
Droid M+: Developer Support for Imbibing Android’s New
Permission Model

Ioannis Gasparis
University of California, Riverside

igasp001@cs.ucr.edu

Azeem Aqil
University of California, Riverside

aaqil001@cs.ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Chengyu Song
University of California, Riverside

csong@cs.ucr.edu

Srikanth V. Krishnamurthy
University of California, Riverside

krish@cs.ucr.edu

Rajiv Gupta
University of California, Riverside

gupta@cs.ucr.edu

Edward Colbert
U.S. Army Research Lab

edward.j.colbert2.civ@mail.mil

ABSTRACT
In Android 6.0, Google revamped its long criticized permission
model to prompt the user during runtime, and allow her to dynam-
ically revoke granted permissions. Towards steering developers to
this new model and improve user experience, Google also provides
guidelines on (a) how permission requests should be formulated (b)
how to educate users on why a permission is needed and (c) how
to provide feedback when a permission is denied. In this paper we
perform, to the best of our knowledge, the first measurement study
on the adoption of Android’s new model on recently updated apps
from the official Google Play Store. We find that, unfortunately, (1)
most apps have not been migrated to this new model and (2) for
those that do support the model, many do not adhere to Google’s
guidelines. We attribute this unsatisfying status quo to the lack of
automated transformation tools that can help developers refactor
their code; via an IRB approved study we find that developers felt
that there was a non-trivial effort involved in migrating their apps
to the new model. Towards solving this problem, we develop Droid
M+, a system that helps developers to easily retrofit their legacy
code to support the new permission model and adhere to Google’s
guidelines. We believe that Droid M+ offers a significant step in
preserving user privacy and improving user experience.

KEYWORDS
android permissions; mobile privacy; mobile security

ACM Reference Format:
Ioannis Gasparis, Azeem Aqil, Zhiyun Qian, Chengyu Song, Srikanth V. Kr-
ishnamurthy, Rajiv Gupta, and Edward Colbert. 2018. Droid M+: Developer
Support for Imbibing Android’s New Permission Model. In ASIA CCS ’18:
2018 ACM Asia Conference on Computer and Communications Security,
June 4–8, 2018, Incheon, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3196494.3196533

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for government purposes only.
ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196533

1 INTRODUCTION
Application sandboxing and the permission system are key compo-
nents of modern mobile operating systems for protecting the users’
personal data and privacy. Prior to Android 6.0, Android used the
ask-on-install permission model: (1) developers declare a set of
required permissions in the app’s manifest file, (2) at installation
time, Android asks users to review the requested permissions and,
then (3) users either grant all the requested permissions or refuse the
installation. Many prior studies have shown the problems with this
design (e.g., [15, 22, 47]).

The first frequently criticized aspect of the old Android permis-
sion model is that it is complex and unintuitive. Over the years, the
number of system permissions have increased from 75 (API level 1)
to 138 (API level 25) [45]. Without a good understanding of the per-
mission model, developers tended to ask for more permissions than
needed [14, 22]. For example, one-third of the 940 apps analyzed
in [14] were over privileged. Requesting unnecessary permissions
is a big security problem since attackers can leverage a multitude
of combinations of these permissions to compromise user privacy
(e.g., leaking personal photos over the Internet). On the user side,
due to the same problem, few people are likely to carefully review
the requested permissions and even fewer will correctly understand
how permissions are mapped to sensitive resources [15, 26].

The second problem with the old permission model is the lack
of flexibility; users can neither grant a subset of all requested per-
missions, nor revoke granted permissions. A recent user study [47]
showed that 80% of the participants would have preferred to decline
at least one requested permission and one-third of the requested
accesses to sensitive resources because of the belief that (1) the
requested permission did not pertain to the apps’ functions; or (2)
it involved information that they were uncomfortable sharing. The
lack of such flexibility has also led Android users to either ignore
the permission warnings or to not use the app [15]. For instance, a
recent survey [31] of over 400 adults showed that over 60% of the
participants decided not to install an app because it required many
permissions. Irrevocable permissions also pose privacy concerns
to users as apps can retain their access to sensitive sensors (e.g.,
microphone) while running in the background [25].

Wijesekara et al. [47] proposed using Nissenbaum’s theory of
context integrity [30] as a guideline to determine whether accesses

https://doi.org/10.1145/3196494.3196533
https://doi.org/10.1145/3196494.3196533

to protected resources would violate users’ privacy. Under this guide-
line, the ask-on-install model clearly lacks enough contextual infor-
mation which makes it very difficult for normal users to determine
why a permission is needed and if the app would violate their pri-
vacy [15]. Moreover, they also found that even if permissions are
requested during runtime, the lack of proper mechanisms to explain
why a particular resource was necessary could also lead to incorrect
perceptions and less willingness to grant the permission.

In Android 6.0 or Android M(arshmallow), Google revamped the
Android permission model to solve the aforementioned problems.
Specifically, Android no longer promotes users to grant permissions
during install-time; instead, normal permissions (i.e., no great risk to
users’ privacy and security) are automatically granted and dangerous
permissions are requested during runtime. To further streamline the
number of requests, dangerous permissions are put into permission
groups and granting one dangerous permission would automatically
grant the others in the same group. To help developers convey to
users why a permission is needed, Google also added an API to
check whether further explanation may be needed. Finally, users can
revoke a granted permission at anytime using the system settings.
We discuss the new permission model in detail in § 2; note that the
permission model carries over to later versions of Android.

While the new permission model significantly improves (com-
pared to the old model) user control over privacy and in making
apps more appealing for adoption (recall that asking permissions at
install-time may affect users’ decisions on installing an app), we find
that only a few apps have effectively migrated to the new permission
model. To verify whether this is a general issue for the entire Google
Play Store, we conduct, to the best of our knowledge, the first sys-
tematic measurement study and an IRB approved developer survey
towards answering the following questions: (a) How many newly
released apps have adopted the new permission model? (b) For those
that have not, what are the likely reasons? and, (c) For those that
have adopted, how well do they adhere to Google’s guidelines [17]?

Our analysis results show that, despite a 26.7% market share of
Android M, (i) very few of the apps have adopted the new model and,
(ii) even those apps that have done so, have significant shortcomings.
We attribute one cause for this unsatisfying status quo to be the lack
of a good development tool. In particular, to migrate to the new
model, developers have to make non-trivial changes to their existing
code. This is especially true if they intend to follow Google’s guide-
lines, i.e., properly checking if a permission was revoked, educating
a user in-context on why a permission is needed, and properly han-
dling instances where a permission request is denied. We conduct
a developer survey wherein a majority of the respondents say that
they have not migrated their apps to Android M because of the lack
of an easy-to-use tool to help to migrate to the new model.

As a key contribution, we develop such a tool set, Droid M+, to
help developers to retrofit their legacy code to the new permission
model. Given the source code of an Android app, our tool will (1)
identify different functionalities (i.e., context) of the app; (2) identify
permissions that are required for each functionality; (3) automati-
cally populate the entry of each functionality with an annotation that
allows developers to review the requested permissions and provide
corresponding justifications; (4) automatically translate the annota-
tion into real Java code; and (5) provide a default callback function
to handle denied requests. In summary, Droid M+ allows developers

to easily morph their app(s) to support revocable permissions and
adhere to Google’s guidelines, with minimal changes to their exist-
ing code. Without Droid M+, it is currently a challenge to handle
the asynchronous requestPermissions() calls, as the code after
the check still executes. To place permission checks properly (ask
only when necessary), it requires significant refactoring of the code.
Our evaluations show that Droid M+ can facilitate easy permission
revocations as intended by Android M, hiding tedious details from
the developers.

In summary, this paper makes these key contributions:

• We perform an in depth measurement study of 4743 top free apps
from the Google Play Store and examine the adoption of the new
Android permission model. Our study shows that only 62.6% of
the apps have migrated to the new model. Of these, nearly 45% of
the apps do not follow the Google guidelines. Finally, about 2.9%
of them refuse to run if a permission request is denied.

• We conduct a developer survey which indicates that about 54 %
of the responding developers have not migrated their code to the
new model because they feel it is hard, and there is no helper tool
available to facilitate such a transition.

