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ABSTRACT

Off-path packet injection attacks are still serious threats to the In-
ternet and network security. In recent years, a number of studies
have discovered new variations of packet injection attacks, target-
ing critical protocols such as TCP. We argue that such recurring
problems need a systematic solution. In this paper, we design and
implement PacketGuardian, a precise static taint analysis tool that
comprehensively checks the packet handling logic of various net-
work protocol implementations. The analysis operates in two steps.
First, it identifies the critical paths and constraints that lead to ac-
cepting an incoming packet. If paths with weak constraints exist,
a vulnerability may be revealed immediately. Otherwise, based on
“secret” protocol states in the constraints, a subsequent analysis is
performed to check whether such states can be leaked to an attacker.

In the second step, observing that all previously reported leaks
are through implicit flows, our tool supports implicit flow tainting,
which is a commonly excluded feature due to high volumes of false
alarms caused by it. To address this challenge, we propose the con-
cept of attacker-controlled implicit information leaks, and prioritize
our tool to detect them, which effectively reduces false alarms with-
out compromising tool effectiveness. We use PacketGuardian on 6
popular protocol implementations of TCP, SCTP, DCCP, and RTP,
and uncover new vulnerabilities in Linux kernel TCP as well as 2
out of 3 RTP implementations. We validate these vulnerabilities
and confirm that they are indeed highly exploitable.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Informa-

tion flow controls; C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks—Internet (e.g., TCP/IP)

General Terms

Security, Program Analysis

Keywords

Network protocol security, Implicit information leakage, Static
analysis, Side channel detection
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1. INTRODUCTION
The encryption coverage on today’s Internet is unfortunately still

rather poor: only 30% [46]. Thus, off-path packet injection attacks
remain a serious threat to network security. Recently a number
of such attacks and their variants have been reported including off-
path TCP packet injection [18,19,37,38] and DNS cache poisoning
attacks [34, 47]. These attacks jeopardize the integrity of network
communication, and lead to serious damage where personal data
from unsuspecting users can be leaked when visiting a web site.
Despite application-layer encryption support (e.g., SSL and TLS),
network connections are still vulnerable. For instance, for HTTPS
connections, the initial request sent by the browser may still be an
unencrypted HTTP request, and the server subsequently redirects
the client to the HTTPS site. As shown in a recent study [37], an
off-path attacker can inject a legitimate response to the very first
HTTP request. Furthermore, such packet injection attacks can re-
sult in DoS, e.g., by injecting a reset (RST) packet with an inferred
TCP sequence number.

To combat such threats, the network stacks typically implement
stringent checks on various fields to verify if an incoming packet is
valid. In fact, a number of RFCs like RFC 5961 [39] are dedicated
to this purpose. However, two problems remain. First, the design
of an RFC may not be formally verified to be secure. Second, even
if the design is secure, the actual implementation may not always
conform to the design. In fact, the implementation is generally
much more complex and difficult to get right. For instance, it has
been shown that TCP implementations on Linux and FreeBSD are
significantly weaker than what the RFC recommends regarding the
mitigation against off-path attacks [38]. This calls for a systematic
approach to verify protocol implementations.

In this work, we fulfill this very need by developing an effective
and scalable static program analysis tool, PacketGuardian, which
can systematically evaluate the robustness (i.e., the level of secu-
rity strength) of a network protocol implementation against off-path
packet injection attacks. To ensure effectiveness and accuracy, our
tool uses a precise context-, flow-, and field-sensitive taint analysis
with pointer analysis support. To handle the scalability challenge
caused by such high sensitivity, we choose a data flow analysis
of summary-based approach, which is known to be more scalable
compared to other frameworks [43], and is demonstrated to scale
to very large programs like the Linux kernel [52].

At a high level, the tool operates by performing analysis in two
steps: (1) Find all paths leading to the program execution point
of accepting an incoming packet. This helps identify the critical
checks that a protocol implementation relies on to prevent packet
injection, and may directly reveal a packet injection vulnerability
if any check is weak. (2) Motivated by the observation that strong
checks typically rely on certain hard-to-guess or “secret” commu-



nication protocol state, e.g., TCP sequence numbers, or RTP source
IDs, we perform a subsequent analysis to check whether such secret
states can be leaked to an attacker through side channels.

In network protocol implementations, these “secret” protocol
states are unlikely to be leaked directly through explicit flows,
and all previously reported leakage has been through implicit
flows [18, 37, 38]. Therefore, PacketGuardian supports implicit
flow tainting, which is known to be of much less value compared
to explicit flow tracking (implicit flow usually leaks at most 1 bit
of information) and at the same time cause large numbers of false
positives [28]. It is thus a commonly excluded feature in nearly
all taint analysis tools [4, 17, 21, 25]. To address the false posi-
tive challenge without compromising tool effectiveness, we lever-
age a key insight that the previously-discovered practical leaks are
all attacker-controlled implicit information leaks, meaning that an
attacker can influence which bit to leak. By prioritizing this special
type of leak, we effectively reduce the false positive number and
make the tool more useful for finding practical vulnerabilities.

Our analysis requires access to source code, which is a realis-
tic assumption for many key network protocols. The tool we have
developed is fully functional and is able to analyze arbitrary por-
tions of the Linux kernel source code. By applying our tool to the
Linux kernel TCP, SCTP, DCCP, and variants of open source RTP
protocol implementations, we are able to identify a set of new vul-
nerabilities not previously reported. For example, for the 3 RTP
implementations, two can be compromised by injecting less than
51 packets. For the Linux kernel TCP implementation, our tool
identifies 17 high-entropy protocol state leakage, with 11 of them
successfully validated in a realistic test bed. This illustrates that
the Linux kernel TCP stack is still vulnerable even after the re-
cent patches for the previous known leakage [15, 39], indicating
the complex nature of the problem.

The contributions of this paper are as follows:
• We formulate the problem to systematically analyze the se-

curity properties of network protocol implementations against off-
path packet injection attacks, and develop an effective and scalable
static program analysis tool to address it using a precise context-,
flow-, and field-sensitive taint analysis with pointer analysis.

• To enable the detection of practical information leaks due
to implicit flows while ensuring low false positives, we propose
the concept of attacker-controlled implicit information leaks and
prioritize our tool to detect them. To the best of our knowledge,
we are the first to design a taint analysis tool for detecting attacker-
controlled implicit information leaks.

• We implement and apply our tool on 6 real implementations
for 4 network protocols. From the result, we are able to discover
new and realistic vulnerabilities confirmed by proof-of-concept at-
tacks for Linux kernel TCP and 2 out of 3 RTP implementations.

2. ATTACK THREAT MODEL
Fig. 1 depicts the threat model for the off-path packet injection

attack considered in this paper. As shown, an existing communica-
tion channel (e.g., a TCP connection, a UDP session, or RTP ses-
sion) is established between Alice and Bob. The attacker’s goal is
to inject a packet into the channel targeting Bob, pretending to be a
packet from Alice. The attack goal can be to inject payload, e.g., to
launch attack such as phishing, or to trigger the termination of the
channel, resulting in denial-of-service (DoS). The attacker in this
threat model is off-path, i.e., much weaker and more realistic than
a man-in-the-middle attacker. To ensure channel integrity, Alice
and Bob usually share several secret protocol states, denoted as s in
the figure, and include it in the packet. These states are unknown
to the off-path attacker and should be hard to guess.

To incorporate recently-discovered packet injection vulnerabil-
ities [18, 19, 37, 38], our threat model also optionally considers a
collaborative attacker sharing the same system as Bob. This collab-
orative attacker can be an unprivileged malware program [37, 38],
or a script in the browser [18, 19]. This collaborative attacker is
tasked to provide feedback about any packet injection attempt of
the off-path attacker, facilitating the inference of the secret proto-
col state for a successful injection.

3. ILLUSTRATIVE EXAMPLE

3.1 Packet Injection Attack for TCP
To illustrate how static analysis can help detect packet in-

jection attacks for TCP, Fig. 2 shows a significantly simplified
implementation example for handling an incoming TCP packet,
which is the entry for an injection packet from an off-path at-
tacker. This implementation is mostly based on Linux kernel
3.15, from which we only include the important logic, i.e., se-
quence number and acknowledgment number checks. In this figure,
tcp_rcv_established() is the main entry function, param-
eter tp is the socket status maintained by the system, and param-
eter skb is the data structure for the incoming packet. Function
accept_payload() copies the packet data into the application
layer, indicating the acceptance of the incoming packet for this TCP
connection, i.e., a successful injection.

