no instruc-
tions directly operate on values in memory. This means val-

ues must be loaded into registers in order to operate upon
them. Therefore, we need to carefully handle all commonly
used instructions that operate on registers and memory, es-
pecially load and store (pseudo) instructions. We examine
the second argument of system calls bind() and connect(),
which is an address pointing to the sockadd_un structure.
Unix domain socket string is copied to the sun_path field, 2
byte off the start of sockadd_un. The first byte of sun_path
indicates address namespace.
The native-layer Authentication Detector also performs

intra-procedural data flow analysis. getsockopt has five pa-
rameters in total. Among them, the third one (option name)
and the fourth one (option value pointer) are crucial. When
option name is an integer equal to 17 (macro SO_PEERCRED),
the option value will be populated by peer credentials, a
structure consisting of three 4-byte integers: PID, UID, and
GID. In other words, suppose option value’s address is A,
PID, UID, and GID will locate at addresses A, A+4, and A+8,
respectively. When getsockopt is called, we inspect option
name and record option value’s address on the stack A. Af-
ter that, functions that access values at A, A+4, or A+8 are
considered as checks.
Analyzing System Daemons. Socket Usage Collector

calls a command line tool netstat to get interested socket
information. Note that the default netstat shipped with
Android has very limited capability. We choose to install
busybox, which provides a much more powerful netstat ap-
plet. Root access of the Android device is required, other-
wise netstat will not be able to find out the process that
listens on a particular socket address. We build Connection
Tester into a third-party app that requests only INTERNET

permission. Native-layer Authentication Detector is reused
for analyzing system daemons.

3.3 Limitations
One limitation of SInspector is that we have to rely on

human efforts to generate exploits. Even though we can
find out apps and system daemons that are highly likely to
be vulnerable, we are not able to automatically craft exploits
to finally validate vulnerabilities. SInspector may have false
positives, because of our conservative strategies for filtering
out insusceptible apps and system daemons. The native-
layer intra-procedural data flow analysis is likely to miss
data flows across different functions.
We may also have false negatives: (1) we cannot han-

dle dynamically loaded code; and (2) native executables/li-
braries might be packed or encrypted. They could introduce
uncaught control and data flows.

4. RESULTS
We evaluate SInspector with a total number of 14,644 up-

to-date Google Play apps crawled by ourselves in mid-April
2016, including (approximately) top 340 from all 44 cate-
gories. Google has imposed restrictions to ensure that apps
can only be downloaded through the Google Play app, which
makes it difficult for us to obtain APK files. To tackle this,
we crawl meta data of apps (e.g., package name, version
name) from Google Play and download corresponding APK
files from ApkPure [5], a mirror of Google Play that allows
free downloading.
We also use three phones to evaluate SInspector: (1) LG

G3 running Android 4.4.4, (2) Samsung Galaxy S4 running
Android 5.0.1, and (3) LG Nexus 4 running 5.1.1. All of

them are updated to the latest firmware and rooted. Most
of recently released Android phones either equip with 64-bit
ARM processors or cannot be rooted. They are not suitable
for our experiments because SInspector’s dynamic analysis
requires root access and the static data flow analysis can
only handle 32-bit ARM binaries.

4.1 Overview
Table 3 shows the overall statistics on Unix domain socket

usage among apps and system daemons. App data are from
API-based Filter and daemon data come from Socket Usage
Collector. Among 14,644 apps, 3,734 (25.5%) have Unix
domain socket related APIs or system calls in code, and the
majority of them (3,689) use ABSTRACT addresses, while
only a few use FILESYSTEM and RESERVED addresses.

Different from apps, most of system daemons use RE-
SERVED addresses. Compared to Nexus 4 running non-
customized Android, LG G3 and Galaxy S4 have more
system daemons and heavier usage of ABSTRACT ad-
dresses. This fact clearly shows that vendor customizations
inevitably expose more attack vectors.

Table 3: Numbers of apps/system daemons that use Unix
domain sockets. The sum of numbers in each address names-
pace may be greater than the total number, as one app/sys-
tem daemon could use more than one namespaces.

Apps
Daemons

LG G3 Galaxy S4 Nexus 4

ABSTRACT 3,689 5 8 2
FILESYSTEM 36 4 5 2
RESERVED 20 13 17 11
Total 3,734 20 27 13

4.1.1 Libraries
We summarize identified libraries utilizing Unix domain

sockets in Table 5. “Singleton” and “Global lock” in the
Usage column will be described later in §4.2. We observe
that 3,406 apps use an outdated Google Mobile Services
(GMS) library alone and exclude them. The outdated GMS
library is potentially vulnerable to DoS and data injection
attacks. The latest GMS library has completely discarded
Unix domain sockets, which implies that Google may have
been aware of potential problems of using Unix domain sock-
ets. Except Amazon Whisperlink and OpenVPN, all other
libraries use the ABSTRACT namespace, making them all
vulnerable to DoS.