• We design, implement and evaluate Droid M+, a tool set to help
developers migrate to Android’s new permission model and adhere
to Google’s guidelines.

2 BACKGROUND AND MOTIVATION
The Android M Permission Model: Android uses application sand-
boxing to isolate apps and protect users’ privacy. Accesses to sensi-
tive sensors, users’ personal data, and other services/apps are medi-
ated by the Android permission system. To request authorizations,
an app must declare the required permissions in its “manifest file”.
Normal permissions (i.e., permissions with no great risk to the user’s
privacy or security) are automatically granted at install. Android will
prompt the user when an app seeks to access a resource guarded by a
dangerous permission. Users can then choose from three options: (1)
grant the permission and the app will retain access to the resource;
(2) deny this particular request; or, (3) for a permission that has been
previously denied, a chat box is provided using which, automatically
deny all future requests. If the user denies a permission request,
Android M allows the app to either continue running with limited
functionality or completely disables its functionalities. Dangerous
permissions are put into permission groups viz., calender, camera,
contacts, location, microphone, phone, sensors, sms, and storage.
If one permission in a permission group is granted, the remaining
permissions in the same group are taken to be automatically granted.
Android M also allows the user to modify the permissions granted to
apps using system settings. Note that a user can also revoke permis-
sions for legacy apps (API level < 23); in such cases, the platform
will disable the APIs guarded by the permission by making them
no-ops, which may return an empty result or a default error.
Steps for Migration: To provide revocable permissions, developers
should update their apps via the following steps (Fig. 1):

• At each instance when an app needs to invoke API(s) that require a
permission, the developer should insert a call to explicitly check if
the permission is granted. This is critical because users may revoke
granted permissions at anytime, even for legacy apps. Developers

Figure 1: The permission workflow of Android M.

can use the ContextCompat.checkSelfPermission method from
the support library or directly invoke platform APIs to do so.

• Optional but as recommended by Google, to help the user under-
stand why the app needs a permission, the developer should write
code to display a justification before requesting a permission.

• If the app does not have the permission(s) required to com-
plete a restricted action, the developer should insert a call to
request the permission(s). Developers can do so by calling the
ActivityCompat.

requestPermissions method from the support library or directly
invoke platform APIs. If a requested permission has not been
permanently denied, the platform will display a dialog box to the
user showing which permission group is requested.

• Since permission requests are asynchronous, a callback method
(by overriding the onRequestPermissionsResult method) must
be provided to handle the results of such requests. Upon invoca-
tion, the system will provide a list of granted and denied permis-
sions.

• In the case of denied permissions, the developer must ensure that
the app either continues execution with limited functionality, or
disables the corresponding functionality and explain to the user
why the permission was critical.

Google’s Guidelines: Google’s guidelines for permission manage-
ment [17] suggest that permission requests be simple, transparent
and understandable. These attributes help the adoption of an app
[41, 47], i.e., users were more willing to grant permission(s) when
requested in-context and with proper justifications. Google recom-
mends that permissions critical to the core functionalities of an app
(e.g., location to a map app) be requested up-front, while secondary
permissions be requested in-context. If the context itself is not self-
evident (e.g., requesting the camera permission when taking a photo
makes sense but the reason for requesting location at the same time
lacks clarity), the app should educate the user about why the per-
mission is requested. The education recommendation also applies to
critical permission(s) asked up-front. When a permission is denied,
the app should provide feedback to the user and if possible provide
other available options. If critical permissions are denied, the app
should educate the user as to why the permission is critical for it to
function and offer a button so that the user can change the settings.
For secondary permissions, the app should disable the corresponding
features and continue providing the basic functionalities.

3 ANALYZING ANDROID M ADOPTION
Next, we present (a) our in-depth measurement study on the adoption
of Android M’s new permission model and (b) our developer survey
to offer possible explanations to the findings from the study.

3.1 A Motivating Example
As a motivating example, we consider an app Any.do [5], one of
the most popular to-do apps on Google Play (checked in November
2016). This app requires access to the microphone, location, contacts,
calendar, the device identifier, and local storage. It is unclear why a
to-do app needs all these permissions. The app description page on
Google Play offers no proper information either. Further, although
this app does target the new permission model, the way it requests
permissions does not adhere to Google’s guidelines. Specifically,
when the app is first launched, all the permissions are requested
up-front (Fig. 2). At this time, it is unclear why these permissions
are required, and no justifications are offered (even though the per-
missions are legitimately used). This motivates us to perform an in
depth measurement study on how top apps on the Google Play Store
adopt Android M’s permission model.

3.2 Measurement Tool
We design and implement a novel tool, the Revocable Permission
Analyzer, to experimentally quantify via different metrics, the way
existing apps are developed using the new permission model of
Android M. The Analyzer first uses apktool [7] to decompile and
decode the APK’s resources including the manifest file and the UI
XML file. It then uses androguard [3] to generate the call graph of
the APK. Using the call graph, the Analyzer looks for invocations of
checkSelfPermission, requestPermissions, shouldShowRequestPer-
missionRationale, and onRequestPermissionsResult. By focusing on
these API calls, it examines (1) whether the app is requesting and
checking for dangerous permissions, (2) whether the app shows a
rationale for requesting the permission, and (3) what it does after the
user responds to the permission request.

Specifically, to collect permissions requested up-front, Revocable
Permission Analyzer checks the main “Activity” of a given app
(i.e., onCreate, onStart, and onResume) and looks for invocation of
requestPermissions() in the call graph rooted by the main activities.
Any permission not asked upfront, is considered as being asked
in-context. To check if customized messages are included to justify
requested permissions, Revocable Permission Analyzer looks for
the invocation of shouldShowRequestPermissionRationale(). This
API returns whether a customized message needs to be shown; if
so, the app can display a message to the user and then call the
requestPermissions(). If shouldShowRequestPermissionRationale()
is not invoked, then it is a strong indication that no customized
message (education) is included. When customized messages are
shown, we look up the message from the strings.xml resource file.

Recall that Google’s guidelines (§ 2) suggest that only critical and
obvious permissions should be asked up-front and developers should

Figure 2: Any.do permissions during startup.

educate the users when they request non-obvious permissions. To
check the compliance of an app, we manually process the analysis
results of Revocable Permission Analyzer. In particular, we consider
a permission to be critical if it is needed by functionalities indicated
in the app’s description, by its title, or by its category. For example,
a camera app is expected to request the Camera permission; simi-
larly a travel/navigation app can be expected to ask for the location
permission. For educational messages, we use natural language pro-
cessing (i.e., significant manual work is not needed). Specifically,
(a) we extract all the strings from the app’s resources, (b) we remove
any occurence of the default educational messages that Google pro-
vides, and (c) we extract semantics from the educational messages
by leveraging [34] and compute their similarities with the default
educational messages.

3.3 Results and Inferences
Android Applications Dataset: Our measurement study is based
on 4743 applications that are obtained by downloading the top free
apps from each available category (e.g. Social, Games, etc.) as per
Google’s Play Store [20] charts from June 2017.
Adoption of Android M Permission Model: A large number of
Android M apps do not support revocable permissions. From the
4743 apps, only 2973 are developed for Android M or above (with
the targetSdkVersion of 23 or higher). Note, that some of these
apps can be extremely popular with over 100 milions downloads
(e.g., ES File Explorer File Manager) [21]. Further, there are 302
apps out of the 2973 that do not require any so called dangerous
permissions and thus, in a normal way do not invoke any Android
M APIs. We want to point out that, surprisingly, there are apps like
Ringdroid, which is developed by Google itself and still does not
support revocable permissions even though they are developed with
the latest Android SDK (see § 5 for more details).