To evaluate the robustness of this implementation against
off-path packet injection, the key question is what strong

checks exist to prevent an off-path injected packet

from reaching accept_payload(). As we can see in
tcp_rcv_established(), 3 checks on line 2, 3, and 4 exist.
The check on line 2 requires the incoming packet to have either
ACK or RST bit set, which is easy to bypass by an attacker. The
checks on line 3 and 4 call into tcp_validate_incoming()
and tcp_ack(), and can be passed only if the former re-
turns true, and the later returns a non-negative value. In
tcp_validate_incoming(), to return true, the seq field
of the incoming packet needs to fall into the receive window
[tp->rcv_nxt, tp->rcv_nxt + tp->win1], and the size
of this window is usually between 214 to 220. tp->rcv_nxt

is a protocol state unknown to an off-path attacker, thus it
takes up to 218 guesses to pass the check. In addition, for
tcp_ack() to return a non-negative value, ack_seq needs
to fall into [tp->snd_una - tp->win2, tp->snd_nxt].
Like rcv_nxt, snd_una and snd_nxt are also protocol states
unknown to the attacker, making this check also hard to pass.
Combined with the check in tcp_validate_incoming(),
it takes up to 236 = 68, 719, 476, 736 guesses for a single packet
to be accepted, making it practically unexploitable. Therefore,
these are important checks to prevent off-path attackers. In this
paper, we use the number of packets needed for one injection as
the metric for evaluating off-path packet injection robustness of a
protocol implementation, denoted by Npkt.

We note that the robustness strongly depends on the implementa-
tion details. As shown in the bottom-left rectangle of Fig. 2, before
Linux 3.7, the ACK bit check was much weaker. In this case, off-
path attacker can simply set the ACK bit to 0 to avoid the checks
in tcp_ack(), resulting in a large reduction in Npkt from 236

to 218. This turns out to be a missing implementation of a check
required by the protocol specification [15]. Thus, even for a well-

designed protocol, the corresponding implementation of it may not

be robust against off-path packet injection attacks.
If strong checks do exist, which usually depend on secret

protocol states unknown to the attacker, a further question is
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Figure 1: Packet injection attack
threat model in this paper.

1: void tcp_rcv_established(tcp_sock* tp,

    sk_buff* skb) {

2: If (!skb->ack && !skb->rst) return;

3: If (!tcp_validate_incoming(tp, skb)) return;

4: If (tcp_ack(tp, skb) < 0) return;

5: accept_payload();

6: }

1: bool tcp_validate_incoming(tcp_sock* tp, sk_buff* skb) {

2:   If ((skb->seq >= tp->rcv_nxt ) && (skb->seq <= tp->rcv_nxt + tp->win1)) {

3:     tcp_send_dupack(tp, skb);

4:     return false;

5:   }

6:   return true;

7: }

1: bool tcp_ack(tcp_sock* tp, sk_buff* skb) {

2:   If (skb->ack_seq < tp->snd_una) {

3:     if (skb->ack_seq < tp->snd_una - tp->win2) return -1;

4:     return 0;

5:   }

6:   If (skb->ack_seq > tp->snd_nxt) return -1;

7:   return 0;

8: }

1: void tcp_send_dupack(tcp_sock* tp, sk_buff* skb) {

2:   If (skb->seq < tp->rcv_nxt)

3:      tp->net_statistics[DelayedACKLost]++;

4: }

Version <= 3.7:

1: void tcp_rcv_established(tcp_sock* tp,

    sk_buff* skb) {

2: If (!tcp_validate_incoming(tp, skb)) return;

3: If (skb->ack && tcp_ack(tp, skb) < 0) return;

4: accept_payload();

5: }

Figure 2: An illustrative code example of a simplified implementation for handling an incoming TCP
packet in Linux kernel 3.15.

whether with the help of a collaborative attacker, these pro-

tocol states can be leaked. This is of concern since previ-
ous work [18, 38] has shown that rcv_nxt and snd_nxt can
have leakage through storage channels such as proc files. The
threat demonstrated by Qian et al. [38] is especially realistic as
rcv_nxt and snd_nxt can be inferred under only a second.
The upper-right rectangle in Fig. 2 illustrates this reported leakage
for rcv_nxt. Since it is very unlikely to pass the check on line
1 in tcp_validate_incoming(), the attack packet reaches
tcp_send_dupack(), and if seq set by the attacker is smaller
than rcv_nxt, it changes a counter DelayedACKLost in proc file,
otherwise not. If we inspect this counter closely, each comparison
leaks 1 bit of information, and thus at most 32 guesses/packets are
needed to infer the exact value of rcv_nxt. Note that at the time
of Qian et al. [38], the check in tcp_ack() is easy to bypass.
In the current version, the check in tcp_ack() is strengthened as
shown in the bottom-right rectangle in Fig. 2, and even if rcv_nxt
is guessed, the code still does not have exploitable vulnerabilities
for packet injection. However, from our automated vulnerability
detection shown later in §7, we discover 14 new highly-exploitable
leaks for snd_nxt/snd_una even after the fix. Thus, even for

well-implemented protocols with strong checks, the protocol states

of these checks can still be leaked through attacker-accessible

channels, rendering the checks ineffective.
To systematically discover such vulnerabilities, we argue that au-

tomated analysis is required to ensure correctness and coverage,
given that the implementations are rather complex — 64 different
paths with more than 300 direct and 600 indirect checks are found
before accepting an incoming packet in Linux kernel 3.15.8.

3.2 Attacker-controlled Implicit Information
Leaks

In the above example, the leakage of protocol state rcv_nxt
is one case of implicit information leaks as the secret is
leaked through control dependency (predicates on line 2 in
tcp_send_dupack()). Compared to classic implicit informa-
tion leaks, this instance is quite special in that it involves attacker-
controlled data in the predicates (skb->seq in the example), giv-
ing an attacker the ability to influence the control flow. We name
this special type of leaks attacker-controlled implicit information

leaks, a new concept proposed in this paper. As shown in the il-
lustrative example, since attacker-controlled data is involved, an
attacker can use different input to actively trigger leaks from the
same predicate multiple times and thus extract the secret bit by bit,
making it highly-exploitable in practice.

Table 1 shows a categorization of implicit information leaks to
help illustrate the position of this new concept and this paper. Clas-
sic implicit information leaks is from a secret information related
predicate (e.g., if (secret > 100)) to an information sink
(e.g., a public value), which usually just leaks 1 bit of information
(e.g., whether secret is above 100 or not). Since the leakage vol-
ume is extremely low compared to explicit information leaks, and
tracking it causes large numbers of false positives [5,28], detecting
classic implicit information leaks is a commonly excluded feature
in nearly all taint analysis tools [4, 17, 21, 25].

To enable the detection of severe information leaks from implicit
flows without causing high volumes of false positives, Bao et al.

propose to limit implicit flow tracking to a special type of control
dependency called strict control dependency (SCD) [5]. SCD de-
notes the correlation between an equivalency predicate (e.g., if

(secret == 100)) and an information sink, thus when the in-
formation sink is changed, it directly reveals all bits of the se-
cret, making it much more severe than the classic implicit infor-
mation leaks. Cryptographic key extraction through cache side
channels [22,31,54,57] is one real-world exploit example of SCD-
based leaks, which leverages the SCD in bitwise equivalence test-
ing of the secret key in certain cryptographic system implementa-
tions such as RSA implementation of GnuPG [54, 57]. Another
exploit example is side-channel leaks in web and Android applica-
tions [10, 11, 60], in which network traffic pattern is SCD on user
choices in web or Android applications. As shown in Table 1, both
examples are studied extensively on both attack and defense sides.

Attacker-controlled implicit information leaks is a newly-
identified category of highly-exploitable implicit information leaks,
and similar to Bao et al. [5], we propose to prioritize this special
type of leaks in order to balance the vulnerability detection effec-
tiveness and false positives. This concept is orthogonal to SCD in
that attacker-controlled data is involved in the control dependency.
The target of this paper is to identify exploitable cases of such leaks
focusing on off-path packet injection attacks [18,37,38], and we are
the first to design a taint analysis tool for detecting this type of leaks
(detailed in §6).

4. PACKETGUARDIAN OVERVIEW
In this section, we first describe the analysis required for de-

tecting packet injection vulnerabilities, and then present a design
overview of PacketGuardian which supports this analysis.

4.1 Analysis Steps
Following the discussion in §3, we break the analysis into two

steps: accept path analysis and protocol state leakage analysis.



Implicit information Exploitability Example of exploits and related work
leak category Exploit case Attack Detection/defense

Classic Low N/A N/A N/A
Strict control dependence High Cryptographic key extraction [22], [57],[54], [31] [14], [58], [50], [40]

(SCD) based [5] Side-channel leaks in web/Android apps [11], [10], [60] [55], [9], [32]
Attacker-controlled High Off-path packet injection attack [37], [38], [18] This paper

Table 1: Categorization of implicit information leaks and position of this paper.