4.1.2 Tool Effectiveness and Performance
Besides apps using common libraries listed in Table 5,

SInspector found 73 potentially vulnerable apps having no
authentication or weak authentications. Table 4 summarizes
analysis effectiveness. After reachability analysis, SInspec-
tor finally reported 67 apps that are most likely to be vulner-
able. We manually looked at all 67 apps and confirmed that
45 are indeed vulnerable. SInspector reported 12 potentially
vulnerable system daemons. After manual examination, we
confirmed 9 of them are truly vulnerable. We present a case
study of most critical vulnerabilities in §5.

All experiments are done on a machine with 3.26GHz × 8
Core i7 and 16GB of memory. The most compute-intensive
module of app analysis is Reachability Analyzer. Depending

Table 5: Libraries that use Unix domain socket. ABS and FS under “Namespace” are short for ABSTRACT and FILESYS-
TEM. DI and DL in the last column stand for data injection and data leakage.

Library # Apps (reachable) Usage Namespace Auth Susceptible attack(s)

Baidu Push 9 (9) Singleton ABS N/A DoS
Tencent XG 11 (11) Singleton ABS N/A DoS

Umeng Message 17 (17) Singleton ABS N/A DoS
Facebook SocketLock 13 (13) Global lock ABS N/A DoS

Yandex Metrica 95 (95) Global lock ABS N/A DoS
Facebook Stetho 97 (97) Debugging interface ABS Permission DoS
Sony Liveware 8 (5) Data transfer ABS None DoS, DI, DL
Samsung SDK 12 (10) Data transfer ABS None DoS, DI, DL

QT5 10 (10) Debugging interface ABS None DoS, DI, DL
Clean Master 9 (9) Data transfer ABS None DoS, DI, DL

Amazon Whisperlink 11 (7) Data transfer FS None Not vulnerable
OpenVPN 7 (4) Cmd & control FS None Not vulnerable

Table 4: Results summary.

Potentially
Vulnerable

True
Positive

False
Positive

Precision

Apps 67 45 22 67.2%
LG G3 6 4 2 66.7%
Galaxy S4 5 4 1 80%
Nexus 4 1 1 0 100%

on the numbers of bytecode instructions of apps, Reachabil-
ity Analyzer could take a few minutes to more than one hour.
Other modules are pretty fast. The average time for analyz-
ing one app is 2,502 seconds. For system daemon analysis,
IDA Pro’s disassembling process took a few seconds to a few
minutes, the average time for analyzing a system daemon is
39 seconds.

4.2 Unix Domain Socket Usage
Unix domain sockets provide a means to perform IPC,

but it turns out the usage in the wild is not limited to IPC.
According to our experience in inspecting potentially vul-
nerable apps SInspector reported, we extract code patterns
for categorizing Unix domain socket usage and summarize
them in Table 6. We observe that Unix domain sockets are
widely used by apps to implement global locks and singleton,
as well as to implement watchdogs.

4.2.1 Inter-Process Communication
Not surprisingly, the prominent usage of Unix domain

sockets is performing IPC. Apps are free to implement their
own protocols for client/server communication.
However, we do find a very unique use of Unix domain

socket as an IPC mechanism. A few video recording apps
leverage Unix domain sockets to realize real-time media
streaming, a feature that Android’s media recording APIs
do not support. Developers came up with a workaround,
which takes advantage of an existing media recording API
setOutputFile(fd) that outputs camera and microphone
data stream to a file descriptor. After a Unix domain socket
connection is established, the client passes its output file de-
scriptor to this API so that the server can read real-time
camera/microphone output. In this way, media output is
converted to a stream that can be further processed in real
time, e.g., to perform live streaming.

4.2.2 Realizing Singleton
An ABSTRACT socket address can only be bound on by

one Unix domain socket server instance. Once an address
has been taken, another server that attempts to bind on it
would fail. This feature is widely exploited to ensure that
certain code will not be executed more than once. In fact,
the PhoneFactory class in AOSP “use UNIX domain socket
to prevent subsequent initialization” of the Phone instance,
as Figure 3 shows.

105 try {
106 // use UNIX domain socket to
107 // prevent subsequent initialization
108 new LocalServerSocket("com.android.internal.telephony");
109 } catch (java.io.IOException ex) {
110 hasException = true;
111 }

Figure 3: com.android.internal.telephony.PhoneFactory
uses a Unix domain socket for locking. Code excerpted
from AOSP 6.0.1_r10.