As reported in [4], in December 2017, the share of Android users
that use Android M and N, is 48%; one can expect this percentage
to keep growing. Unfortunately, the above result shows that many of
the apps still do not support revocable permissions. This implies that
a user who has a phone with a version of Android that supports the
latest fine-grained permission mechanism, will be forced to grant
all the permissions to most of the applications; otherwise these
applications will likely not function correctly [13].
Permissions Asked Upfront vs. In-Context: A significant fraction
of apps ask permissions upfront instead of in-context. We find that
14.07% of the apps (376 out of 2671) request permissions during
startup while most apps (2295 out of 2671) attempt to request per-
missions in-context. Some apps will request the same permissions
both upfront and in-context. Often, permissions requested upfront
are not really critical and the app can still function without them.
Fig. 3 shows the distribution of the number of the critical permis-
sions asked upfront by the 376 apps; 68.5% have only one critical
permission, 22.6% require 2 permissions, and 8.9% require 3. This
shows that in general very few permissions are considered critical
and should be asked upfront. Unfortunately, in most cases, apps
often ask more permissions. Fig. 4 shows the total number of over-
asked permissions that those apps are requesting upfront. Clearly,
with respect to more than 59% of the apps, one or more permissions
requested upfront are in fact not critical. Note, that permissions that

are being asked upfront by the apps in our dataset, are not usually
sought by third party libraries. The are two reasons for this: (a) only
an Activity or a Fragment can request dangerous permissions dur-
ing runtime (third party libraries do not contain those) and (b) no
permissions are sought during the initialization of the third party
libraries.

Some of the apps expect all permissions to be granted upfront or
will simply refuse to run. Interestingly, some apps that support the
Android M permission model and use the corresponding APIs expect
all the permissions asked upfront to be granted; otherwise they sim-
ply refuse to run. We leverage the Revocable Permission Analyzer
to check the statements invoked when a requested permission is re-
fused; if statements like “System.exit(0); or finish();” are
encountered, it is evident that the app is simply voluntarily ending
its run due to permission revocation.

This style of such an app defeats the purpose since it does not
really intend to support revocation of permissions (even when some
of them are not critical). Overall, using this approach, we identify
2.9% or 80 apps out of 2671 apps that ask at least one non-critical
permission, and yet refuse to run if such a permission is not granted.
The remaining 296 apps still ask for these permissions again in-
context, if they were denied when requested up front.
User Education: A significant fraction of apps does not provide
meaningful explanations for non-obvious permissions. We find that
from the apps that request permissions in-context, only 54.17%
(1447 in total out of 2671 apps) educate the users (i.e., a mean-
ingful message that tells the user why the requested permission is
needed for a given functionality, is provided). For example, when
the app SONGily [39] requests the storage permission, the following
message is provided: “Permission to write files is required”. We
deem this message does not educate the user. Similarly, AskMD [8]
provides the following message when requesting for accessing
the microphone: “AskMD would like to access your microphone.
Please grant the permission in Settings.” Contrary to those apps,
theScore [43] provides the following message when it requests ac-
cess to the user’s calendar: “In order to add events to your calendar,
we require the Android Contacts permission. We will not be reading
or accessing your information in any way, other than to add the
events.”. We deem this message as following Google’s guidelines by
properly educating the user why it needs that permission.

Permissions asked upfront are less likely to have meaningful ex-
planations. From the apps that ask permissions upfront, only 177
(47.07%) educate the user properly. This is a much lower rate com-
pared to permissions that are asked in-context. Permissions that are
asked upfront lack the context and it is generally even more impor-
tant to educate the users about what the permissions are used for.
Unfortunately, the results indicate that a majority of the considered
apps fail to adhere to the Google’s guidelines.

3.4 Developer Survey
To ascertain why developers may not have migrated their apps to the
new permission model, we conduct a survey. We recruited developers
with apps on GitHub and the Google Play store. The survey was
approved by our institution’s IRB and conducted in August 2017.

Figure 3: Critical permis-
sions that can/should be
asked upfront.

Figure 4: Over-asked per-
missions during launch.

Figure 5: Fraction that
gave technical laborious-
ness as primary reason.

Figure 6: Fraction that
would update if tool avail-
able.

Recruitment: For recruitment via GitHub, we used the new GitHub
graphql API to get a list of repositories that contained the Android-
Manifest.xml file. Recruiting developers via GitHub has previously
been employed in [1]. Since there is no way to search for Android
repositories using the GitHub API, we reasoned that any repository
that contained the AndroidManifest.xml file was likely an An-
droid app. Next, we cloned all the repositories returned via the API
call and checked the manifest file for the target sdk to find apps
that had not updated to Android M yet. Lastly, we used the git log
command to extract developer email addresses. Github currently
only returns a thousand responses for any API query. This limits
our survey pool greatly. Therefore, we used a second recruitment
resource, viz., the Google Play Store.

For recruitment via the play store, we followed the same strategy
of crawling the top android apps as in our measurement study. We
extracted email addresses from the app’s respective play store pages.
Most apps on the play store list email addresses for technical support
to which we sent the survey.

We sent emails with links to the anonymous survey to 2500 email
addresses. We did not offer recruitees any incentive for filling out
the survey since we did not want our results to be biased. Specifi-
cally, while we can extract developer emails via GitHub, the play
store mostly lists support email addresses which may or may not
be answered by actual developers (could be support staff). We re-
quested potential developers to only fill out the survey if they were
developers who had not transitioned their apps to Android M.
Survey: We hosted the survey on SurveyMonkey and asked two key
questions: Is the reason why you have not migrated because it is
hard to do so (technically laborious)? and if so, would you consider
migrating if a tool was available to help you migrate your app to the
new model? We also included a question that invited survey takers
to explain in a few words: What, if anything, do you think can be
done to make the permission model easier to use for developers?
Results: Of the 2500 emails we sent, we have so far received a total
of 187 replies. The results of the survey are summarized in Fig. 5 and
Fig. 6. 99 developers(≈ 54% of those who responded) indicated that
the reason for not migrating their app was because it was laborious
to do so. Furthermore, 90 people out of those 99 developers (≈ 90%)
indicated that they would migrate if an automated helper tool was
available. The ones that did not say it was laborious to migrate, gave
no indication with regards to why they did not migrate their app.

Finally, the majority of survey takers did not respond to the de-
scriptive question. We suspect that this was because the descriptive
question required more effort on their part. About 10% of the survey

takers responded and indicated that the permission model is a sub-
stantial change and as such, places an undue burden in making their
apps forward compatible. They would have liked Google to offer
some easier default knobs for transition.

In short, our survey results suggest that a large fraction of devel-
opers believe that the work associated with transitioning their apps
from prior Android versions, is involved. The same developers also
indicated their inclination to update if a tool was available.

3.5 Summary
Our measurement study demonstrates that only a significant percent-
age of applications that were built on the Android M platform, do not
properly adopt the new permission model. An even smaller fraction
of these applications, unfortunately, adhere to Google’s guidelines.
Our survey suggests that one the of main reasons for developers not
fully and properly adopting the new permission model, is the com-
plexity and the work associated with transitioning their apps from
the previous Android version for which the app was developed, to
the newer version. As users become more privacy conscious [31, 47],
following Google’s guidelines can be a key factor influencing their
choice of apps. Below is a list of our key observations:

• Approximately 60% of the top apps supporting Android M API
level 23 or above are not using its permission revocation APIs
properly (59.6 % ask for at least one non-critical permissions up
front).

• 45.83% and 52.93% of the permissions asked in-context versus
upfront do not have informative explanations for why the permis-
sions are sought as per the Google guidelines.

• Some of these apps (≈ 3 %) simply refuse to run if any of the
permissions asked upfront are not granted.

• 54% of the surveyed Android developers did not transition their
apps due to the perceived difficulty. They also indicated a willing-
ness to transition if an automated helper tool was made available.

4 DROID M+ TOOL SET
In this section, we describe the design of Droid M+ and its compo-
nent tools. Droid M+ consists of three major components(see Fig. 7).
The first component is a static analysis tool that helps developers
identify different functionalities (i.e., context) of their apps, what
permission(s) each functionality requires, and the right place to re-
quest the permission(s). The second part is an annotation system
that facilitates the easy integration of revocable permissions and
conformance to Google’s guidelines within existing Android app

Figure 7: Droid M+ architecture.

code. Finally, Droid M+ contains a compiler extension that interprets
the annotations and inserts the corresponding code.