Step 1: Accept path analysis. For a packet injection, the goal is
to pass all checks and reach the program point where the packet
is accepted, e.g., accept_payload() in Fig. 2. In this paper,
we refer to these paths as accept paths. For a particular protocol
implementation, the off-path packet injection robustness depends
on the weakest accept path. Thus, the first analysis step is to find
the weak accept paths in the implementation. The output needs to
highlight the checks related to attacker-controlled information, e.g.,

header fields, to help analyze the accept path strength.
Step 2: Protocol state leakage analysis. If all accept paths are all
well-protected by “secret” protocol states unknown to the attacker,
the implementation can still be vulnerable if these protocol states
are vulnerable to information leakage as illustrated in §3. Thus, af-
ter accept path analysis, we follow up with an information leakage
analysis for important protocol states.

The first step is to analyze the strength of the checks related to
attacker input on the program path reaching a pre-defined analy-
sis sink, which is similar to the traditional code injection anal-
ysis, and thus it can be modeled as a static taint analysis prob-
lem with attacker-controlled data as taint source like in previous
work [25, 53, 59]. The second step is an information leakage prob-
lem and again can be solved by static taint analysis.

Note that symbolic execution is alternative choice, but since it
tracks finer-grained information for each variable than taint anal-
ysis, it comes with much higher computation overhead, which is
unlikely to be efficient and scalable enough in practice, especially
in our case high analysis sensitivity are necessary (shown in §7.1).
Thus, we choose taint analysis in the current design.

4.2 PacketGuardian Design
To support the analysis in §4.1, PacketGuardian has 2 major

components: taint-based summarizer, and vulnerability analyzer,
as shown in Fig. 3. In this section, we briefly introduce the design
of each component, and details are provided in §5 and §6.
Pre-processing. To support taint analysis, the source code needs
to be first pre-processed to the format required by a certain static
analysis tool. We choose CIL [35] for our analysis, so for its input
requirement, .c files are pre-processed to .i files in this step.
Taint-based summarizer. With pre-processed source code, given
an entry function, taint-based summarizer performs a precise static
taint analysis with flow, field, and context sensitivity with pointer
analysis. In §7.1, we show that such analysis strength is required to
discover real vulnerabilities with minimum false positives (FPs).
Further, we employ implicit flow tracking (with separate taints
from explicit flows), as the protocol logic checks commonly in-
duce leakage through control dependence (see §3). Note that im-
plicit tainting is known to generate a large number of FPs [28],
and nearly all existing taint analysis tools choose to ignore im-
plicit flows [4, 17, 21, 25]. We show that after prioritizing attacker-
controlled implicit information leaks, PacketGuardian does not suf-
fer from the excessive FP problem.

To achieve context sensitivity, our static taint analysis needs
to be performed in an inter-procedural data flow analysis frame-
work, with two major choices: IFDS/IDE framework [42, 44], and
summary-based (or functional) approach [49]. IFDS/IDE frame-
work performs analysis from function caller to callee, and in the

worst case, the analysis complexity is proportional to the number
of call graph edges. In contrast, summary-based approach first gen-
erates strongly-connected components (SCC) of the call graph and
computes function summary from callee to caller. In this approach,
each function only needs to be analyzed once and thus has lower
complexity and significant performance gains [43]. Its disadvan-
tage is that it needs storage for function summaries, and the callee-
to-caller order makes taint path construction unnatural. To support
high sensitivity and implicit flow tracking, our analysis faces a sig-
nificant scalability challenge if applied to a large code base like the
Linux kernel. Fortunately, as demonstrated in previous studies [52],
summary-based approach can scale to very large programs.

Following these design choices, as shown in Fig. 3, all related
source files are first crawled in a breath-first search framework
starting from the entry function. After merging these files, func-
tion SCCs are computed and serve as input to the taint analysis
engine. Taint analysis are then performed in the order of callee to
caller, and output function summaries.
Vulnerability analyzer. In vulnerability analyzer, our tool uses the
function summaries from the taint-based summarizer to construct
paths for accept path analysis and protocol state leakage analysis
in §4.1. Taking attacker-controlled data as taint source and packet
accept functions as sink, accept path constructor constructs accept
paths with the attacker-controlled data related predicates labeled.
The output is further analyzed, with the result being either an ob-
vious packet injection vulnerability, or a set of protocol states that
the implementation relies on to prevent injection.

If the accept paths are well-protected by a set of protocol states,
leakage path constructor performs the second step to find possi-
ble leakage of these important states. In this analysis, we also use
the function summaries, but the taint sources and sinks become the
protocol states and public side channels accessible to the attacker.
These channels can be storage side channels [10, 24, 38, 60], pub-
lic events like sending packets [18], timing, power, etc. Besides
detecting leaks, we also construct the leakage paths to help tool
users understand and analyze these leaks. In this step, we prioritize
attacker-controlled implicit information leaks, as all previously re-
ported highly-exploitable leaks are of this special type [18, 37, 38].

With the choice of summary-based approach, even though the
taint sources and sinks are different in the two steps, our tool only
needs to perform taint analysis, the most time-consuming part, once
instead of multiple times for each source and sink pair. While iden-
tifying sources and sinks is a problem for taint analysis in gen-
eral [41], PacketGuardian users can conveniently try different sinks
in the analysis without re-running the taint analysis.
Manual effort in analysis. In our design, the manual effort mainly
lies in identifying protocol states, and the amount of it depends on
the number of output paths and predicates. As detailed in §6, our
design mitigates this problem using path pruning and taint infor-
mation annotations, which is shown to be effective in §7, e.g., our
pruning reduces 42.6% paths on average.

5. TAINT-BASED SUMMARIZER
In this section, we detail the two core designs of the taint-based

summarizer, the taint analysis engine and function summary.
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Figure 3: PacketGuardian design overview.

5.1 Taint Analysis Engine
In this section, we detail the design of taint environment, propa-

gation logic, and how we support flow, context, and field sensitivity
with pointer analysis.
Taint environment. To specify the tainting relationship, each pro-
gram variable v is associated with a taint environment γ : v → T ,
where T is a set of taint values {ti|i = 1, ..., k}. Each taint value
ti is associated with a variable vi, meaning that v is tainted by vari-
able vi. In our design, variables in γ include local, global, formal,
and function return variables. Each v is specified by a tuple with
its identification information such as variable name and type.
Taint label of explicit and implicit flows. As discussed in §4.2, it
is a design requirement to include implicit flows, which is known
to cause excessive FPs [28]. At the same time, the importance of
explicit leaks is much higher than implicit leaks since the former
directly leaks the entire data. Thus, to distinguish leaks of different
importance and be able to support policies on limiting implicit flow
tainting [26], we label each taint value with 2 boolean values d and
c, for taint values coming from explicit flows (d = true) or implicit
flows (c = true). This is a unique design in PacketGuardian and
not supported in most existing taint analysis tool [4, 17, 21, 25].
Taint propagation. The tainting process is to propagate taint val-
ues by updating γ(.) after processing each statement. Table 2
shows the taint propagation logic in the statement and expression
format defined by CIL [35]. This table only has intra-procedure
propagation logic, and inter-procedure logic will be covered later.

In the table, we introduce 3 new operations for taint label man-
agement, Ld, Lc, and ∪l. Ld and Lc modify the labels of all taint
values in a set with explicit flow and implicit flow label respec-
tively, and ∪l is simply the set union operation but with label merg-
ing, for example if both sets have v but with different labels di, ci
and dj , cj , the merged taint value label is (di||dj) and (ci||cj).
Flow-sensitive tainting with both explicit and implicit flows.
Our taint propagation is performed in a data flow analysis frame-
work, where each stmti has a taint environment γi(.), and after
tainting according to the rules in Table 2, γi(.) is updated and
passed to the egress statements in CFG. Our data flow analysis is a
may-taint analysis to tradeoff potentially higher FPs for lower FNs
(we have other mechanisms to lower FPs later on). To increase the
analysis efficiency, we use topology order to visit CFG nodes.

To support implicit flow tainting, we maintain a constraint path,
CT , during the data flow analysis. CT describes the list of condi-
tional branch statements such as if exp and Switch exp, which
we call constraints (denoted by ct), that the current statement is
control dependent on. Each ct is described by a tuple {exp, Texp},
and adds a new ct after processing a conditional branch statements
with exp. We compute the control dependence relationship with a

postdominator analysis [49], and delete the ct from CT if the cur-
rent statement is not control dependent on it. With this constraint
list, we compute the implicit flow taint value set by merging Texp

of all ct in CT . As shown in Table 2, this implicit flow taint is
added in taint propagation after applying Lc(.).
Context sensitivity. To support context sensitivity, function call
statements need to be correctly handled for inter-procedure taint
propagation. According to our design, the taint modifications after
calling a callee function can also be described in a function taint
environment γf (.), by merging the return statement taint environ-
ments in the callee function using ∪l operation.