Baidu Push, Tencent XG, and Umeng Message are three
top message push service providers in China. Due to the
state-level blocking of Google services, Google Cloud Mes-
saging (GCM) is not accessible. Therefore, apps targeting
on China market have to choose other push services. It
is likely that multiple apps integrated the same push ser-
vice library co-exist on the same device. That would be
less power-efficient if they each run their own push service.
They choose to share one push service instance across mul-
tiple apps and realize that with a Unix domain socket.

4.2.3 Implementing Global Lock
This use case also takes advantage of the feature that AB-

STRACT addresses are used exclusively. There is demand
on global locks because some resources cannot be used by
two different processes/threads simultaneously, or certain
operations should be serialized instead of parallelized. How-
ever, Android itself does not provide global locks shared be-
tween different apps. Facebook apps all have a DEX opti-
mization service. They will not do optimization before suc-
cessfully acquiring a global lock implemented with a Unix
domain socket. This ensures that only one optimization task

Table 6: Code patterns for categorizing Unix domain socket usage.

Usage Key APIs Code Pattern # Apps

IPC

LocalSocketServer.<init>()

LocalSocketServer.accept()

LocalSocket.connect()

LocalSocket.getInputStream()

LocalSocket.getOutputStream()

Unix domain socket server/client reads data
from (or write data to) the other end.

193

Singleon/
Global Lock

LocalServerSocket.<init>()

LocalSocket.bind()

Server has no reading/writing operations
after binding to an address.

165

Watchdog
LocalSocket.connect()

LocalSocket.getInputStream()

Client connects to server and then blocks at reading.
Server also blocks at reading after accepting client connection.

33

runs in background, and helps reduce negative impact on
user experience.

4.2.4 Implementing Watchdog

Service

Daemon

read() read()

Service

Daemon

read() read()

Service

Daemon

read() read()

(a) Service and
Daemon are
both alive.

(b) Service is dead so
Daemon’s read()

returns. Start Service.

(c) Daemon is dead so
Service’s read()

returns. Start Daemon.

Figure 4: The Kaspersky app’s service and daemon monitor
each other through a Unix domain socket.

Some apps have important services that are expected
to always run in background. Such “immortal” services
are against Android’s memory management philosophy, and
therefore developers have to to find a workaround to au-
tomatically restart them, in case they are somehow termi-
nated. They implement a watchdog mechanism leveraging
Unix domain sockets. For example, the Kaspersky Security
app starts a native daemon in a service. The daemon and
the service monitor each other mutually, through a Unix
domain socket channel. If one is died, the other will gets
notified and restart it immediately, as Figure 4 depicts.

4.3 Peer Authentication
We refine the categorization made by SInspector’s Au-

thentication Detector module, and classify peer authentica-
tion checks into four types: UID/GID checks, process name
checks, user name checks, and permission checks. Table 7
shows the numbers of apps and system daemons adopting
each type of checks. Apps and daemons tend to use different
types of authentication checks. Apps only adopt UID/GID
checks and permission checks, while system daemons use all
checks except permission checks. One possible reason is in
different layers the information apps/system daemons can
obtain differs. In app layer, apps can easily get the peer
app’s permissions with its UID. However, there are no APIs
for getting the peer’s process name or user name. In native
layer, process name and user name can be easily obtained.
But due to the lack of Android runtime context, it is infea-
sible to query the peer’s permissions. Only 9 of 60 (15%)
daemons employ strong checks, meaning that their security
heavily rely on the correctness of SEAndroid policies and
file access permissions.

Table 7: Statistics on peer authenication checks.

UID/GID Process name User name Permission

#Apps 20 0 0 97
#Daemons 7 3 2 0

Process Name Checks. In native layer, getting process
name with its PID is done by reading /proc/PID/cmdline

or /proc/PID/comm on the proc filesystem (procfs). Process
name checks compare the peer’s process name with prede-
fined process name(s). By default, the process name of an
Android app is its package name. Therefore, the content
of the two proc files of an app process is actually the app’s
package name. Interestingly, we find that apps are able to
modify their own process names at runtime, by calling a
hidden method Process.setArgV0(String s) through Java
reflection. This method is supposed to be used by the sys-
tem (labeled with @hide in source code), but it requires no
permissions. This hidden method makes all process name
checks meaningless, as malicious apps can always change
their process names to legitimate ones so that they can by-
pass checks and send messages to the victim. For example,
the system daemon cnd on LG G3 and Galaxy S4 is used for
managing Qualcomm connectivity engine [10]. It accepts re-
quests from clients through a Unix domain socket and checks
if the client’s process name is “android.browser”. Requests
from other clients are not legitimate and will be discarded.
By changing process name to “android.browser”, any app
can send legitimate requests to cnd effortlessly.