4.1 Static Analyzer
The static analyzer has three tasks: (1) identify functionalities within
an app, (2) identify permission(s) required by each functionality, and
(3) identify the right place to annotate. Its main function is to help
developers migrate apps developed against an old API level, to the
new API level (≥ 23). However, apps that are already developed
for the new API level can also utilize this tool to help refactor the
code, i.e., determine what permissions to request, where to place the
requests, and what education message to display with each request.
Identify Control Flow: Before we can do any useful analysis on an
app, the tool needs to first parse the source code and generate the
corresponding call graph and control flow graph. These are standard
techniques which we will not describe in detail. As discussed in the
literature (e.g., [37]), there are two challenges worth mentioning.
First, point-to analysis [37] needs to be employed in order to generate
an accurate call graph. Second, Java reflection needs to be handled
to generate the complete call graph. Currently, we do not support
the latter but there are ways to statically resolve the Java reflection
calls [38], and we plan to incorporate these in the future.
Identify Functionalities: Given a call graph, we define a functional-
ity as a collection of nodes in the control flow graph that are reachable
from a single entry point. In Android, entry points include activities
(i.e., the onCreate() method of the android.app.Activity class),
callback methods for UI interactions (e.g., click of a button), con-
tent providers (app data managers), services (background threads),
and broadcast receivers (system-wide broadcast events). These entry
points can be identified by parsing the manifest files and analyzing
the code. The reasoning is that these entry points represent user-
triggered events, or significant activities that should be made aware
to users (e.g., background services). Each functionality should con-
tain a sequence of instructions involving some usage of permissions.
We believe it is a natural and reasonable place to request permissions;
this practice is aligned with Google’s guidelines and is actually used
in many real-world apps that perform in-context permission requests
(e.g., WhatsApp Messenger [46]). As most existing static analysis
tools for Android already support the identification of all the entry
points of an app and building a complete call graph ([3],[40]), we
omit the details here.
Identify Permissions: The first step in identifying the required per-
missions, is to parse the manifest file and find out the target API
level of the app. Note that although our tool helps migrate the app
to the new permission model of Android M (API level 23), this step
is still needed to support the newer version of the SDK (i.e., if the
app’s current targetSdkVersion is lower than 23, we assume 23;

else, we use the app’s targetSdkVersion). The API level is used
to map SDK APIs to their required permissions. Specifically, we
use the latest version of PScout [9] to generate the database that
maps a permission to a set of SDK APIs that require this permis-
sion. There is no version of PScout for Android M yet. However
most apps we test were developed for previous versions of Android.
For cases where apps were developed for M, we check if they do
an Android version check for API calls that were made available
beginning Android M, and then explore the Android code manually
to see if they need dangerous permissions. Note, that our dataset did
not contain any app developed with the minimumSdkVersion equal
to 23.

With this mapping information, identifying permissions required
by a functionality is straightforward. In particular, given the complete
static call graph, we use a standard reachability analysis for Android
apps to identify all the potential invocable SDK APIs from the entry
point of a functionality. Then we use the permission mapping to
generate all the required permission(s) for this functionality.
Third-Party Libraries: Some third-party libraries such as adver-
tisement libraries (e.g., AdMob) and analytic services could also
access protected resources (e.g., location). Because these libraries
are usually delivered in binary (bytecode) format, we need addi-
tional steps and different analysis tools to identify the permission(s)
they require. Specifically, we first collect all calls to the third-party
libraries. Then we decompile the byte code of the libraries. Finally,
we perform the same reachability analysis starting from the invoked
methods to identify all the SDK APIs that may be invoked and map
them to the required permissions, which is similar to Stowaway [14].
Droid M+ currently does not support native libraries.

4.2 Permission Annotations
As per the Google guidelines [17] and prior studies [41], users are
more likely to grant a permission if the developer provides an expla-
nation for why it is needed. Developers should also provide feedback
if a permission request is denied and accompany this feedback with
a button leading to the system settings for enabling the permis-
sion(s). Unfortunately, while it is easy to automatically identify all
the required permission(s) of a functionality, automatically gener-
ating the corresponding explanations and feedback is much harder.
Hence, our current design seeks developers’ help for generating the
explanations and the feedback. To ease this process, we use the cus-
tomizable Java annotation system [32] to capture the explanations.
Lst. 1 provides an example of the annotation we use for declaring
dangerous permissions and providing their justifications. Starting
with @Permission, the annotation includes: (a) a name for the func-
tionality; (b) an array of permissions, where each array element
is a tuple <perm, reason, feedback>. perm denotes the requested
permission, reason denotes the optional justification, and feedback

denotes the optional message to be shown if the permission is denied.
For example, the “Attach photo to task” functionality of Any.Do

could be annotated as:

Listing 1: Permission Annotation.
1 @Permission(
2 functionality ={”Attach photo to task”},
3 request ={
4 {”READ EXTERNAL STORAGE”, ”Require storage to access your photos.”, ”You won’t be

able to attach photos.”}

5 })
6 public void fromGallery () {
7 // code
8 }

Automatic Population: Assuming that a functionality has a sin-
gle purpose, we ask developers to only provide the annotation
once, as all accesses to the same protected API will share the same
purpose. Given this, we automatically place the annotation at the
entry point of each functionality, with two exceptions viz., back-
ground services and libraries. Background services are different
since they are not a subclass of Activity and thus, cannot invoke
the requestPermission method to prompt users. Libraries are dif-
ferent for many reasons. First and importantly, a library may be
used in many functionalities, including background threads. Be-
sides, the onRequestPermissionsResult method is bound to each
Activity, and so if a library is used in different Activities, it also
creates confusion. Second, it is unreasonable to ask first-party devel-
opers to provide explanations for why a third-party library needs a
permission(s). Instrumenting libraries distributed in binary format re-
quires additional effort. Thus, Droid M+ places the annotation at the
method where the background services are started (startService)
and where the library methods are invoked.

4.3 Compiler Extension
We use Droid M+’s compiler extension to interpret the permission
annotations and generate the corresponding code. For each required
permission, we use Google’s example code [19] as the template
towards generating the code:

Listing 2: Generated code.
1 SuitableMethod (...) {
2 // begin of template
3 if (ActivityCompat. checkSelfPermission (this , perm) !=
4 PackageManager.PERMISSION GRANTED) {
5 if (ActivityCompat.
6 shouldShowRequestPermissionRationale(this , perm)) {
7 // display reason
8 ActivityCompat. requestPermissions (...) ;
9 } else {

10 // display feedback
11 }
12 return ;
13 } else {
14 WrapperMethod();
15 return ;
16 }
17 // end of template
18 }
19
20 @Override
21 public void onRequestPermissionsResult (int requestCode, String [] permissions ,
22 int [] grantResults) {
23 // length will always be 1
24 if (permissions [0] == permission) {
25 if (grantResults [0] == PackageManager.PERMISSION GRANTED) {
26 WrapperMethod();
27 } else {
28 // display feedback
29 }
30 return ;
31 }
32 }

Here the perm, reason, and feedback are from the annota-
tion. If the reason or the feedback is empty, we use the string
“{functionality} requires {perm}”. Our compiler extension en-
sures that the functionality cannot be empty.

While populating the template is straightforward, the challenge
is determining where the permission should be requested. In [28],
Livshits et al. proposed four properties for a valid prompt placement:
(a) Safe: Every access to the protected resource is preceded by a
prompt check; (b) Visible: No prompt is located within a background

task or a third-party library; (c) Frugal: A prompt is never invoked
unless followed by an access to a resource; and, (d) Not-repetitive:
A prompt is never invoked if the permission was already granted.