Before being applied, γf (.) needs to be transformed to the caller
function context since γf (.) is computed in the callee context. This
transformation is done in an instantiate function Inst : vcallee →
vcaller , which replaces the formal parameter variables in callee
function with the caller actual parameter variables in the call site of
caller function. Inst(.) also handles the side effect in the process
for the callee function variables, i.e., caused by changing the val-
ues of de-referenced pointer formal or global parameter variables,
using a context-sensitive pointer analysis explained later.
Field sensitivity. As shown in the example in §3, the header fields
related to protocol states in a network protocol are usually imple-
mented as a few fields of a composite type variable. Thus, it will
cause large numbers of FPs if we don’t distinguish same variable
with different fields and taint the whole variable like in some pre-
vious tools [2, 17]. We support field sensitivity with the standard
technique of expanding each variable with an offset element in the
variable tuple. After adding this feature, both the intra- and inter-
procedure taint propagation logic need to be updated accordingly.

Adding offset element in variable tuple can also cause γf (.) to
keep increasing with same variable having different offset due to
recursive fields (e.g., next in linked list data structure) in a loop.
To solve this problem, we add an iteration limit of loops, which is
a common practice in field-sensitive data flow analysis.
Taint with pointer analysis. As shown in §3, network proto-
col implementations use pointer extensively, and in our example,
the leakage sink is changed with de-referencing a pointer, making
pointer analysis a must. In our design, we choose pointer analy-
sis to support referencing and de-referencing pointers when needed
during taint propagation. To better work with our taint analysis, our
pointer analysis is also flow-, field-, and context-sensitive based on
the traditional flow-sensitive pointer analysis framework [23].

With this feature, our analysis has another environment, pointer

environment, Ptr : v → {vi|i = 1, ..., k}, meaning that v points
to a set of variables {vi|i = 1, ..., k}. Like taint environment,
we associate each statement stmti with a pointer environment for
flow-sensitive analysis. In inter-procedure case, the pointer rela-
tionship in a callee function is summarized to a a function pointer
environment Ptrcallee, and Inst(.) is also needed to transform the
variables to caller function context accordingly.

Note that parameter aliasing is a classic problem in summarizing
points-to relationship, which is typically solved by partial transfer
functions (PTF) [51]. In network protocol implementations, pointer
parameters typically are used for semantically different purposes,
e.g., tp for socket status and skb for the incoming packet in the
illustrative example (§3), thus we assume no parameter aliasing in
the current implementation. This may introduce inaccuracies, and
we plan to implement PTF for improvement in future work.

5.2 Function Summary
After taint analysis, the function summary are generated with 4

parts : taint summary, pointer summary, taint tracking summary,
and path summary.



Statement/expression Taint operation
Const, Sizeof(typ/str) Texp = ∅

v Texp = Ld(γ(v))
Sizeof(exp1) Texp = Ld(Texp1)
Cast(exp1) Texp = Ld(Texp1)
unop(exp1) Texp = Ld(Texp1)

biop(exp1, exp2) Texp = Ld(Texp1) ∪
l Ld(Texp2)

exp : exp1?exp2 : exp3 Texp = Lc(Texp1) ∪
l Ld(Texp2) ∪

l Ld(Texp3)
v = exp γ(v) = Ld(Texp) ∪

l Lc(∪
l{Tctk |ctk ∈ CT})

Asm({expini
|i}, γ(voutj ) = Ld(∪

l{Texpini
|i)

{voutj |j}) ∪lLc(∪
l{Tctk |ctk ∈ CT})

Table 2: Taint value calculation and propagation logic for intra-procedure propagation.
CT includes the constraints that the current statement is control dependent on.
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A path from

path summary

End with sink?

Path property
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Important
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Invalid
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Figure 4: Path analysis process in DFS path con-
struction and analysis framework.

Taint and pointer summaries. Taint and pointer summaries are
the function taint environment γf (.) and function pointer environ-
ment Ptrf (.) respectively (detailed in §5.1). After generated, they
are fed back into the taint analysis engine for subsequent analysis
to support inter-procedure taint and pointer analysis.
Taint tracking summary. As mentioned in §4.2, since we choose
summary-based approach over IFDS/IDE for scalability, tracking
taint propagation becomes unnatural. However, we do need this
tracking since it benefits our vulnerability analysis by making the
taint result explainable. Thus, we design taint tracking summary
to fulfill this goal in PacketGuardian. Note that this summary has
another important benefit for our analysis as it can help us locate
the indirect constraints of implicit flow taint to obtain a complete
accept path and leakage path (detailed later in §6).

Like function taint and pointer environments, this summary is
specified by a tracking environment Track : 〈v, t〉 → TR,
where t = γf (v) and TR is the set of track values. Each track
value describes one source for a taint value, which can come from
intra-procedure explicit flow, intra-procedure implicit flow, or inter-
procedure explicit or implicit flow from a callee function. Since
explicit flow is relatively easy to understand, to lower the tracking
overhead we only record the source file line numbers of the pro-
gram point passing the taint. For implicit flows, we create a track
value for each ct in CT to make it precise.

For inter-procedure taint tracking, we don’t let the track value
propagate from callee to caller function like in taint and pointer
summaries. Otherwise, the track value set will increase accumula-
tively at each time of inter-procedure propagation, making the anal-
ysis hard to scale. More importantly, in that case each taint track-
ing summary will have complete taint history for each variable and
taint value pair, which is unnecessary since only a few important
variables need tracking. Thus, in our design, during function call
we only store a “function pointer” in the TR, and delay the actual
inter-procedure tracking computation till the vulnerability analysis
phase when needed. This “function pointer” is designed to have
complete context information to load the callee taint tracking sum-
mary and reconstruct the inter-procedure tainting path later.
Path summary. To meet the goal of outputting the accept and leak-
age paths for explaining the packet injection vulnerability, during
the taint analysis we also summarize the important paths. Like taint
tracking summary, recording the inter-procedure program paths is
not necessary, and we only record the intra-procedure program
paths, and keep a “function pointer”.

To satisfy the analysis requirements, the path we record has 2
parts, a constraint path and a path end point. The constraint path is
the same as CT mentioned earlier, and here the list of ct is those
ones that the path end point is control dependent on. To help ex-
plain the path and also enable further tracking of the expression

taint, we expand ct = {exp, Texp} with 3 elements: variable taint
value set {〈vi, ti, T rack(〈vi, ti〉)〉|i = 1...k}, branch br, and line
number, where vi is a variable used in exp. Variable taint value
set gives fine-grained information about the taint values and track
values for each variables used in ct, which helps the path pruning
and prioritizing detailed later in §6. Branch br records whether this
path takes the true branch of ct or the false branch of it.

The path end point can be in two forms: a function, or a sink-
related statement. The path end point of a function is designed to
serve for the role of “function pointer” mentioned earlier, and it
can also serve for the vulnerability analysis with a function sink,
e.g., accept_payload() in Fig. 2. The path end point of a
sink-related statement is designed to mainly serve for protocol state
leakage analysis when this statement is related to a channel acces-
sible to an off-path attacker. For example, this statement can be
modifying a public value in storage channels [10, 37], or related
to a special instruction in data timing channels (e.g., SSE instruc-
tions discussed by Andrysco et. al. [3]), etc. In our current imple-
mentation, we focus on storage channels and record the statement
changing a global variable, or the de-referenced value of a formal
or global parameters since they may point to a global variable de-
pending on the caller context.

6. PATH CONSTRUCTION AND VULNER-

ABILITY ANALYSIS
In this section, we first introduce a path construction and analysis

framework, and then detail accept path analysis and protocol state
leakage analysis.

6.1 DFS Path Construction and Analysis
Framework

The difference between an accept path and a leakage path merely
lies in the analysis sink definition and the constraint analyzing and
filtering rules that can be applied to reduce FPs. Thus, both anal-
ysis can be supported by a general path construction framework
following a DFS (depth-first search) paradigm based on the path
summary. As mentioned in §5.2, each path in a path summary has
a constraint path part and a path end point part. Starting from an en-
try function, the DFS path construction process analyzes the paths
in the summary, passes the paths to the callee functions if the path
end point is a “function pointer” and continues the DFS process.
The process ends when it reaches the analysis sink defined by an
analysis task, and output concatenated inter-procedure paths. Like
the inter-procedure propagation in taint analysis engine, here we
need to use the calling context stored in the “function pointer” and
Inst(.) to change the variable context.
Path analysis with implicit flow tracking. In the path construc-
tion process, we analyze each path in the path summary following



the procedure shown in Fig. 4. We first check whether the path end
point is the analysis sink or whether it is a “function pointer” that
can call into the analysis sink. If not, this path is unrelated to the
analysis task and we discard this path. After that, the property of
the path is checked according to the purpose of the analysis task.
If its property is considered valid for the analysis, it will be further
judged on its importance; otherwise it is discarded. If its property is
considered important and the layered analysis mode is on, the path
result will be output. Otherwise, the DFS process continues to its
callee function. The layered analysis mode will be described later
in this section. When reaching the analysis sink, we only output the
path if it is considered important.