UID/GID Checks. Android reserves UIDs less than
10,000 for privileged users. For instance, the user system

has 1,000 as both UID and GID. Normally, each app has its
own UID and GID, but apps from the same developer could
share the same UID and GID. These checks are handy when
one wants to allow only privileged users or particular apps
to communicate with it. UID/GID checks efficiently prevent
unauthorized peers, as UID and GID can never be spoofed or
modified. For example, the Android Wear app has a service
called AdbHubService, which is used for remote debugging.
It starts a Unix domain socket server accepting debugging
commands from ADB shell. Only commands coming from
root and system are allowed, by checking if a client’s UID
is equal to 0 or 2,000.

User Name Checks. These checks are similar to
UID/GID checks, since each user also has its unique user
name that cannot be spoofed or modified. They also effec-
tively authenticate the peer’s identity. Samsung Galaxy S4’s
RIL daemon, rild, checks client user name. A list of names

of privileged users are hardcoded in the binary, e.g., media,
radio. User name checks might be better than UID/GID
checks because the same user may have different UID/GID
on different devices due to vendor customization.
Permission Checks. These checks enforce that only

apps with specific permissions can access the Unix domain
socket channel. In app layer, apps can call several APIs in
the Context class to check another app’s permissions. The
Facebook Stetho library checks if the peer has the DUMP per-
mission, a system permission that can only be acquired by
system apps. It first obtains UID and PID from peer creden-
tials, then calls Context.checkPermission(permission,

pid, uid) to do permission checking
Token-based Checks. Besides aforementioned peer au-

thentication checks, we observe two apps adopt token-based
checks. The server and the client first securely share a small
chunk of data (called token). The server compares the to-
ken of the incoming client with its own copy so that only
clients having the right token can talk to it. This type of
checks, assuming the token is shared in secure ways, can ef-
fectively prevent unauthorized accesses. We find two apps
employing two different methods to share tokens between
the server and the client. The first one, Helium Backup,
broadcasts the token on the server side. The broadcast is
protected by a developer-defined permission, and therefore
other apps without the required permission cannot receive
the token. The second one, OS Monitor, stores its token in a
private file. Since the server and the client are both created
by the app itself, they have privileges to read the private file
and extract the token. SInspector currently cannot identify
such checks. As a result, these apps reported as potentially
vulnerable are actually false positives.

5. CASE STUDY
By examining the output of SInspector, we successfully

discovered several high-severity zero-day vulnerabilities af-
fecting popular apps installed by hundreds of millions of
users, widely used third-party libraries, and system dae-
mons having root privileges. These vulnerabilities can be
exploited to (1) grant root access to any apps, giving the
attacker entire control of the device, (2) read and write
arbitrary files, allowing the attacker to steal user privacy
and modify system settings, (3) factory reset the victim de-
vice, causing permanent data loss, and (4) change system
date and time, resulting in denial of service. Attack demos
and more details are available on our project website https:
//sites.google.com/site/unixdomainsocketstudy.

5.1 Applications

5.1.1 Data Injection in a Rooting Tool
As rooting gaining popular in the Android community,

many one-click rooting tools become available [33], which
allow users to gain root access very easily. One major root-
ing tool, which claims to be able to root 103,790 different
models (as of May, 2016), support a wide range of devices
running Android 2.3 Gingerbread and above up to Android
6.0 Marshmallow. As well as rooting, the tool also serves as
a root access management portal, through which users can
grant or deny apps’ root requests.
Once a device is successfully rooted, the rooting app in-

stalls a command line tool, su, to the system partition /sys-

tem/bin/su. Apps then request root access by executing su,

(3) Asking for decision
(with server socket addr)

(4) Looking up
existing policies

(1) Requesting root
(2) Starting a Unix domain
socket server listening on

a randomly generated
address: .socketXXXXX

(5) Connecting to server
and send “ALLOW”/

“DENY” (6) Root access
granted/denied

Rooting App su App requesting
root access

 Connecting to server
and send “ALLOW”

Root access
granted

Figure 5: Vulnerability illustration. The normal root request
procedure consists of steps (1)-(6) with solid arrow lines. By
injecting “ALLOW” any app can get root access regardless
what the user’s actual decision is, shown as steps (1){2}{3}.

who starts a Unix domain socket server waiting for the root-
ing app to send back user decision. The rooting app looks up
existing policies. If no corresponding policy exists, it pops
up a dialog that asks the user to make decision. Figure 5
illustrates the whole process.