In Android M, since a call to checkSelfPermission always guar-
antees the not-repetitive property and we have already annotated
background services and calls libraries differently, we will focus on
safety and frugality. To be frugal, we want to place the permission
request as close to the resource access as possible, which also makes
the request more likely to be in-context. However, the current design
of the Android M’s permission model makes it hard to implement
this placement strategy. In particular, as already shown in the code
template, requestPermissions is an asynchronous method and thus,
when it is invoked, the execution will not be blocked. Hence when
the execution reaches the next statement, the permission(s) may
not be granted yet and invoking the protected API can crash the
app. The standard way is to immediately exit the current method
after requesting the permission. At the same time, after the user
responds to the permission requests, the execution is resumed in
the onRequestPermissionsResult callback function instead of the
statement following requestPermissions. The problem is that if
local variables are used in the access to the protected APIs, then they
will not be accessible in the callback function; similarly and more
fatally, if the method that accesses protected API returns a value
(e.g., location), then we have no way to return that value to the caller.
Due to this problem, we choose to sacrifice some degree of frugality
to avoid the need to drastically refactor the code.
Placement Algorithm: For each functionality that has an annota-
tion, we use a placement algorithm to insert the “permission request-
ing” code. The algorithm is similar to the one proposed in [28],
with two key differences. First, as mentioned above, because of
framework support, we do not need to consider the non-repetitive
constraint. Second, our algorithm does not try to avoid third-party
libraries and background services because they are not annotated.
Instead, we walk up the dominator tree to avoid each method whose
return value depends on the protected API and is used by its caller(s).

First, for each annotated functionality, we initialize a job queue
into which pairs <sensitive call, current method> are inserted.
Here, a sensitive call denotes an invocation to a SDK API, a library
method, or a background service that require permission(s). For each
pair in the queue, we perform a backward search to check if the per-
mission has already been requested. Note that according to Android’s
documentation [18] because the permission group may change in
the future, developers should always request for every permission
even though another permission in the same permission group may
already be asked. Thus, when checking for existing permission re-
quests, we do not consider (1) whether a permission within the same
permission group has been requested and (2) whether a permis-
sion that implies current permission (e.g., WRITE EXTERNAL STORAGE

implies READ EXTERNAL STORAGE) has been requested.
If a permission has not been requested, we check whether the

current method is a suitable method. A method is suitable if (1) it
is a void method, (2) its return value has no dependencies on the
sensitive call, or (3) its return value will never be used. If the current
method is not suitable, for each call site of the current method, we
push a new job pair <current method, call site> into the queue.

Once a suitable method is found, we place the permission request
inside the method. We first create a wrapper method that replicates
the code from the sensitive call to the end (return) of that branch. If
the wrapper method depends on local variables, we use a map to store
those variables before requesting the permission and retrieve them
inside the wrapper method. After creating the wrapper method, we
insert the permission request template right before the sensitive call
and populate it with correct annotations and the generated wrapper
method, as suggested in Lst. 2. Note that although some of the
code after the template will become dead because the execution will
always return before reaching that code, our current design does
not try to eliminate it; instead, we rely on the existing dead code
elimination pass of the compiler to eliminate this unreachable code.

The above process is repeated until the queue is empty. Note that
because the entry point of a functionality is always a void method,
this loop is guaranteed to terminate.
Background Services: Droid M+’s placement algorithm can handle
almost all cases, but it cannot handle exported background services.
These are services that can be started through a “broadcasting intent”.
Since such services can be started by the Android framework, if they
require permissions, Droid M+ must request the permissions up-
front. We identify such services by parsing the manifest file. For
any service with attributes enabled = true and exported = true

and requires permission(s), we add the permission requests in the
onCreate method of the main Activity.
Denied Permissions: The Android M permission model places an
onus on the developer to correctly implement denied (or revoked)
permission call-backs. Droid M+ facilitates his by inserting the
skeleton code that needs to be filled out (as seen in Lst. 2). Google’s
guidelines suggest that developers should handle the denied branch
more gracefully than just displaying an error. We point out that Droid
M+ does not make the implementation of the handler for a denied
branch any easier or difficult. The developer has to still correctly
implement the handler for the denied branch. By default, when a per-
mission is denied, Droid M+ displays an error message and simply
exits; this will cause the onStop() of the app’s current activity to
be invoked to do any necessary bookkeeping before terminating. It
is not ideal as the user may need to restart the app. However, it at
least will not cause unexpected program malfunction or crashes. We
further discuss how to handle denied permissions in §7.
Critical Permissions: Droid M+ currently does not support iden-
tifying critical permissions that must be requested up-front. For
such permissions, developers have to add the requests manually and
provide proper education on the welcome screen [17]. However, be-
cause granted permissions can always be revoked by users at anytime
(through system settings), the code snippets that Droid M+ inserts
are still necessary for the correct functioning of the app.

5 EVALUATIONS
In this section, we present the Droid M+’s evaluations. Our evalua-
tion focus on answering two questions: (a) How applicable is Droid
M+ i.e., how well can it handle today’s apps on the Play Store? and,
(b) How good is our permission request placement algorithm?

We implement Droid M+’s static analyzer based on the soot [40]
static analysis framework. We use apktool [7] and androguard [3] to

analyze existing apps. Annotation interpretation and code insertion
is done based on Java JDK 1.8 and using the Java parser [24].

5.1 Applicability
We design Droid M+ to be a source code level tool set. Unfortunately,
as there are only a limited number of open sourced Android apps,
we evaluate Droid M+ in two ways. First, using RingDroid as a
case study, we showcase how Droid M+ would work on real world
Android apps. Then we analyze 100 top apps from the Google Play
store and quantify how many apps can be handled by Droid M+.
Case Study: Ringdroid. Ringdroid [35] is an open source app that
records and edits sounds. In this case study, we use the commit
955039d that was pushed on December 2, 2016; actual source code
and line numbers can be found in [35]. Although Ringdroid was
developed by Google and was targeting the latest Android SDK (API
level 25), it surprisingly does not support revocable permissions
(built against API level 22). Instead, it just wraps access to protected
APIs with a try block and catches the thrown SecurityException.
This makes it a good example to showcase the benefits of Droid M+.

Ringdroid requires four dangerous permissions: READ CONTACTS,
WRITE CONTACTS, RECORD AUDIO, and WRITE EXTERNAL STORAGE. The
static analyzer in Droid M+, finds 11 functionalities that require
permissions. Among them 8 are background functionalities and the
remaining 3 are associated with button clicks. 9 requests are finally
inserted by Droid M+ (2 are redundant). In all the 9 cases, the
requests were inserted immediately before the associated sensitive
call happens, because the containing methods are all void methods.

• The first functionality is the onCreateLoader interface, im-
plemented by RingdroidSelectActivity when it returns a
CursorLoader that requires the STORAGE permission. This method
is invoked in the background by the Android framework when
LoadManager related methods are invoked (e.g., in the onCreate

method at line 151 and 152). Droid M+ insert the requests before
line 151 (152 is covered by this request), and the remainder of the
code from line 151 to line 187 is replicated in a wrapper method.

• The LoadManager is also invoked in the refreshListView method.
Since this method can be called from other UI events such
as onCreateOptionsMenu), Droid M+ placed a request for the
STORAGE permission at line 528 with lines 528 and 529 replicated
in a wrapper.

• In the onDelete method invoked from a button click callback
function, Droid M+ inserted a request for the STORAGE permission
at line 473; the remainder of the function is replicated in a wrapper.

• The ReadMetadata method also requires the STORAGE permission.
However, since it is not part of an Activity, Droid M+ has to move
it up to the loadFromFile method of the RingdroidEditActivity.
Droid M+ inserted a request at line 598, with the remainder
of the function replicated in a wrapper. Note that inside the
loadFromFile method, there is a background thread that also
requires the STORAGE permission. However, as the permission has
already been requested, no request is inserted for this thread.

• The MICROPHONE permission is also required by the RecordAudio

method of the SoundFile. However, as it is invoked from a back-
ground thread, the request is inserted before the creation of the

Figure 8: CDF
of apps vs
functionali-
ties requiring
permission(s).

Figure 9:
Average
Compila-
tion Time.

thread at line 755 inside the recordAudio method; the rest of the
function is replicated in a wrapper.

• Three methods of the SoundFile class: ReadFile, WriteFile,
and WriteWAVFile require the STORAGE permission. But as they
are invoked in background threads, namely, one created in
the loadFromFile method discussed above and another in the
saveRingtone method, the request is inserted inside the creation
method. In particular, this is done at line 1225. The rest of the
function replicated in a wrapper.