The path property is determined by analyzing the variables and
variable taints of the constraints in the constraint path. These
constraints are directly related to the analysis, which we call di-

rect constraints. However, besides direct constraints there are
also other important constraints that the analysis sink depends
on. For example, in Fig. 2, the sequence number check on
line 2 in tcp_validate_incoming() is one of the most
important checks preventing off-path packet injection, but it is
not the constraint that accept_payload() is control depen-
dent on. This dependence is passed through the return value of
tcp_validate_incoming() to the direct constraint on line 3
in tcp_rcv_established(). In order to find these indirect
constraints, we use Track(〈v, t〉) in variable taint value set stored
in the path summary, and if t includes implicit flow taints, we track
its taint path to the indirect constraint that passes these taint values.
Based on our taint tracking design, these indirect constraints can be
found in an inter-procedure fashion.
Layered path construction. To ensure minimum FNs, the path
pruning rules in our accept path and leakage path analysis prefer
to be conservative. However, this conservativeness may lead to
more FPs, causing heavy analysis overhead. This problem can be
quite serious for us since our output is program paths and nested
constraint can exponentially increase the path number. To mitigate
this problem, PacketGuardian supports a layered analysis mode,
which is included at the bottom of Fig. 4. In this mode, when the
path is important, we stop the DFS process and output the partial
results. With these partial results, tool users can filter out the paths
that are not of interest as early as possible, and feed the rest back to
the tool to continue the DFS. As shown in our evaluation later in §7,
this can largely reduce both the number of unimportant output paths
and the analysis time. To reduce manual effort, PacketGuardian
only stops when the path is considered important as this indicates
that some constraints on the path are tightly related to the analysis
but it is hard to automatically tell whether they are of interest.

6.2 Accept Path Analysis
In accept path analysis, the path is constructed and analyzed with

attacker-controlled data and accept functions as input. Attacker-
controlled data is usually the function parameters related the in-
coming packet (e.g., skb in Fig. 2), and accept functions are func-
tions that indicate the acceptance of the incoming packet, for exam-
ple copying data to upper layers, or terminating the channel. If it
is hard to find such functions, PacketGuardian also supports adding
pseudo accept functions to label the analysis sink of interest.
Analysis sink check. In this analysis the analysis sink is a function,
so we only consider the paths with end points of functions in path
summary. Also, we only care about end point functions that are or
may call into the accept functions. Thus, before the analysis, we
first create a list of such functions by a DFS crawling process, and
then in the analysis sink check discard the paths without an end
point function in the list.

Constraint path property check. In the path analysis, each con-
straint is determined with a property of protocol state check, weak

check, and strong check. For a constraint ct, we first check whether
it is tainted by attacker-controlled data by looking at Texp, and if
not, it is a comparison related to a protocol state and thus labeled as
channel state check. If it is tainted through explicit flows, we find
out which variable v is attacker-controlled using the variable taint
set in ct, and use exp to understand the comparison this constraint
does for v. If it is tainted through implicit flows, the important
comparison is done in a indirect constraint and we use the tracking
described in §6.1 to find it out. We only consider this constraint
to be weak check if (1) except v, all other variables are constants,
or (2) this constraint requires v to be non-equal to non-constant
variables. For the former, an attacker can easily spoof the corre-
sponding packet fields to pass the check, and for the latter, it is very
likely that a random value can pass the check. For all other cases,
we conservatively label the constraint as strong check to avoid FNs.

In the path construction framework, if the path has a strong check
constraint, it is considered important, and otherwise unimportant.
A path is considered invalid if it has conflict constraints, e.g., one
constraint requires v to be larger than a value while another one
requires it to be smaller. In our tool, we use a simple approach to
detect this conflict by checking whether two constraints are exactly
the same but one has br = true and another has br = false.
Weak path candidate output. After the DFS path construction, all
the output paths are valid accept paths. To reduce analysis effort,
by default the path output consists of only protocol state check and
strong check constraints. We include protocol state checks as it can
help understand the channel conditions for an accept path. Note
that we filter out the weak check constraints only in the last step so
that the user can also configure the tool to show all constraints.

Since the goal is to identify the weakest accept path, we also ap-
ply path filtering to filter out stronger paths before the final output.
If the constraints of one path is a subset of that of another path, the
latter is stronger and will be filtered out.

6.3 Leakage Path Analysis
In this analysis, the information sources are the protocol states

the strong accept path checks depend on, and the sinks are the chan-
nels accessible to an off-path attacker. Based on our path summary
design, our sinks can be a function, a statement, or the paths reach-
ing an important program point. This can support storage channels
related to a statement that changes a global value [10, 24, 37], tim-
ing channels related to a statement or program path lengths [3, 29],
or public events related to a function such as sending a packet [18].
Leakage detection. The taint summary for the entry function is a
summarized variable tainting relationship, and we can directly tell
whether there is possible storage channel leakage by checking if
the storage channel sink variables are tainted through explicit or
implicit flows. This is a convenient way to quickly tell the leakage
status, but lacks detailed information for understanding the leak-
age, especially for implicit information leaks. Also, it cannot cover
channels except storage channels. Thus, we also use the DFS path
construction framework to construct leakage paths in this analysis.

Explicit information leaks are relatively easy to understand and
PacketGuardian user can just use the taint propagation line numbers
in the tracking summary to analyze the leakage. The user can also
use the DFS path construction framework to construct the paths
just like the accept path construction in §6.2 with a change of the
analysis sink. However, in a protocol implementation the protocol
states are usually not directly leaked through explicit flows to a
storage channel – more common leakage is implicit information
leaks as shown in recent vulnerability reports [18, 37].



For implicit information leaks, as discussed in §3.2, even though
classic ones are generally considered of less value and commonly
excluded in taint analysis tool design [4, 17, 21, 25], attacker-

controlled implicit information leaks proposed by this paper are
highly-exploitable according to existing vulnerability reports for
practical protocol state leakage [18, 37]. Thus, our leakage path
analysis targets this special type of leaks, and a very important ben-
efit of this is that this can largely reduce FPs, which is a critical
problem for implicit flow analysis [28].

In this following part of this section, we describe how to use
the DFS path construction framework to find leakage paths through
attacker-controlled implicit flows.
Analysis sink check. In this analysis, we filter out the paths which
cannot reach the leakage sinks we defined. For storage channels,
we can use the taint summary to check this, and for function sinks
and other statement sinks, a DFS process like in the accept path
analysis can be used to label function callees of interest, and discard
the path of no interest in the DFS path construction.
Constraint property check. In the path analysis, each constraint
is determined with a property of unrelated, valid low entropy, in-

valid low entropy, and high entropy. Since we target attacker-
controlled implicit information leaks, the constraint is of interest
only if it is tainted by both attacker-controlled data and the infor-
mation sources. If not, it is labeled as unrelated constraint. If re-
lated, we find out the variables tainted by attacker-controlled data
va and those tainted by the information source vs respectively in
direct and indirect constraints. With exp in the constraint we can
figure out the comparison it does, and label the constraint as invalid
low entropy if the constraint requires va to be equal to vs, and as
valid low entropy if the requirement for va is to be non-equal to vs.
For both cases the constraint has low entropy, but for the former it
is unlikely to pass this check while for the latter it is very likely.
For all other cases, we label the constraint as high entropy.

If the path has an invalid low entropy constraint, it is considered
invalid and will be discarded. Otherwise, if it has a high entropy
constraint, it is considered important. For all other cases it is con-
sidered unimportant. Like in accept path analysis, we also check
the constraint conflicts and discard the paths with conflicts. For
this analysis, layered analysis mode can be very helpful since it
is usually hard to judge the entropy automatically. For example,
in the illustrative example the receive and send window ranges are
depending on dynamic protocol states and protocol design, mak-
ing automatic judgement difficult. As shown in our evaluation
in §7, with tool users filtering out paths with invalid low entropy
constraints which are labeled conservatively as high entropy ones,
finding practical vulnerabilities can be much more efficient.
Leakage path candidate output. Each leak is categorized by the
high entropy constraints and the leakage sink, and by default Pack-
etGuardian does not present unrelated and valid low entropy con-
straints to the user. PacketGuardian users can also configure the
tool to output all constraints for more details. For an output path to
break the non-inference property [20] and cause leakage, the same
sink cannot be triggered for both true and false branches of a high-
entropy constraint under all conditions. To check this, for a leak-
age path p1 we first find all paths, say p2, sharing the same sink
with p1 but takes the opposite branch in the high-entropy constraint
cthigh in p1. Then, we check whether all constraints in p2 exclud-
ing cthigh are a subset of all other constraints in p1. If so, p1 is
considered invalid and won’t be included in the output.

7. EVALUATION
Following the design, we implemented the taint-based summa-

rizer and vulnerability analyzer in OCaml with roughly 15K and

2.8K lines of code respectively. In this section, we evaluate the
tool’s effectiveness, accuracy, efficiency by applying it to 6 real
network protocol implementations, covering 4 different network
protocols. All experiments are run on a desktop computer with
a 2.60GHz 8-core Intel Xeon CPU and 128 GB memory.
Code bases. The first code base we target is TCP in Linux ker-
nel version 3.15.8, and we denote it as TCP-Kernel. Different
from previous work which reported vulnerabilities in TCP code
base by manual inspection [38], our tool performs automated anal-
ysis, and outputs not only all existing ones but also 11 new highly-
exploitable ones. Besides TCP, we also choose two other famous
protocols in the Linux kernel, SCTP and DCCP, denoted as SCTP-

Kernel and DCCP-Kernel. Both of them are transport layer proto-
cols providing reliable message delivery like TCP but having dis-
tinct features to support other communication requirements.