However, the FILESYSTEM-based socket channel is pub-
licly accessible as its file permissions are set to rwxrwxrwx,
and there is no client authentication in su. As a result, any
app can inject arbitrary decisions before the rooting app
sends out the real decision to su. This allows a malicious
app to grant or deny root access of any other apps, as well
as grant itself root privileges in order to take full control of
the device. We reported this vulnerability to the developers
and they rated it as the most severe security bug in their
product to date. They fixed the vulnerability and released
a new version in 24 hours.

5.1.2 Privilege Escalation in ES File Explorer
ES File Explorer is a very popular file management app

on Android, accumulating over 300 million installs [6]. To
perform file operations that Java layer APIs cannot effi-
ciently support, the app starts a native process and executes
libestool2.so1, which creates a Unix domain socket server
listening on an ABSTRACT address, @/data/data/com.

estrongs.android.pop/files/comm/tool_port. Moreover,
if the device is rooted and the user chooses to run ES File Ex-
plorer in root mode, it starts another libestools2.so pro-
cess with root privileges, listening on another ABSTRACT
address, @/data/data/com.estrongs.android.pop/files/

comm/su_port. Certain low-level operations, such as modi-
fying file permissions and changing file status and ownership
are sent to these two native processes to execute.

Since there is no client authentication on the server side
(i.e., libestool2.so), any app can send them commands
to run. We were able to read any app’s private files and
protected system files by exploiting this vulnerability, after
successfully reversing the communication protocol used by
the ES File Explorer app and its native processes. This

1This binary looks like a shared library from its name, but
it is essentially an ELF executable.

https://sites.google.com/site/unixdomainsocketstudy
https://sites.google.com/site/unixdomainsocketstudy

vulnerability was fixed two months after we first reported it
to the developers.

5.1.3 DoS VPN Apps
Multiple OpenVPN clients for Android are available.

OpenVPN for Android is an open source client that targets
at advanced users and offers many settings and the ability
to import profiles from files and to configure/change profiles
inside the app. The client is an ELF executable ported from
the community version of OpenVPN for Linux.
OpenVPN management interface allows OpenVPN clients

to be administratively controlled from an external program
via a TCP or Unix domain socket. Quite a few of apps mak-
ing use of OpenVPN for Android utilize Unix domain sockets
to communicate with the management app. However, some
of them fail to set file permissions correctly for the socket
file. OpenVPN supports various client authentication mech-
anisms. Surprisingly, none of these apps adopt any client
authentication. Consequently, an adversary can establish
connection to the management interface and then control
the OpenVPN client, causing deny-of-service at least.

5.2 System Daemons

5.2.1 LG AT daemon
The privileged AT Daemon, /system/bin/atd, on (at

least) the LG G3 is vulnerable, which allows any app with
only the INTERNET permission to factory reset the phone,
toggle the SIM card, and more, causing permanent data loss
and denial of service. atd is a proprietary daemon developed
by LG. It starts a Unix domain socket server that performs
no client authentication, listening on socket file /dev/sock-
et/atd, whose permissions are not correctly configured (i.e.,
srw-rw---- system inet). The permission configuration
means all users in the inet Linux group can read and write
this socket file. Android apps having the INTERNET permis-
sion all belong to the inet group. As a result, they are able
to read and write this socket file so that they can talk to
the AT daemon through this Unix domain socket channel.
Commands from any apps, if in the right format, will be
processed by the daemon.
By reversing the message format atd accepts, we success-

fully crafted commands that can instruct atd to perform
factory reset, wiping all user data and toggle the SIM card.
In fact, atd accepts a large set of commands (only a subset
were successfully reversed); reverse engineering the protocol
allows us to send arbitrary SMS requests, make phone calls,
get user’s geographic location, etc.. This vulnerability has
been assigned CVE-2016-3360.

5.2.2 Qualcomm Time Daemon
We first found that a LG G3 daemon /system/bin/-

time_daemon opens a Unix domain socket server listening on
an ABSTRACT address @time_genoff. This daemon veri-
fies the client’s identity. However, verification is weak and
can be easily bypassed — it only checks whether the process
name of the client is a constant string “comm.timeservice”.
This vulnerability allows any app with the INTERNET per-

mission to change the system date and time, affording at-
tackers to DoS services relying on exact system date and
time, e.g., validating server certificate. /system/bin/-

time_daemon is developed by Qualcomm, therefore other
Android phones using Qualcomm time daemon are also vul-

nerable. This vulnerability has been reported and was as-
signed CVE-2016-3683.