• The ChooseContactActivity implements the onCreateLoader

interface which will return a CursorLoader that requires the
CONTACTS permission. The loader is initialized in the onCreate

method. Thus, a request is inserted at line 129 with the code from
line 129 to line 139 replicated.

• The afterTextChanged method handles UI events. A request to
CONTACTS permission is inserted to enable restartLoader, at line
181; this line (line 181) is replicated in a wrapper.

• The assignRingtoneToContact method, invoked from a button
click callback function, also requires the CONTACTS permission. A
request is inserted at line 154 with the remainder of the function
replicated in a wrapper.

The reasons for requesting these permissions are self-explanatory;
thus, we omit the annotations that were created.
Extended Measurement:To understand the applicability of Droid
M+ to general apps, we perform the following measurements. First,
since Droid M+ cannot handle native code that requires dangerous
permissions (e.g., write to the external storage), we analyze how
many apps from our measurement study (1) contain native code and
(2) require external storage read/write permissions1. We found that
546 apps from among the 7000 apps match these criteria and thus,
might not be handled by Droid M+.

Next, we analyze 100 top Android M apps that do not have native
code and require dangerous permissions. We choose Android M apps
to ensure that we can also compare the permission requests place-
ments. From among these apps, we found 698 functionalities that
would request a total of 158 permissions up-front. On average, each
application has 7 different functionalities that require permission(s);
90% of the apps have 13 “permission requiring” functionalities or
fewer. Fig. 8 presents the CDF of the number of permission requiring

1 We have verified experimentally that this is the only common permission that is used
within native code.

Group Permissions
LOCATION ACCESS COARSE LOCATION, ACCESS FINE LOCATION
CONTACTS READ CONTACTS, GET ACCOUNTS
CALENDAR READ CALENDAR
PHONE READ CALL LOG, READ PHONE STATE
MICROPHONE RECORD AUDIO
STORAGE WRITE EXTERNAL STORAGE

Table 1: Dangerous permissions requested by Any.Do.
functionalities of the analyzed apps. Among these functionalities
that require permissions, 203 are Activities, 232 are UI event han-
dlers, 201 are third-party libraries, and 60 are background threads.
Most of the functionalities (579) require only one permission, 98
require two, 21 require three or more.

Regarding request placement, as was discussed in § 4, Droid M+
cannot place an annotation in a non-void method whose return value
depends on the permission and would be used by its caller(s). To
understand how common this situation is, we performed a more
conservative measurement – how many non-void methods contain
access to protected APIs. We found that 43% of the methods would
returns a value and thus, the placement of the permission request
may have to moved up to its callers. We also found that 11.3% of
these requests might need to be placed on the entry method because
all the other methods inside the functionality return a value.

Finally, by applying Droid M+ to these apps, only 48 permissions
will be requested up-front (instead of 158), while the remaining
will be asked instead, in-context; this corresponds to a decrease of
69.62% in permissions asked up front.

5.2 Quality of Request Placement
Next, we evaluate the effectiveness of our request placement strategy
(i.e., examine whether the processed app actually follows Google’s
guidelines [17]). To show that this is indeed the case, we first use an
existing Android M app that supports revocable permissions to show
that Droid M+’s placement matches the placement of the developers,
i.e., we are as good as manual placement. Then we reason about why
the Droid M+-processed app will follow the guidelines.
Case Study: Any.do. In this case study, we analyzed the free version
of Any.do [5], one of the most popular “To do” and task list apps on
Google’s Play Store with a total number of installations between 10
and 50 million. This app was updated last on November 21, 2016
and it supports the new revocable permission model. We input the
downloaded APK to Droid M+’s static analyzer and find that the app
requires 9 dangerous permissions (see Table 1).

Manual request placement. Upon launch, the app requests users
for permissions for LOCATION, CONTACTS, and PHONE. No explanation
or education is provided with regards to any of these. Upon further
investigation, we find that none of the requested permissions are criti-
cal and the app would continue to function even if no permissions are
granted. In addition to these up-front requests, all used permissions
are also requested in-context; so they can be dynamically revoked.

• The LOCATION permission is used in four functionalities: one for
attaching to a scheduled task for location based reminders, two
for sharing the location to custom analytics classes, and one in a
third-party location-based library.

• The CONTACTS permission is used in two functionalities: when the
user shares a task with her friends and to display the caller of a
missed phone call. If the permission is not granted, no feedback
is provided and the corresponding functionality is not performed.

• The PHONE permission is used when the user seeks to be noti-
fied with regards to missed phone calls. If the permission is not
granted, feedback “Missed call feature requires phone permission”
is provided. It is also being used in the two analytics classes.

• The CALENDAR permission is requested in-context to cross-
reference the tasks with the user’s calendar for conflict detection,
etc. If the permission is denied, the feedback “Post meeting feature
requires calendar permission” is provided.

• The MICROPHONE permission is requested correctly in-context
when the user wants to add a voice message to a task that she
schedules for later. If the permission is not granted, the feedback
“Recording permission is needed” is provided.

• The STORAGE permission is also requested correctly in-context
when the user wants to add a photo or a document to her sched-
uled task. If the permission is not granted, the feedback “This
feature requires access to external storage” is provided. But this
permission is also used by three different third party libraries.

In summary, to support revocable permissions, all permissions are
checked before use; however, only 3 (50%) are requested in-context.
Moreover, Google’s guidelines are not adequately followed: (1)
non-critical permissions are requested up-front, (2) no education is
provided. While admittedly in many cases the reasons for requesting
a permission can be inferred from the functionality, some cases are
less intuitive (e.g., displaying the callers for missed calls); (3) when
permissions are denied, feedback is not always provided and the
functionality silently fails (e.g., share with contacts).

Droid M+’s request placement. Because Any.Do does not always
request the permission in-context, we cannot do a one-to-one match-
ing with its request placement; instead, we perform two measure-
ments: (1) we check if their in-context requests matches Droid M+’s
and (2) we check if their in-context checks matches the requests
made by Droid M+.

For the three already in-context permission requests, because they
are all inside click handlers, our placement is roughly the same as
existing placement. There is a difference due to the fact that, to sup-
port ascynchronous permission requests, Any.do’s code has already
been refactored so that the protected APIs are all accessed inside
void methods and the permissions are asked before the invocation
of the methods. This makes Droid M+’s placement one level deeper
than existing placement (permissions are asked inside the method).
Unfortunately, since we do not have an older version of this app, we
cannot verify if without such factoring, our algorithm would have
yielded the same placement.

In the remaining places where permissions are checked but not
requested, Droid M+’s static analyzer identified all of those as places
where permissions should be requested. From among them, 16 of
the accesses are inside third-party libraries and 4 of them are inside
background threads. We have also manually checked whether our
request placements are in-context and the answer is yes.
Discussion: Although Any.Do is a single case study, we argue that
the evaluations carry over to other apps. Specifically, the quality of
the request placement is assessed based on whether the request would
be in-context. In Droid M+ we achieve this goal in two steps: (1) we
segment the code into different functionalities based on unique entry
points and (2) we try to place the request as close to the permission

use as possible. We believe this is effective for the following reasons.
First, our functionality identification process essentially segments
the app into Activities, UI events handlers, and background threads.
Since most UI events handlers are single-purposed and very simple,
permissions requests should also be in-context. Activities typically,
at most represent a single context; thus, any request within an Ac-
tivity is highly likely to be in-context. Furthermore, the quality of
the placement inside a Activity is further improved in the second
step (see above). For background threads, due to the limitation of the
Android framework, the request would is less likely to be in-context;
however, Droid M+ still improves the quality of the request by sup-
porting the insertion of justifications. Finally, note that the fallback
solution for placement is to place the requests in the main activity.
However, this need did not arise in our test cases.

5.3 Performance
Next, we seek to experimentally quantify the overheads that accom-
pany Droid M+ on the developer side. Towards this, again consider
Ringdroid, the open source app that was previously described and
modify it to support revocable permissions. We make two constructs;
in one the API of Android M is used, and in the other system is used.