Besides transport protocols, we also analyze an application layer
protocol, RTP, which is one of the most popular protocol for de-
livering audio and video over IP networks. We pick 3 different
popular libraries, oRTP 0.24.1, PJSIP 2.4, and VLC 2.2.0, all of
which implement RTP. In the following sections, we denote them
as RTP-oRTP, RTP-PJSIP, and RTP-VLC.

For all 6 cases, the analysis chooses the function handling in-
coming packets as the entry, which are listed in Table 3. The last
column shows the number of functions reachable from the entry
point, showing the complexity of the code bases.

7.1 Tool Effectiveness and Accuracy
Table 5 summarizes the vulnerability and accuracy result for all

6 code bases. Column 2 describes the type of accept path defined
in the analysis task, which in our experiments we consider 2 types:
data and close, which means the analysis sink is to feed data to
upper layers and to close the channel respectively. We call them
inject-payload and close-channel accept paths in this section. Col-
umn 4–6 show the number of output paths, true positive (TP) num-
ber and false positive (FP) number. Here the ground truth is the
feasible paths among all accept paths before pruning, and since our
design is conservative in path pruning and filtering, we do not have
any false negative (FN) cases for all 6 code bases. Column 3 shows
the path number without the path pruning described in §6.2. As
shown, our pruning reduces 42.6% output paths on average without
introducing FNs. Since this output will be analyzed by an analyst,
this pruning greatly reduces human efforts.

Column 7 shows the worst case number of packets needed for
one injection after the accept path analysis, which is Npkt defined
earlier in §3. As shown, the Npkt for 3 Linux kernel code bases is at
least 107 for either inject-packet or close-channel cases, which are
unlikely to be exploitable in practice. Their protections solely rely
on a few “secret” protocol states unknown to the off-path attacker,
which are listed in the last column.

In contrast, the 3 code bases for RTP protocol show diverse re-
sults. RTP-oRTP and RTP-PJSIP only need 51 and 3 packets to
achieve injection, which are both easy to exploit in practice. But
for RTP-VLC 232 packets are needed, which is rather robust. All
3 code bases claim to follow RTP RFC 3550, but our result indi-
cates that even following the same design, their packet injection
robustness can be very different due to implementation differences.

For the code bases that do not have practical vulnerabilities in
accept path analysis, we proceed to the second analysis step —
protocol state leakage analysis. The Npkt after leveraging leak-
age are shown in the column 8. For TCP, both protocol state
rcv_nxt and snd_nxt/snd_una have high-entropy leakage,
and largely degrade the Npkt to only 64 and 32 for inject-payload
and close-channel cases respectively. Leakage for snd_nxt and



Code base Analysis entry function Func #
TCP-Kernel tcp_rcv_established() 1730
RTP-oRTP rtp_process_incoming_packet() 141
RTP-PJSIP on_rx_rtp() 67
RTP-VLC rtp_queue() 22

SCTP-Kernel sctp_sf_eat_data_6_2() 290
sctp_sf_do_9_1_abort() 277

DCCP-Kernel dccp_rcv_established() 359

Table 3: Statistics for the 6 code bases in our evaluation.

Tool w/o features TP # FP # FN # Low-entropy #
w/o field 4 501 0 27

w/o implicit flow 0 N/A 4 N/A
w/o pointer analysis 0 N/A 4 N/A

w/o layered 4 0 0 1336
w/ all above 4 0 0 (base line) 14

Table 4: Evaluation of accumulative improvement using rcv_nxt

leakage in TCP-Kernel.

Weak path output Pkt # Pkt # needed for Protocol states
Code base Type Path # w/o Path TP # FP # needed for injection w/ channel the strong checks

pruning # injection state leakage relying on

TCP-Kernel Data 64 9 9 0 ( 2
32

win1
× 2

32

win2
) * (32 + 32) rcv_nxt, snd_nxt/una

Close 40 1 1 0 232 32 rcv_nxt
RTP-oRTP Data 21 15 10 5 51 * N/A N/A
RTP-PJSIP Data 1 1 1 0 3 N/A N/A

RTP-VLC Data 32 8 4 4 232 * 232 ssrc

Data 12 5 4 1 232 × 2
32

rem_win
232 + 2

32

rem_win
my_vtag, base_tsn,

SCTP-Kernel cumulative_tsn_ack_point
Close 5 2 2 0 231 231 my_vtag, peer_vtag

DCCP-Kernel Data/Close 2 1 1 0 2
48

seqno_win
2
48

seqno_win
dccps_gsr/swh/swl

Table 5: Summary of vulnerability analysis results. Number labeled with “*” indicates that it can be smaller under special channel conditions.
win1 and win2 is usually between 214 to 220, rem_win is less than 4096 by default, and seqno_win is 100 during default initialization.

snd_nxt/snd_una have been reported previously [38] by man-
ual discovery, and it is noteworthy that the snd_nxt/snd_una
leakage has already been strengthened after Linux kernel version
3.8 and thus the vulnerability no longer exists. However, using our
tool, we automatically find 4 high-entropy leakage for rcv_nxt,
including the one reported before and 3 new ones. We validated
all of them through experiments and confirm that they are indeed
exploitable. For snd_nxt/snd_una, even after the fix, our tool
successfully reports 13 new ones and 7 of them are validated.

For inject-payload case in SCTP-Kernel, a low-entropy leakage
of my_vtag exists and also greatly reduces Npkt from 232 ×

2
32

rem_win
to 232 + 2

32

rem_win
. However, it is still a large number

and not exploitable in practice. For RTP-VLC, DCCP-Kernel and
close-channel case in SCTP-Kernel, no high-entropy leakage is
output and thus their Npkt with leakage remains the same. In §7.3,
we provide more details on these results.

We further conduct an experiment to understand the effects of
our static analysis enhancement. As shown in Table 4, we break-
down the accuracy improvement with each analysis enhancement
using the rcv_nxt leakage analysis in TCP-kernel. The evalua-
tion includes TP, FP, FN, and low-entropy leakage, and due to the
difficulty of determining ground truth, we use the result of the tool
with all features as baseline to evaluate FN for other cases. The re-
sults show that all static analysis enhancements, especially implicit
flow tainting tracking, are necessary and play an important role.

7.2 Tool Efficiency
Before the taint analysis, the code pre-process is a one-time ef-

fort which takes around 8.7 hours for the entire Linux kernel, and
only less than a minute for oRTP, PJSIP, and VLC.

For taint-based summarizer, since summarizing the entire Linux
kernel is infeasible, we limit the scope of TCP-Kernel, SCTP-
Kernel, and DCCP-Kernel to the net folder under the self-
contained Linux kernel networking subsystem. TCP-kernel takes
the longest time of 7.8 hours, which we believe is acceptable con-
sidering that the computed summary can be reused later for further
analysis. In addition, the time can further improved by analyzing

functions in parallel as shown in Saturn [52], which is another ad-
vantage of our choice of summary-based approach.

With the function summaries, the accept path and protocol state
leakage path analysis are very efficient, and perform these analysis
on all code bases is less than 10 seconds. Note that this efficiency
also benefits a lot from our layered analysis mode, for example, for
rcv_nxt leakage analysis in TCP-Kernel, it takes 984.5 seconds
in total if not using layered analysis mode.

7.3 Result analysis
In this section, we detail the vulnerability analysis results sum-

marized in Table 5. Due to the space limit we cannot provide code-
level details for all results, and for more details about the experi-
ment setup and vulnerability results, please visit our result website
http://tinyurl.com/PacketInjectionVulnerability [1].

7.3.1 TCP-Kernel

Accept path analysis. Our tool outputs 9 inject-payload accept
paths which are all TPs. 6 out of them are in TCP fast path pro-
cessing. The conditions for entering fast path is shown in Fig. 6.
On line 1, to match the prediction flag it requires the receiver’s ex-
act send window size, which is possible to achieve in some cases,
e.g., when TCP connection is idle. The hard requirement of falling
into fast path is that the sequence number, seq, needs to equal to
the protocol state rcv_nxt on line 2. The other 3 output paths are
on the slow path, which correctly implements the latest standard
specified in RFC 5961 to defend against off-path attacks. In short,
they all require the seq to fall in the receive window, and ack to
fall into another window like shown in Fig. 2. Thus, their Npkt is

roughly 2
32

win1
× 2

32

win2
.