5.2.3 Bluedroid
The Android Bluetooth stack implementation is call blue-

droid, which exposes a Unix domain socket channel for con-
trolling the A2DP protocol [1]. The ABSTRACT address,
@/data/misc/bluedroid/.a2dp_ctrl, is expected to be en-
forced by SEAndroid. To our surprise, we are able to con-
nect to the server through this address and send control
commands to it on a Nexus 4. We are able to control the
audio playing on a peripheral device connected to the phone
through Bluetooth. Though the LG G3 and the Galaxy
S4 also expose the same channel, accesses from third-party
apps always fail at connecting stage due to insufficient per-
mission. This case suggests that vendors may have made
some security improvements despite their tendency to intro-
duce vulnerabilities [34].

6. COUNTERMEASURE DISCUSSION
As our study suggests, the misuse of Unix domain sock-

ets on Android has resulted in severe vulnerabilities. We
discuss possible countermeasures to minimize the problem
from two aspects: (1) OS-level mitigations and (2) better
approaches to implementing secure IPC that utilizes Unix
domain sockets.

6.1 OS-level Solutions
Changing the default namespace. For now, Unix do-

main socket channels created by apps use the ABSTRACT
namespace by default. Due to the lack of DAC, socket chan-
nels based on ABSTRACT addresses are less secure than
those based on FILESYSTEM addresses. Therefore, an in-
tuitive mitigation is to change the default namespace from
ABSTRACT to FILESYSTEM; or more radically, disable
the use of ABSTRACT namespace.

More fine-grained SEAndroid policies and domain
assignment. In the current SEAndroid model, all third-
party apps, although having individual UIDs and GIDs, are
assigned the same domain label, i.e., untrusted_app. Unix
domain sockets accesses between third-party apps are not
enforceable by SEAndroid because domain-level policies can-
not tell one third-party app from another.

Therefore, we need to assign different domain labels to
different third-party apps so that more fine-grained policies
can be made to regulate Unix domain socket accesses. Nev-
ertheless, this could introduce new problems: pre-defined
policies would not be able to cover apps, and making fixed
policies editable at runtime may open new attack vectors.
Moreover, it would be untenable to define policies for every
app; each user may install any number of apps.

6.2 Secure IPC on Unix Domain Sockets
We demonstrate three scenarios where apps and system

daemons require Unix domain sockets for IPC and discuss
possible solutions to their security problems.

A privileged system daemon exposes its function-
ality to apps. A system daemon may need to provide
diverse functionality to apps that have different privileges.
For example, the LG AT daemon may want to expose the
capability of doing factory reset to only system apps, and
allow apps with location permissions to get the user’s GPS
coordinates. To achieve this, system daemons will have to

enforce app permissions themselves. Unfortunately, the lack
of Android runtime context in system daemons precludes
daemons from easily obtaining the app’s permission(s).
Figure 6 demonstrates the proposed solution. The goal

being to delegate peer authentication to the existing An-
droid security model. Instead of letting apps and daemons
communicate directly through a Unix domain socket, a sys-
tem service acts as an intermediary between the two. This
new system service runs as the system user with UID 1000,
thus can be easily authenticated by the daemon. Apps talk
to this system service through Android Binder and their per-
missions are validated by the system service. In this way,
daemon functionality is indirectly exposed to apps with the
help of a system service.

App System Daemon
(Check sys UID)

System Service
(Check app
permission)

Binder

Unix
domain
socket

Direct access denied

Figure 6: A secure way to expose system daemon function-
ality to apps. A system service is added between apps and
the system daemon.

An app consisting of both Java and native code
performs cross-layer IPC. Apps having native executa-
bles need an intra-application, cross-layer IPC. An app cre-
ates a native process to run its executable, and uses Unix
domain sockets to communicate with the native process from
its non-native part. In this case, executables still have the
same UID as their owner apps. Therefore, it is convenient
to check UID on both client and server sides.
An app exposes interfaces to other apps. Android-

specific IPCs such as Intents are expected to be used for
inter-application communications. However, apps have to
choose Unix domain sockets for cross-layer IPCs. We pro-
pose a token-based mechanism inspired by Helium described
in §4.3, as Figure 7 illustrates. The client app first sends a
broadcast to the server app to request a communication to-
ken. The server responds by asking the user to allow or deny
the incoming request. If the user allows, the server app gen-
erates a one-time token for that particular client and returns
the token. After that, the client connects to the server with
its token and a Unix domain socket connection will be es-
tablished. Note that the token is not meaningful to anyone
else. Even if it was stolen, the attacker would not be able
to use it to talk to the server app.

Client
App

Request token

Server
AppReply a token

Unix domain socket

Ask for user
decision

Figure 7: Token-based secure Unix domain socket IPC. Dot-
ted arrow lines stand for permission-protected broadcasts.