Compilation Overhead: Our case study was performed on An-
droid Studio 1.4.1, running on a laptop with a quad core Intel Core
i7 2.00GHz CPU with 16GB of RAM and a hard drive of 1TB at
5400 rpm. We seek to quantify the increase in the compilation time
with Droid M+ compared Android M’s API, because of the addi-
tional steps we add. We perform a clean before each compilation to
achieve the maximum overhead that can be incurred. We perform 20
runs and on average (Fig. 9), Ringdroid using only Android M com-
piles in 22.43 seconds while using Droid M+ it compiles in 67.53.
This corresponds to an increase of approximately 201%. Although
this overhead is significant, it is experienced only when the app is
compiled on the developer’s computer (it does not affect the user).

6 RELATED WORK
In this section we discuss relevant related work.
Android Permission System: Android system prior M uses ask-
on-install model to request permissions. Many research has shown
the ineffectiveness of this design and the need for better permission
management. First, few people would review the requests and even
fewer can correctly understand how permissions are mapped to
sensitive resources [15, 22, 26, 44]. The problem of apps routinely
abusing sensors has been highlighted in [36, 42].

Different techniques to help users manage permissions have been
proposed. Stowaway [14] can determine the set of API calls that an
app uses, and map those API calls to permissions towards detecting
privilege escalation. Ismail et al. [23] proposed using crowdsourcing
to find minimal sets of permissions for apps. Liu et al. [10] proposed
a personal assistant to help manage permissions. TaintDroid [12]
performs dynamic taint analysis to help user uncover cases of po-
tential permission misuse. Livshits et al. provides an automated
way of inserting prompts before sensitive API calls [28]. A field
study conducted by Wijesekera et al. [47] found that apps routinely
abuse permissions once they are granted and that users would like
greater control over sensitive information. Dynamic permissions

At most one At least one 5 or less 5 or greater
49% 51% 60% 40%

Table 2: Permissions per functionality
(such as those in Android M and iOS) address some of the concerns
but permissions once granted, are rarely revoked in practice. The
study makes a case for finer grained, more intelligent permission
management than that with Android M.
Android M: Andriotis et al. [2] conducted a study on users’ adapta-
tion of Android M and found that in general, users greatly prefer the
new model to the old one. The results of the study further highlights
the need for developers to migrate their apps to the new permission
model. revDroid [13] empirically analyzes how often app crashes
can occur due to permission revocation, in off-the-shelf Android
applications targeting Android M. Their study highlighted the dan-
gers of not handling permission revocation correctly and as such,
Droid M+ builds on their results by making it easier for developers
to correctly manage dynamic permissions.
Annotations: Google [11] has developed a set of annotations for
permissions in Android but it is used only in code inspection tools
such as lint. APE [29] uses an annotation language and middleware
service that eases the development of energy-efficient Android apps.
In Java, AOP is used by frameworks like Spring [6] to provide
declarative enterprise services and to allow users to implement their
own custom aspects. In our work, we automatically annotate Android
code, to help developers adopt Android’s new permission model.

7 DISCUSSION
Automated Annotation Extraction: Currently, Droid M+ cannot
automatically generate the functionality, reason, and feedback

within the annotations as it requires automated reasoning about the
context. However, researchers have demonstrated that it is possible
to use natural language processing (NLP) over apps’ descriptions to
infer their functionalities [33]. Using NLP, we may also be able to
extract the context information directly from the target app. We plan
to explore this direction in the future.
Per-Functionality Permission: Although the new Android permis-
sion model is a big step forward from its old model, it is still not
ideal. Specifically, once a user grants a permission, the permission
will be shared across all the functionalities that will require this per-
mission. For example, when a user grants the Location permission
to a “map” app to find her current location, this permission can also
be used by third party libraries [48] and violate the user’s privacy.
A recent study [47] shows that for the “ask-on-first-use” strategy
Android M and iOS employ, the participants subsequent decisions on
whether to grant a permission would match their first decision, only
about half of the time (51.3 %). This observation is also intuitive; for
example, in the above example, while the user is willing to grant the
Location permission to the core functionality of the map app, she
may not want the advertisement library to know her current location.

To quantify the extent to which permissions are carried over
across functionalities, we analyzed the same 1638 apps that contain
revocable permissions (recall Section 3). Table 2 shows the results.
In particular, 51% of the apps share at least one permission across
multiple functionalities. For these apps, in 60% of the cases, the
permission is shared by up to 5 functionalities; in the remaining
cases, the permission is shared between 5 and 20 functionalities.

We discuss two further improvements that can address this prob-
lem. Under the constraint of the current Android M permission
model, one solution is to provide more education to the user with
aggregated explanation messages from multiple functionalities. This
solution will offer the best transparency about all possible uses of
any permissions. With Droid M+, we have in fact implemented this
solution and provided an example screenshot shown in Fig. 10. If a
user chooses to approve the permission use, he or she will be fully
aware that the permission is enabled in all functionalities. Of course,
the downside of such an approach is that it burdens the user with too
much information and puts the onus on her to revoke a permission
later to protect her privacy.

A better solution is to extend the ask-on-first-use strategy to work
on a triplet <app, functionality, permission> instead of the pair
<app, permission>. This means that a permission is approved per
functionality. If the same permission is used in several functionalities,
a user can independently approve and deny a subset of the same. With
the help of Droid M+, an existing app can be easily ported to this new
per-functionality permission model as Droid M+ can already help
developers to identify and annotate the different functionalities of
their apps, identify the required permission(s) for each functionality,
and automatically generate the permission request code. To enforce
this fine-grained permission model though, we can either insert
additional code to maintain the per-functionality permission status,
or require proper support from the Android OS.
Unpredictable App Behaviors: Since Droid M+ introduces non-
trivial changes in the source code, a valid question is whether the
changes break the app in some way or induce unpredictable behav-
iors. Although we only present case studies of two apps, we tested
most apps in our data set to make sure that they worked as expected.

If requested permissions are always granted by the user, it is easy
to see why Droid M+ will not cause any change in app behavior.
It simply adds permission checks that if granted, will result in the
app executing as before. However, the denied execution branch is
more problematic as discussed in §4. Towards understanding the
logic relating to a denied permission, consider first how Android M
deals with apps that have not updated to the newest SDK. If an API
requires a permission that is withdrawn, the app will simply throw
an exception and most likely crash. Droid M+ helps resolve this by
inserting a check for needed permissions before their use and indi-
cating, using code comments, where the permission denied call-back
should be implemented (as can be seen in listing 2). Of course, the
developer still needs to fill the handler code for denied permissions.
We are not making this job any easier or difficult. By default, Droid
M+ displays an error message and exits if a permission is denied.
This is to prevent the app from entering any inconsistent or bad
state (e.g., as simply aborting the original execution flow will likely
cause). Alternatively, depending on the nature of the denied permis-
sions, we can generate more graceful handlers. Android APIs that
require permissions generally fall under two categories: (1) those
that return immediately with results (e.g., get the last location); (2)
those that register a callback (e.g., receiving location updates). For
(1), we can return randomized values so as to keep the program
running (a strategy that has been used in prior work [16]); for (2),
we can simply skip the registration of the callbacks because app de-
velopers cannot assume callbacks will always occur (e.g., at a given

Figure 10: Any.do current version vs with Droid M+.

rate). This strategy is not likely to cause the program to malfunction.
However, there is no guarantee that the two strategies will not lead
to unexpected/unsafe program states.
Other issues: As discussed in § 3, the manual process of checking
whether permissions are legitimately asked upfront is subjective.
There are techniques that can be used to alleviate the subjectivity
(e.g.the crowdsourcing technique [27]). Further, there is almost no
work on understanding the privacy implications of normal permis-
sions as defined by google. We defer the study of these issues, which
we believe can supplement the utility of Droid M+, to future work.

8 CONCLUSIONS
Given criticisms on Android’s permission models, Google revamped
the model in Android 6.0. In this paper, we find via an in depth
measurement study that many apps from the Google Play store have
either not migrated to the new model, or do not follow Google’s
guidelines for adoption, effectively. We find some evidence that this
unsatisfying status quo could be due to the lack of tools that allow
developers to easily adopt the new model. Towards addressing this
shortfall, we design and implement Droid M+, a tool that helps
developers refactor their code to adopt the model. We show that
Droid M+ can help developers in evolving their legacy code to
adhere to Google’s guidelines, via case studies and general app
evaluations.