For channel-close case, our tool outputs 1 path due to the effec-
tiveness of our pruning and it is a TP. This path resets the TCP con-
nection in tcp_validata_incoming(), and requires seq to
be equal to rcv_nxt. Thus, its Npkt is 232. Note this an update
as specified in RFC 5961 from the previous TCP implementation
where a TCP RST is accepted as long as the seq falls in the receive



Code base Protocol state Output Validated Hard to FP # Low-
# # trigger # entropy #

TCP-Kernel rcv_nxt 18 4 0 0 14
snd_nxt/una 65 7 6 9 43

SCTP-Kernel base_tsn, cumulative 3 N/A N/A 0 3
_tsn_ack_point

DCCP-Kernel dccps_gsr/swh/swl 5 N/A N/A 1 4

Table 6: Protocol state leakage analysis result. Ssrc for RTP-VLC and my/peer_vtag for SCTP-
Kernel is not included since our tool does not output any high-entropy leakage for them.
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Figure 5: Leakage of snd_nxt through
sink TCPChallengeACK.

1: If ((tcp_flag_word(th) & TCP_HP_HITS) == tp->pred_flags &&

2:  TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&

3:  !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt) {

...

4: }

Figure 6: Code snippet for conditions of entering TCP fast path.

window. This change significantly increases the blind in-window
RST attacks.
Protocol state leakage. Both inject-payload and close-channel ac-
cept paths are protected by protocol state rcv_nxt, so we first use
this as the leakage source in our leakage path analysis. In our exper-
iments, we use network statistics output in netstat, snmp and
sockstat in /proc/net/ as storage channel leakage sinks. To
find the variables that are output to these sinks for taint analysis, we
perform static analysis in file net/ipv4/proc.c starting from
proc_create(), locate the proc file function operation regis-
tration and find the target variables in the output function, e.g.,,
netstat_seq_show() for netstat. With these sink vari-
ables, we first check taint summary for the entry function, and find
that these variables are tainted only by rcv_nxt through implicit
flow. Then we use these tainted variables as leakage sinks in the
leakage path analysis.

The leakage results are summarized in Table 6. For rcv_nxt
our tool outputs 18 leakage candidates, and 4 of them are high-
entropy TPs. 14 of them are low-entropy leakage, which are mostly
pruned out by layered analysis. Note that since falling into fast
path requires seq equaling to rcv_nxt, all fast path related leak-
age are filtered out automatically as invalid low-entropy leakage.
Among the 4 TPs, one of them is reported by previous work [38]
by manual discovery. The other 3 are all new discovery, and one
uses the same high-entropy constraint in tcp_send_dupack()
as the one reported, but has a newly-discovered sink TCPDSACK-

OldSent in netstat. For the other 2, the attacker packet also
makes the code calling into tcp_send_dupack() but with dif-
ferent calling context by deliberately failing the PAWS check, e.g.,

by using an old time stamp, before the seq check (line 2 in Fig. 2).
After knowing rcv_nxt, the attacker can successfully reset the

connection and causing DoS. However, to injection payload, the
attacker still lacks the knowledge of snd_nxt or snd_una to
pass the ack check. We then run another leakage path analysis
with these two values together as leakage sources. Like rcv_nxt,
the sink variables are only tainted by implicit flow. In this setting,
we assume that the attacker already knows the correct rcv_nxt
using the leaks discovered above. For leakage sinks, we use the
same ones as those in the rcv_nxt analysis.

Since at this time the exact rcv_nxt is known, the attacker’s
packet can exploit leakage vulnerabilities in more program paths
including both fast path and slow path area. Our tool outputs 66
leakage candidates for snd_una, and 43 of them are low-entropy
leakage which are filtered during layered analysis. Among the 9

FPs, 3 cases are caused by requiring packet length to be smaller
than data offset field or having an incorrect checksum value, but ac-
tually such packets are dropped in tcp_v4_rcv() before enter-
ing our entry function tcp_rcv_established(). Other 4 FP
cases requires a fast path protocol state tcp_header_len to be
greater than 4, but in the implementation it can only be 0 or 4. The
last 2 cases are caused by conflicting constraints across procedures,
which can be solved by applying more advanced constraint solver
such as a SMT solver [13], which we leave as future improvement.
The 13 TPs are all new discovery, and 8 are in fast path while 5 are
in slow path. All the 8 fast path ones use the comparison between
snd_nxt and ack one line 3 in Fig. 6, and after this compari-
son, there are 8 different sinks in tcp_rcv_established(),
tcp_send_ack(), etc.

The 5 leaks in slow path both goes into tcp_ack(), and
the high-entropy constraint they use is on line 1 and 2 in
tcp_ack() of Fig. 2. As shown in Fig. 5, probability of reach-

ing the return on line 3 is 2
31−win2

232
, which leaks around

1 bit of information under the assumption that win2 is usu-
ally smaller than 220. In the code base, right before the
return on line 3 there is a tcp_send_challenge_ack(),
in which sink TCPChallengeACK is triggered when the chal-
lenge ACKs that are already sent is under a threshold set
in /proc/sys/net/ipv4/tcp_challenge_ack_limit,
which is usually around 100.
Validation. We setup a TCP connection between desktop com-
puter A and B, and have another attack computer using raw socket
to send attack packets to B to validate these leaks. Computer B
is installed with Linux kernel 3.15.8 and added debug information
along the program path to validate whether the leakage path is trig-
gered exactly as our tool output, and at the same time monitor the
corresponding leakage sinks in A’s proc file system. For rcv_nxt,
we validate all 4 high-entropy leakage. For snd_nxt/snd_una,
7 out of the 13 cases are validated. The other 6 cases are relatively
hard to trigger, for example, 5 of them requires kernel configura-
tion CONFIG_NET_DMA, which is only available for processors of
certain architecture, e.g., Intel Xscale I/O processors 32/33x.

7.3.2 RTP

Since the 3 RTP code bases flow the same network protocol and
thus similar to each other in most of the core logic, we cover their
results all together in this section. RTP usually doesn’t have the
option to close the channel with an incoming packet, so our accept
path analysis are all inject-payload accept path analysis.
RTP-oRTP. The output for RTP-oRTP has 15 paths, among which
10 are TPs and 5 are FPs. The 5 FPs are all caused by two chan-
nel variables having the same meaning, one indicating whether
ssrc is set, and another indicating whether the first packet is de-
livered. The changing of two variables is usually correlated and
thus they have equivalent values, but our analysis treats them sep-
arately, resulting in FP paths with semantically-conflicting con-
straints. Among the 10 TP cases, 3 requires guessing the correct



1: matched_ssrc = NULL;

2: for (i=0; i<n; i++) {

3:    if (pkt->ssrc == ssrc) {

4   matched_ssrc = ssrc;

5:  break;

6:    }

7: }

8: if (matched_ssrc != NULL) {

9: ...

Figure 7: False positive causes for RTP-VLC accept path analysis.

32-bit protocol state ssrc value, thus Npkt is 232. However, an-
other 3 TPs indicate that in its logic by default after 50 packets
with a new ssrc and consecutive sequence numbers, RTP-oRTP
will change the ssrc to the new one, making the Npkt reducing
to 51. The other 6 TPs are all under very special channel condi-
tions, for example Npkt can be as low as 1 if the attacker precisely
captures the moment when ssrc is not set yet.
RTP-PJSIP. For RTP-PJSIP, the output only has 1 path and it is
a TP. In this path, unlike RTP-oRTP, it changes its protocol state
ssrc right away if it sees a new one, and relies its robustness solely
on the sequence number. According to its logic output by our tool,
2 packets with consecutive sequence numbers will trigger a channel
restart, and the 3rd packet’s payload will be accepted. Thus, Npkt

for RTP-PJSIP is 3.
RTP-VLC. The output for RTP-VLC has 8 paths and 4 of them
are TPs. The causes of the 4 FPs are shown in Fig. 7. In these
paths, it takes both the false branch of i<n on line 2 and the true
branch on line 8, which is actually not feasible. This is mainly be-
cause we construct paths in a flow-sensitive framework and merge
the paths from the break on line 5 and i<n on line 2 when reach-
ing line 8. This can be solved by path-sensitive analysis which has
higher precision but also much higher overhead. For the 4 TPs, 2 of
them requires the correct ssrc, thus their Npkt is 232. Like RTP-
PJSIP, the other 2 TPs change ssrc right away, and since RTP-
VLC maintains sequence number state separately for each ssrc,
the Npkt is actually 1. However, changing ssrc in RTP-VLC
is only when the channel is configured to support more than one
ssrc, and by default RTP-VLC only supports one. Thus, in nor-
mal cases the Npkt is 232 for RTP-VLC.
RTP-VLC protocol state leakage. Among these 3 RTP code
bases, only RTP-VLC is hard to inject in default setting due to the
protection from the protocol state ssrc. In the taint summary of
the entry function, 14 variables are tainted by ssrc, all through
implicit flows. To check the leakage possibility, we set all these
14 variables as leakage sinks in the leakage path analysis but no
high-entropy leak is found.
Validation. We build oRTP 0.24.1 and PJSIP in pjproject 2.4,
establish audio communication between computer A and B, and
read payload in B from application layer APIs. Since proc file
netstat only shows the local IP address and UDP port for the
RTP channel, the attacker computer sends attack RTP packets to B
with correct destination IP address and port but different source IP
address and port from A’s. In the audio data we sent, we include
packet number so that we know which packet’s payload gets in to
the upper layer. We successfully validate that the payload of the
51-st packet for oRTP, and the 3rd packet for PJSIP gets accepted.
We also confirm that for VLC without correct ssrc the injection
cannot succeed.