7. RELATED WORK
As the community continues to explore and understand

Android and its ecosystem, novel attacks and innovative
ways of uncovering vulnerabilities are being developed.
Many of the existing works in Android security leverage
static and/or dynamic analysis of Android apps and frame-
work. By comparing our work with that of others we distin-
guish and demonstrate how our work contributes to Android
security research.

Android IPC and framework vulnerabilities. The
Android IPC mechanisms, e.g., Binder, Messenger, and In-
tents, have been thoroughly studied [17, 27, 20, 14, 31, 22].
These works aim to exploit the IPC mechanisms in order
to disclose sensitive information such as SMS messages, call
history, and GPS data [30]. For example, Chin et. al. [17]
examined Android application interaction and identified se-
curity risks in app components. They presented ComDroid
to detect app communication vulnerabilities. There also ex-
ist works focusing on detecting implemention flaws of the
Android framework. Aafer et. al. [13] studied the threat
of hanging attribute references; Kratos [29] found frame-
work vulnerabilities from the perspective of inconsistent se-
curity enforcement. Unfortunately, none of the aforemen-
tioned works explore traditional Linux IPCs on Android,
e.g., Unix domain sockets, as exploitable interfaces.

Static analysis of Android apps. We use static anal-
ysis to detect the misuse of Unix domain sockets in apps.
Techniques that serve this purpose have been extensively
studied [14, 31, 21, 22]. Particularly, FlowDroid [14] has
been widely used for doing taint analysis on Android apps.
However, it does not handle inter-component communica-
tions (ICC) well. Amandroid [31] is a data flow analysis
framework that provides better ICC support, and we build
our tool on top of it.

Security risks in customizations. Customizations to
the Android framework has been known to introduce new
vulnerabilities not present in the AOSP [32]. Wu et. al.
discovered that over 85% of all preinstalled apps in stock
images have more privileges than they need. Of those 85%
of apps, almost all vulnerabilities are a direct result of vendor
customization. They discovered that many of these firmware
and pre-installed apps are susceptible to a litany of vulner-
abilities that range from injected malware, to pre-installed
malware, and signing vulnerabilities. These all point to a
systemic problem introduced by customization of the An-
droid framework. ADDICTED [34] is a tool for automat-
ically detecting flaws exposed by customized driver imple-
mentations. On a customized phone, it performs dynamic
analysis to correlate the operations on a security-sensitive
device to its related Linux files. Our work reveals and studies
a new customization domain — privileged system daemons
— which can be exploited to perform dangerous operations.

8. CONCLUSION
In this paper, we conducted the first systematic study in

understanding the usage of Unix domain sockets by both
apps and system daemons as an IPC mechanism on An-
droid, especially for cross-layer communications between the
Java and the native layers. We presented SInspector, a tool
for discovering potential security vulnerabilities through the
process of identifying socket addresses, detecting authen-
tication checks, and performing data flow analysis on na-

tive code. We analyzed 14,644 Android apps and 60 system
daemons, finding that some apps, as well as certain system
daemons, suffer from serious vulnerabilities, including root
privilege escalation, arbitrary file access, and factory reset-
ting. Based on our study, we proposed countermeasures to
prevent these attacks from occurring.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back on our work. This research was supported in part by
the National Science Foundation under grants CNS-1318306
and CNS-1526455, as well as by the Office of Naval Research
under grant N00014-14-1-0440.

9. REFERENCES
[1] Advanced audio distribution profile (a2dp).

https://developer.bluetooth.org/

TechnologyOverview/Pages/A2DP.aspx.

[2] An Analysis of Android App Permissions.
http://www.pewinternet.org/2015/11/10/

an-analysis-of-android-app-permissions/.

[3] Android Security Overview.
https://source.android.com/security/.

[4] Android Security Tips: Using Interprocess
Communication. http://developer.android.com/
training/articles/security-tips.html#IPC.

[5] ApkPure website. https://apkpure.com/.

[6] Es app group. http://www.estrongs.com/.

[7] How to create a android native service and use binder
to communicate with it? http://stackoverflow.com/
questions/14215462/how-to-create-a-android-native-
service-and-use-binder-to-communicate-with-it.

[8] Jeb decompiler by pnf software.
https://www.pnfsoftware.com/.

[9] ProGuard. http://proguard.sourceforge.net/.

[10] Qualcomm’s cne brings “smarts” to 3g/4g wi-fi
seamless interworking. https://www.qualcomm.com/
news/onq/2013/07/02/qualcomms-cne-bringing-
smarts-3g4g-wi-fi-seamless-interworking.

[11] Security — Platform Security Architecture.
https://source.android.com/security/index.

html#android-platform-security-architecture.

[12] Xposed development tutorial. https://github.com/
rovo89/XposedBridge/wiki/Development-tutorial.