9 ACKNOWLEDGMENTS
This research was partially sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation here on. The work was also partially supported by
NSF Award 1617481. The authors would like to thank our shepherd
and the anonymous reviewers for their constructive feedback.

REFERENCES
[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. Mazurek, and C. Stransky.

2017. Comparing the usability of cryptographic APIs. In IEEE S&P.
[2] P. Andriotis, M. Sasse, and G. Stringhini. 2016. Permissions snapshots: Assessing

users’ adaptation to the Android runtime permission model. In IEEE Workshop on
Information Forensics and Security (WIFS).

[3] Androguard. 2016. Tool to play with apk files. (2016). https://goo.gl/edcClw.
[4] Android. 2017. Android Share. (2017). https://goo.gl/9kiCgg.
[5] Any.do. 2016. To-do list, Task List. (2016). https://goo.gl/rPpZq8.
[6] AOP. [n. d.]. Aspect Oriented Programming. ([n. d.]). http://goo.gl/1UnkGS.
[7] Apktool. 2016. Reverse engineering apk files. (2016). https://goo.gl/JCh7U7.
[8] AskMD 2016. AskMD. (2016). https://goo.gl/3D5Vvw.
[9] K. Au, Y. Zhou, Z. Huang, and D. Lie. 2012. Pscout: analyzing the android

permission specification. In ACM CCS.
[10] B.Liu, M.S. Andersen, F.Schaub, H.Almuhimedi, S.Zhang, N.Sadeh, Y.Agarwal,

and A.Acquisti. 2016. Follow My Recommendations: A Personalized Privacy
Assistant for Mobile App Permissions. In ACM SOUPS.

[11] Google Developers. 2016. Improving Code Inspection with Annotations. (2016).
http://goo.gl/qSE9dh.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A Sheth. 2014. TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions on Computer Systems
(2014).

[13] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. Wang, Z. Qian, and H. Chen. 2016.
revDroid: Code Analysis of the Side Effects after Dynamic Permission Revocation
of Android Apps. In ACM ASIACCS.

[14] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. 2011. Android permissions
demystified. In ACM CCS.

[15] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. 2012. Android
permissions: User attention, comprehension, and behavior. In ACM SOUPS.

[16] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Queue 10, 1 (2012), 20.

[17] Google. 2016. Material Design Patterns. (2016). https://goo.gl/QQcfEv.
[18] Google. 2016. Requesting Runtime Permissions. (2016). https://goo.gl/0enMi9.
[19] Google. 2016. Runtime Permissions Basic Sample. (2016). https://goo.gl/t59Dw9.
[20] Google. 2017. Google Play Store. (2017). https://goo.gl/kN0Nhz.
[21] Google. 2018. Play Store Top Charts. (2018). https://goo.gl/uPr4nj.
[22] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. 2014. Checking app behavior

against app descriptions. In ICSE.
[23] Q. Ismail, T. Ahmed, A. Kapadia, and M. Reiter. 2015. Crowdsourced exploration

of security configurations. In ACM CHI.
[24] Java 1.8 2016. Parser and Abstract Syntax Tree. (2016). https://goo.gl/qI1f34.
[25] J. Jung, S. Han, and D. Wetherall. 2012. Short paper: Enhancing mobile application

permissions with runtime feedback and constraints. In ACM workshop on Security
and privacy in smartphones and mobile devices.

[26] P. Kelley, S. Consolvo, L. Cranor, J. Jung, N. Sadeh, and D. Wetherall. 2012. A
conundrum of permissions: installing applications on an android smartphone. In
International Conference on Financial Cryptography and Data Security (FC).

[27] J. Lin, S. Amini, J. Hong, N. Sadeh, J. Lindqvist, and J. Zhang. 2012. Expectation
and purpose: understanding users’ mental models of mobile app privacy through
crowdsourcing. In ACM UBICOMP.

[28] B. Livshits and J. Jung. 2013. Automatic mediation of privacy-sensitive resource
access in smartphone applications. In USENIX Security.

[29] N. Nikzad, O. Chipara, and W. Griswold. 2014. APE: an annotation language and
middleware for energy-efficient mobile application development. In ICSE.

[30] H. Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. (2004).
[31] K. Olmstead and M. Atkinson. 2015. Apps Permissions in the Google Play Store.

(2015). http://goo.gl/ph7KGk.
[32] Oracle. 2016. Java SE Annotations. (2016). http://goo.gl/g9b0Dh.
[33] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. 2013. Whyper: Towards

automating risk assessment of mobile applications. In USENIX Security.
[34] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and

Zhong Chen. 2014. Autocog: Measuring the description-to-permission fidelity in
android applications. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1354–1365.

[35] Ringdroid. 2016. Ringdroid. (2016). https://goo.gl/MhLqGW.
[36] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. 2011.

Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones.. In
NDSS.

[37] Y. Shao, J. Ott, Q.Chen, Z. Qian, and Z. M. Mao. 2016. Kratos: Discovering
Inconsistent Security Policy Enforcement in the Android Framework. In NDSS.

[38] Y. Smaragdakis, G. Balatsouras, G. Kastrinis, and M. Bravenboer. 2015. More
sound static handling of Java reflection. In Asian Symposium on Programming
Languages and Systems. Springer.

[39] Songily 2016. SONGily. (2016). https://goo.gl/fFWI1m.
[40] Soot 2016. Soot - A Java optimization framework. (2016). https://goo.gl/UsmKcC.
[41] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson, S. Egel-

man, and D. Wagner. 2014. The effect of developer-specified explanations for
permission requests on smartphone user behavior. In ACM CHI.

[42] Z. Templeman, R and. Rahman, D. Crandall, and A. Kapadia. 2012. PlaceRaider:
Virtual theft in physical spaces with smartphones. arXiv:1209.5982 (2012).

[43] TheScore 2016. theScore: Sports Scores. (2016). https://goo.gl/iefw9C.
[44] Christopher Thompson, Maritza Johnson, Serge Egelman, David Wagner, and

Jennifer King. 2013. When it’s better to ask forgiveness than get permission:
attribution mechanisms for smartphone resources. In ACM SOUPS.

[45] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. 2012. Permission evolution in
the android ecosystem. In ACSAC.

[46] WhatsApp 2016. WhatsApp Messenger. (2016). https://goo.gl/W1QcPv.
[47] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and K. Beznosov.

2015. Android permissions remystified: A field study on contextual integrity. In
USENIX Security.

[48] W. Xu, F. Zhang, and S. Zhu. 2013. Permlyzer: Analyzing permission usage in
android applications. In IEEE Symposium on Software Reliability Engineering
(ISSRE).

https://goo.gl/edcClw
https://goo.gl/9kiCgg
https://goo.gl/rPpZq8
http://goo.gl/1UnkGS
https://goo.gl/JCh7U7
https://goo.gl/3D5Vvw
http://goo.gl/qSE9dh
https://goo.gl/QQcfEv
https://goo.gl/0enMi9
https://goo.gl/t59Dw9
https://goo.gl/kN0Nhz
https://goo.gl/uPr4nj
https://goo.gl/qI1f34
http://goo.gl/ph7KGk
http://goo.gl/g9b0Dh
https://goo.gl/MhLqGW
https://goo.gl/fFWI1m
https://goo.gl/UsmKcC
https://goo.gl/iefw9C
https://goo.gl/W1QcPv

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Analyzing Android M Adoption
	3.1 A Motivating Example
	3.2 Measurement Tool
	3.3 Results and Inferences
	3.4 Developer Survey
	3.5 Summary

	4 Droid M+ Tool Set
	4.1 Static Analyzer
	4.2 Permission Annotations
	4.3 Compiler Extension

	5 Evaluations
	5.1 Applicability
	5.2 Quality of Request Placement
	5.3 Performance

	6 Related Work
	7 Discussion
	8 Conclusions
	9 Acknowledgments
	References