7.3.3 SCTP-Kernel

Accept path analysis. Our tool outputs 5 paths for inject-payload
accept path analysis, and 4 are TPs. One SCTP packet can have

multiple chunks, and the 1 FP case is because it requires previous
chunks from the same packet to have ready been accepted, which
is an implementation semantic information that is not known by
our tool. One of the TPs has no special channel condition depen-
dence, and it requires (1) it has the correct 32-bit protocol state
my_vtag, and (2) the sequence number tsn falls into a win-
dow win starting from a protocol state base_tsn, and by de-
fault this win is 4096. At the same time, tsn also needs to
be larger than the previously-received tsn, stored in a third pro-
tocol state, cumulative_tsn_ack_point. We denote the
valid tsn range as rem_win, which is win excluding the parts
before cumulative_tsn_ack_point. Thus, the Npkt is

232 × 2
32

rem_win
. The other 3 TPs all depend on special channel

conditions and their Npkt is not smaller.
For close-channel case, our tool outputs 2 results and both are

TPs. One path handles error cause code in the incoming packet,
and the other handles packets without error cause code. In both
cases, the packet needs to have correct my_vtag or peer_vtag,
which are both 32 bits. Considering the probability that my_vtag
equals peer_vtag, the Npkt is 231.
Protocol state leakage. The accept paths are protected by
my_vtag, base_tsn, and cumulative_tsn_ack_point,
so we use them as leak sources. For sinks, we also use storage
channel like in TCP-Kernel, and for SCTP we use SNMP statistics
in proc file /proc/net/sctp/snmp. To get the variables in
these sinks, we perform the same static analysis described in §7.3.1.

We run the leakage path analysis and find no high-entropy leaks.
From the analysis log we find that all leakage paths start with
my_vtag check, and thus are low-entropy leaks. One of them can
be used to tell whether the attack packet has the correct my_vtag
by looking at sink SctpInPktDiscards. This needs 232 packets in
the worst case, but it can still be helpful to lower the Npkt from

232 × 2
32

rem_win
to 232 + 2

32

rem_win
.

With the knowledge of my_vtag, we still needs to have a
tsn that can fall into the window specified by base_tsn and
cumulative_tsn_ack_point. We use them as leak sources
and find 3 leaks but all are low-entropy ones.

For the close-channel accept paths, the protocol states they rely
on are my_vtag and peer_vtag. In the taint summary, the sinks
are also only tainted by implicit flows, but our tool outputs no high-
entropy leaks for both of the sources.

7.3.4 DCCP-Kernel

Accept path analysis. In DCCP, the checks for copying payload
and resetting connection are the same. In this analysis, our tool out-
puts 1 path and it is a TP. In this path, the DCCP sequence number
seqno needs to fall into a sequence window seqno_win around
a protocol state dccps_gsr as long as 48 bits, and the higher
and lower bounds of this window are another two protocol states

dccps_swh and dccps_swl. Thus, the Npkt is 2
48

seqno_win
.

Note that the initial size of this seq_win is only 100, making it im-
practical to inject. In normal cases there should be another check
for the DCCP acknowledge sequence number ackno, but as shown
in our analysis output, attacker can send a DATA type DCCP mes-
sage without acknowledge sequence number to avoid that check.
Protocol state leakage. We use all 3 protocol states as sources in
this analysis. For sinks, currently DCCP does not create a proc file
to store global statistics yet, but it does have a structure for SNMP
statistics like TCP-Kernel and SCTP-Kernel, which has same leak-
age potential if enabled in the future. Thus, we use these vari-
ables as leakage sinks. Our tool outputs 5 leaks and 4 of them
are TPs. The 1 FP path requires (1) the attack packet is a SYNC



or SYNCACK packet having the right ackno, (2) seqno is larger
than dccps_swl, and (3) it fails the seqno_win check. However,
when (1) and (2) happen, dccps_gsr is updated with seqno and
it won’t fail the seqno_win check. In our analysis, we can know
that dccps_gsr is updated, but cannot be sure that seqno can
pass the seqno_win check. The 4 TPs all require seqno to fall
into seqno_win, and thus are all low-entropy leaks.

8. LIMITATION AND FUTURE WORK
Possible FNs due to implementation simplification. We design
and implement a high precision data flow analysis with implicit
flow tainting and pointer analysis to avoid FNs as much as possi-
ble. However, there may still be cases causing FNs due to simpli-
fied implementation. For example, as described in §5.1, we add an
iteration limit of loops to avoid adding recursive fields and this may
lead to FN cases if the leakage sinks have recursive fields.
Failure to identify semantically-conflicting and low-entropy

constraints. As discussed in §7.3, the majority of the FPs are
caused by conflicting constraints that are tricky to identify. In the
future, we plan to use a SMT solver [13] commonly employed by
symbolic execution as tool improvement.
Limited scope of storage channel. As described in §6.3, our tool
is designed with the capability to cover a range of leakage channels
such as storage channels, data timing channels, and public events
like sending packets. However, in our experiments we only use
storage channels in proc file system as leakage sinks, and may miss
practical vulnerabilities leaked through other channels. In the fu-
ture, we plan to incorporate other sinks in the leakage path analysis.

9. RELATED WORK
Network protocol analysis. To detect protocol design vulnerabil-
ities, prior work has used formal methods such as model checking
and specification languages to perform rigorous protocol specifica-
tion testing [6, 7]. However, these cannot prevent vulnerabilities
due to weak implementations. For implementation vulnerabilities,
static analysis has been applied to identify system DoS vulnerabil-
ities [8], protocol manipulation attacks [30], and interoperability
problems [36]. However, none focused on packet injection vulner-
ability causing payload injection or network DoS.
Static analysis for taint-style vulnerability. For taint-style vul-
nerabilities, static analysis tools have been designed to detect buffer
overflow [12], format string vulnerabilities [45], and SQL injection
and XSS [25, 27, 48]. Recently, Yamaguchi et al. [53] propose to
use code property graph to effectively mine such vulnerabilities in
large amounts of code. Different from them, our analysis targets
packet injection instead of code injection, which requires handling
much more and also diverse checks due to header field semantics.
Moreover, we have a follow-up leakage analysis which is not in-
cluded in previous tools.

Static taint analysis are also used to detect information leakage
vulnerabilities in recent years, especially for privacy leakage in An-
droid system [4, 16, 17, 21]. However, these tools exclude implicit
flow tainting due to its low-entropy in leakage and the problem
of high FPs [28]. In comparison, our tool taints implicit flows
as required by our analysis goal, and proposes to target attacker-
controlled implicit information leaks to mitigate the FP problem
while maintaining high accuracy.
Side-channel attack and detection. Recently years witness a rise
in side-channel attack discoveries. For storage channels, proc file
systems have been abused as side-channels to infer keystrokes [56],
webpage [24], and system state [10]. In particular, Qian et
al. [37, 38] used proc file packet counters to infer TCP sequence

number. Another popular channel is timing channel, including
code path [29], data [3], and cache-access timing channel [22, 54].
In network protocol attacks, some header fields are also found to be
useful for inferring sequence number [18]. In comparison, our goal
is not to report new side-channel attack but focuses on designing an
automated tool to systematically detect side channels.

In contrast to side channel discovery, side channel detection has
been less explored. Dynamic analysis such as black-box testing
has been used to find side channels in web application [9], and
timing side channels in SSL/TLS implementation [33]. To over-
come the drawback of analysis completeness in dynamic analysis,
static analysis tools are also developed to detect web application
and cache side channels [14, 55]. Compared to them, our tool can
detect storage side channels, which has not been covered in exist-
ing tools, and moreover, our target is protocol state leakage, which
is different from previous work.

10. CONCLUSION
In this paper, we design and implement an effective and scalable

static program analysis tool, PacketGuardian to systematically an-
alyze the security properties of network protocol implementations
against off-path packet injection attacks. PacketGuardian uses a
context-, flow-, and field-sensitive taint analysis with pointer anal-
ysis to achieve high precision, and also targets attacker-controlled
implicit information leaks. The solution significantly eases the
classic problem of false positives of implicit flow tracking while
still yields high detection accuracy of practical exploits. By ap-
plying our tool on 6 real network protocol implementations, we
are able to discover new and realistic vulnerabilities confirmed by
proof-of-concept attacks for both Linux kernel TCP and 2 out of 3
RTP implementations.
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