[13] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen,
X. Wang, X. Zhou, W. Du, and M. Grace. Hare
hunting in the wild android: A study on the threat of
hanging attribute references. In Proc. of ACM CCS,
2015.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proc. of ACM PLDI, 2014.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In Proc. of
ISOC NDSS, 2012.

[16] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
Automatic extraction of protocol message format using
dynamic binary analysis. In Proc. of ACM CCS, 2007.

[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In Proc. of ACM MobiSys, 2011.

[18] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
Automatic protocol reverse engineering from network
traces. In Proc. of USENIX Security, 2007.

[19] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Information Security, pages 346–360. Springer,
2010.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[21] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, and G. Vigna. Triggerscope: Towards
detecting logic bombs in android applications. In Proc.
of IEEE S&P, 2016.

[22] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: automatically detecting potential
privacy leaks in android applications on a large scale.
Springer, 2012.

[23] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In Proc. of ISOC NDSS, 2012.

[24] N. Hardy. The Confused Deputy:(or why capabilities
might have been invented). ACM SIGOPS, 1988.

[25] C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang.
Screenmilker: How to milk your android screen for
secrets. In Proc. of ISOC NDSS, 2014.

[26] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic
protocol format reverse engineering through
context-aware monitored execution. In Proc. of ISOC
NDSS, 2008.

[27] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component
hijacking vulnerabilities. In Proc. of ACM CCS, 2012.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of program analysis. Springer, 2015.

[29] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao.
Kratos: Discovering Inconsistent Security Policy
Enforcement in the Android Framework. In Proc. of
ISOC NDSS, 2016.

[30] T. Vennon. Android malware. A study of known and
potential malware threats. SMobile Global Threat
Centre, 2010.

[31] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise
and general inter-component data flow analysis
framework for security vetting of android apps. In
Proc. of ACM CCS, 2014.

[32] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The
impact of vendor customizations on android security.
In Proc. of ACM CCS, 2013.

[33] H. Zhang, D. She, and Z. Qian. Android root and its
providers: A double-edged sword. In Proc. of ACM
CCS, 2015.

[34] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang.
The peril of fragmentation: Security hazards in
android device driver customizations. In Proc. of
IEEE S&P, 2014.

https://developer.bluetooth.org/TechnologyOverview/Pages/A2DP.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/A2DP.aspx
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
https://source.android.com/security/
http://developer.android.com/training/articles/security-tips.html#IPC
http://developer.android.com/training/articles/security-tips.html#IPC
https://apkpure.com/
http://www.estrongs.com/
http://stackoverflow.com/questions/14215462/how-to-create-a-android-native-service-and-use-binder-to-communicate-with-it
http://stackoverflow.com/questions/14215462/how-to-create-a-android-native-service-and-use-binder-to-communicate-with-it
http://stackoverflow.com/questions/14215462/how-to-create-a-android-native-service-and-use-binder-to-communicate-with-it
http://stackoverflow.com/questions/14215462/how-to-create-a-android-native-service-and-use-binder-to-communicate-with-it
https://www.pnfsoftware.com/
http://proguard.sourceforge.net/
https://www.qualcomm.com/news/onq/2013/07/02/qualcomms-cne-bringing-smarts-3g4g-wi-fi-seamless-interworking
https://www.qualcomm.com/news/onq/2013/07/02/qualcomms-cne-bringing-smarts-3g4g-wi-fi-seamless-interworking
https://www.qualcomm.com/news/onq/2013/07/02/qualcomms-cne-bringing-smarts-3g4g-wi-fi-seamless-interworking
https://www.qualcomm.com/news/onq/2013/07/02/qualcomms-cne-bringing-smarts-3g4g-wi-fi-seamless-interworking
https://source.android.com/security/index.html#android-platform-security-architecture
https://source.android.com/security/index.html#android-platform-security-architecture
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial

	Introduction
	Background
	Android Security Model
	Unix Domain Sockets
	Threat Model and Assumptions

	Design and Implementation
	Our Approach
	App Analysis
	System Daemon Analysis
	Manual Analysis

	Implementation
	Limitations

	Results
	Overview
	Libraries
	Tool Effectiveness and Performance

	Unix Domain Socket Usage
	Inter-Process Communication
	Realizing Singleton
	Implementing Global Lock
	Implementing Watchdog

	Peer Authentication

	Case Study
	Applications
	Data Injection in a Rooting Tool
	Privilege Escalation in ES File Explorer
	DoS VPN Apps

	System Daemons
	LG AT daemon
	Qualcomm Time Daemon
	Bluedroid

	Countermeasure Discussion
	OS-level Solutions
	Secure IPC on Unix Domain Sockets

	Related Work
	Conclusion
	References

